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Abstract

This paper investigates the welfare effects of private investments prior to trade.

A seller of a durable good can privately invest on changing its quality. After the in-

vestment, she receives a take-it-or-leave-it offer from a buyer. Both the seller and the

buyer value more goods of higher quality. We obtain that, in equilibrium, the seller

mixes the investment choice, adding adverse selection to the exchange. The non-

observability of the investment lowers the buyer’s payoff without giving the seller

additional rents. Notably, adding buyer competition exacerbates the adverse selec-

tion and completely eliminates the trade surplus. Partial observability increases

the equilibrium investment, makes the seller better off, and lowers the payoff of the

buyer.
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1 Introduction

One of the main determinants of the value of a firm is the set of assets it owns. It is

usually assumed that, in the absence of agency problems, owners manage the firm’s as-

sets to maximize future profits. Nevertheless, a firm’s owner may change her investment

choices if she anticipates she may sell it in the near future. Before the sale, she may

be less willing to invest in those of the firm’s assets that are neither observed by poten-

tial buyers nor contractible in the terms of the deal. The anticipation of such behavior

may lower the willingness to pay of potential buyers and the resulting trade probability,

and hence partially de-incentivize the owner’s opportunistic behavior.1 Similar consid-

erations apply to owners of durable goods, such as cars or houses, who may decide how

carefully they maintain them depending on the sale prospects.

This paper studies the welfare implications of private investments by sellers prior to

trade. We show that the possibility of private investments destroys some—and very often

all—surplus from trade, and tends to make both sellers and buyers worse off. This finding

is shown to be robust to many aspects of the problem, such as the social desirability of

the investment, or the level of competitiveness of the buyers’ market. Our results then

identify one channel through which regulations that increase the transparency of a firms’

financial status may foster investment and be welfare improving. Both buyers and sellers

may benefit from the subsidization of certification agencies or from enlarging the set of

financial terms contractible in transaction agreements, as well as from relaxing the legal

constraints for information sharing before horizontal acquisitions take place.

The base model consists of a seller, who owns a good, and a buyer. In the first (invest-

ment) stage the seller can invest on increasing the good’s quality. After the investment,

in the second (trade) stage, the buyer makes a take-it-or-leave-it offer, the seller either

accepts it or rejects it, and the game ends. Our base model is similar to that in Gul (2001)

(see the literature review for a detailed discussion), the main difference being that both

the seller and the buyer value the investment (only the seller does in Gul’s model.) We

focus on the case where the buyer’s value for a “lemon” (a good of the lowest quality) is

higher than the value that the good has for the seller in the absence of trade.

1Mathias Kopp, Executive Chairman at Fusion Industries, describes in his blog the limits of due diligence

by buyers of small to medium-sized businesses, and states: “at best due diligence allows potential buyers

to develop a fragmented and superficial understanding of the acquisition target. Hence, it does not come

as a surprise that frequently the acquired business fails to achieve target and deliver expected return.”

See https://www.linkedin.com/pulse/limitations-due-diligence-mathias-kopp.
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The base model has a unique equilibrium trade outcome, defined as the equilibrium

distribution of investment levels by the seller and the corresponding conditional distri-

bution of accepted offers. As in Gul (2001), it features investment and price dispersion.

We find three novel implications derived from the fact that the investment is valuable

to both the seller and the buyer. First, the buyer is strictly worse off with respect to the

case where the investment is observable, while the seller obtains the same payoff in both

cases. This is true even when the equilibrium investment is more efficient when it is un-

observable: the negative effect of the endogenous adverse selection dominates. Second,

if trade occurs with positive probability, the seller only chooses investment levels where

the surplus from trade is strictly positive. This implies that, in some cases, the equilib-

rium investment is bounded away from zero. Finally, if there is no knowledge of gains

from trade—that is, if there is some investment level where the gains from trade are not

positive—, the equilibrium expected surplus from trade is zero. In this case, the buyer

makes offers which are rejected with probability one.

We compare the previous results with the case where the buyer’s market is competi-

tive. In this case, the Bertrand-competition between buyers implies that, in any equilib-

rium, they do not obtain any surplus from trade. This requires the equilibrium adverse

selection at the trade stage be more severe than in the monopsonistic case: qualities are

more dispersed and the probability of trade is lower. We obtain that the support of the

equilibrium price offers by competitive buyers is not connected, featuring an upper in-

terval of high prices, and an isolated low price. Even though buyers are competitive and

there is common knowledge of gains from trade, neither the seller nor the buyers obtain

any surplus from trading. Competition is then found to be socially harmful, as it lowers

surplus from trade. Differently from the monopsonistic case, now the seller would strictly

gain if the investment became observable: the holdup problem would disappear, and the

seller would obtain all the social value of the investment.

We finally discuss the effect that adding some partial observability of the seller’s in-

vestment has on the trade outcome. More concretely, we consider the case where the

(monopsonistic) buyer is able to observe the mean of the seller’s investment policy (in-

terpreted as the amount of assets owned by the firm, or spending in maintenance of the

durable good), but not its complete distribution (interpreted as the riskiness of the as-

sets, or what the money was spent on). We show that—with respect to the case where

the investment is totally unobservable—the equilibrium investment increases, the seller

is strictly better off and the buyer is strictly worse off.
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1.1 Related Literature

The literature on the hold-up problem has extensively studied pre-trade investment by

a seller when the buyer has all the bargaining power. The focus of this literature is to

analyze whether (and when) the inability of a buyer and a seller to write long-term con-

tracts generates (typically observable) underinvestment by the seller (see Grout (1984)

and Tirole (1986) for its first formulations). In this literature, the closest paper to ours is

Gul (2001). He considers a setting similar to our base model, assuming that the seller’s

private investment is valuable only for her (and not for the buyer), and analyzes the

effect on trade of different bargaining protocols.2 When the buyer makes a take-it-or-

leave-it offer after the investment stage, he shows that both the seller and the buyer use

mixed strategies in equilibrium, and obtain the same payoff as when the investment is

observable. Our base model extends the analysis to the case where both the seller and

the buyer value the investment. This allows us to determine the adverse selection of pri-

vate investments, and to show that they are detrimental to the buyer and do not make

the seller better off, even when they are more efficient than when are observable. Some-

times, the buyer makes unacceptable offers even though he is certain about trade being

beneficial. We further show that a competitive market may not solve the holdup prob-

lem and may, in fact, make it more severe, as all trade surplus may vanish even under

common knowledge of presence of gains from trade.3

Our model is also related to the literature on private information gathering before

trade, as acquiring information is typically costly and may increase the information

asymmetry between buyers and sellers (see Section 5.1). The papers in this literature

study, among other aspects, the incentives for disclosure, and the effect of information

gathering in the contractual terms between an agent and a principal.4 Our analysis of

2In the Gul (2001)’s model the roles of the seller and the buyer are reversed. Its main focus is on analyzing

the case where, in the second stage, the seller makes sequential offers to the buyer. He shows that, if the

offers are frequent, there are equilibria where the buyer invests efficiently. Similarly, Hermalin and Katz

(2009) show that, when the seller and the buyer engage in repeated trade, more information may foster

investment.

3Other papers have studied how some observability of the investment choice affects trade. Most saliently,

Lau (2008) shows that a positive probability of the buyer’s observing the outcome from investment affects

the equilibrium investment level non-monotonically. Online Appendix B considers the case where the

total size, but not the riskiness, of the asset stock of the firm is perfectly observable of the buyer. We prove

that, in this case, the seller is strictly better off, and the buyer strictly worse off.

4For example, Shavell (1994) studies information acquisition and voluntary disclosure before transactions,
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private investments by a seller differs from these papers in two crucial aspects. First,

the seller can choose her valuation for the firm through investment (or de-investment),

but her choice is not observed by the buyer.5 Second, the choice of the seller has a direct

effect on the buyer’s valuation. These two features crucially shape the welfare effects of

the private investments. Also, instead of focusing on the incentives for disclosure, we

analyze how the competitiveness of the buyers’ market and the partial observability of

the investment shape the trade outcome.

The organization of the paper is as follows. Section 2 presents our base model, and

Section 3 the corresponding the equilibrium analysis. In Section 4 we extend our model

to analyze the competitive market. Section 5 discusses some extensions of the model

and concludes. The Appendix contains the proofs of all lemmas and propositions of the

previous sections.

2 Base Model

There are a seller, who owns an indivisible good, and a potential buyer. They play a

game divided in two stages. In the first stage, the seller can invest in order to change

the quality (or value) of the good. The outcome of the first stage is not observed by the

buyer. In the second stage, the buyer makes a take-it-or-leave-it offer to the seller, the

seller accepts it or rejects it, and the game ends.

Investment stage: In the first stage of the game, the seller decides the quality of the

good q ∈R+, which coincides with her valuation. The cost of choosing a quality q is K(q),

where K is an increasing, strictly convex, continuously differentiable function satisfying

K ′(0) < 1 and limq→∞ K ′(q) > 1. Throughout the paper q∗ > 0 denotes the maximizer of

and obtains that voluntary disclosure increases the incentive to acquire information, while compulsory

disclosure benefits the sellers in the market. In a similar setting, Dang (2008) shows that the payoffs of

the agents are non-monotonic in the information cost, and that trade may not happen in equilibrium even

when the agents maintain symmetric equilibrium information. In a different setting, Crémer, Khalil,

and Rochet (1998) study how prior information gathering by an agent affects the contract offered by a

principal, and find that the agent sometimes randomizes between acquiring full information or not.

5Other papers in this literature analyze the case where the principal observes the amount (or precision)

of the information gathering, but not its outcome. Examples are Kessler (1998) and Roesler and Szentes

(2016). In these models, the agent typically chooses to remain partially uninformed to avoid making the

principal more aggressive. Condorelli and Szentes (2016) obtain a similar result in a model where a buyer

chooses the distribution of his valuations, the seller being able to see the choice made.
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q−K(q) in R+, which is the unique value satisfying K ′(q∗)= 1 (note that K ′ is continuous

and strictly increasing from K ′(0)< 1 to limq→∞ K ′(q)> 1).

Trade stage: In the second stage, the buyer makes a take-it-or-leave-it offer to the seller,

denoted p ∈R. The seller decides either to accept it, a = 1, or reject it, a = 0.

Payoffs: Fix a quality q ∈R+, a price offer p ∈R and an acceptance decision a ∈ {0,1}. The

payoff of the seller is

ΠS(q, p,a)≡ (1−a) q+a p−K(q) . (2.1)

The buyer’s value for the good is U(q), where U : R→ R is a continuously-differentiable,

strictly increasing function. We assume that U(q)−K(q) is bounded above and, for con-

venience, we focus on the generic case where U(0) 6= 0. The buyer obtains a payoff equal

to 0 if he does not purchase it. So, the payoff of the buyer is

ΠB(q, p,a)≡ a (U(q)− p) . (2.2)

The seller and the buyer maximize their expected utility.

Strategies: A strategy of the seller is a random investment level, Fq ∈∆(R+), where Fq

is the cumulative distribution function (CDF) of the quality choice, and an acceptance

decision α in the trade stage. The acceptance decision α is a function from the set of

investment levels in the first stage and the price offer received from the seller to a prob-

ability of accepting the offer. A strategy by the buyer is a distribution over price offers

Fp ∈∆(R).

A strategy profile (Fq,α,Fp) is an equilibrium if it is a perfect Bayesian equilibrium.

(Note that the “perfection” of the equilibrium concept is necessary to guarantee that the

seller acceptance decision to an off-path price offer is optimal.) As usual, an equilibrium

outcome is a joint distribution of investment levels, prices and acceptance decisions gener-

ated by some equilibrium. In the model, some multiplicity will arise from the distribution

of price offers that are never accepted in equilibrium. It is then convenient to define an

(equilibrium) trade outcome as the joint distribution of investment choices, trade proba-

bilities and distributions of accepted price offers for each equilibrium investment level.
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3 Equilibrium Analysis

3.1 Preliminary Results

Fix some equilibrium (Fq,α,Fp) for the rest of the section. For any quality choice q chosen

in the investment stage, the expected equilibrium continuation payoff of the seller in the

second stage (net of investment costs) is equal to

W(q)≡ q+

∫

[q,+∞)
(p− q) dFp(p) . (3.1)

Thus, in the second stage, the seller obtains a rent when the price is above her valuation

for the good, and no rent otherwise. The function W(·) is continuous (even if Fp has mass

points), so q is in the support of Fq only if it maximizes W(q̃)−K(q̃) among all q̃ ∈ [0,+∞).

We use Q to denote the support of Fq, and P to denote the support of Fp. Fur-

thermore, it is useful to use P̂ to denote the intersection of P and [minQ,∞), which is

interpreted as the set of equilibrium prices which the seller is willing to accept for some

quality in the support of Fq. The next result provides a characterization of the supports

of the equilibrium strategies.

Lemma 3.1. In any equilibrium, either Q={q∗}, or there exists some q∈[0, q∗) such that

Q=P̂ =[q, q∗]. Consequently, the equilibrium payoff of the seller is q∗−K(q∗).

Note first that Lemma 3.1 implies that, in equilibrium, there is no over-investment

from the seller’s perspective: the seller never chooses a quality above her choice in the

absence of trade considerations, q∗. This fact is irrespective of the social desirability of

the investment or of how valuable the investment is for the buyer. Its logic is similar to

the standard hold-up problem. Indeed, notice that maxP ≤maxQ, since any price above

maxQ is accepted for sure by the seller. Therefore, if the seller chooses maxQ, either she

is indifferent on selling the good (if p =maxQ) or strictly willing to keep it. This implies

that the equilibrium payoff of the seller is maxQ is maxQ−K(maxQ). This payoff is not

is strictly lower than the minmax payoff of the seller, q∗−K(q∗), only if maxQ = q∗.

The right inclusion in the statement, P̂ ⊂ Q, is intuitive. Indeed, any price that

the buyer is willing to offer should leave the seller with no information rent for some

q ∈Q. Otherwise, such a price could be slightly decreased ensuring the same acceptance

probability, and therefore inducing a profitable deviation. The left inclusion, P̂ ⊃ Q is

less obvious, and it is related to the absence of gaps in P̂ . To see why the result holds

assume, for the sake of contradiction, that (p1, p2)∩P̂ =; for some prices p1, p2 ∈ P̂ ⊂Q

with p1 < p2. Since p1, p2 ∈ Q, the seller is (weakly) willing to choose a quality equal to
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p1 or p2 over any other quality q ∈ (p1, p2). Additionally, since (p1, p2) 6⊂ P̂ , we have that

W(q) is linear when q ∈ [p1, p2]:

W(q)= q+

∫q∗

q
(p−q) dFp(p)=W(p1)+

W(p2)−W(p1)

p2−p1

(q− p1) . (3.2)

This makes W(q)−K(q) strictly concave for q in [p1, p2], but since W(p1)−K(p1)=W(p2)−

K(p2) this implies that W(q)−K(q)>W(p1)−K(p1) for all q ∈ (p1, p2). This is a clear

contradiction.

Hold-up Problem

Before analyzing of our base model, we first recover the standard hold-up result: if

the outcome of the investment is observable by the buyer, the seller undertakes her

individually-optimal investment q∗. Given that the seller knows she is going to be “held

up” in the second stage, she maximizes her outside option minus the cost of investing.

Thus, trade is not beneficial (or detrimental) for the seller.

Proposition 3.1. If the investment is observable, the seller chooses q∗. If U(q∗)> q∗, then

the good is transacted at price q∗ (for sure), while if U(q∗)< q∗ the good is not transacted.

The payoff of the buyer is max{U(q∗)− q∗,0}.

3.2 Trade Outcomes

This section characterizes the unique equilibrium outcome of our model. We focus on the

case where U(q∗)> q∗, that is, where there are gains from trade when the investment

is q∗. It is not difficult to see that when U(q∗) < q∗ there is a unique equilibrium trade

outcome: as in the case where investment is unobservable, the probability of trade is 0.

Proposition 3.2. Assume U(q∗)> q∗. There is a unique equilibrium outcome. It satisfies

Q = P̂ = [q, q∗], where q is equal to the lowest quality level such that there are strictly

positive gains from trade in (q, q∗].6 Furthermore,

1. Fq is continuous in [q, q∗] and satisfies Fq(p)= F ′
q(p) (U(p)− p).

2. Fp is continuous in [q, q∗] and satisfies Fp(q)= K ′(q).

The seller’s payoff is q∗−K(q∗) and the buyer’s payoff is no higher than minq∈[q,q∗](U(q)−q).

6Formally, q is equal to the minimum of {q≤q∗|U(q′)>q′ for all q′>q}, and equal to 0 if this set is empty.

Since, by assumption, U(0) 6=0, either q>0 or there is common knowledge of gains from trade, i.e., U(q)>q

for all q ∈ [0, q∗].
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Proposition 3.2 establishes the properties of the unique equilibrium outcome. It fea-

tures randomization of both the seller and the buyer. The seller uses a mixed strategy

which guarantees that, with probability one, trade is strictly beneficial in the trade stage.

While (by Lemma 3.1) the seller does not gain from trade, the result establishes that the

payoff of the buyer is strictly lower than his payoff if the quality was known and belonged

to (q, q∗].

Equilibrium Pricing. We begin shedding light on part 2 of the proposition by consid-

ering the incentives of the seller. Fix some quality level q ∈ [q, q∗). Choosing q+ε ≤ q∗

instead of q, for some small ε> 0, increases the payoff of the seller conditional on keeping

the good, but lowers her payoff conditional on selling it. On the one hand, the implied

increase the investment cost is K ′(q) ε+O(ε2). The effect of the additional investment on

the second stage is that the seller’s payoff increases by ε when she does not sell the good.

Thus, the gain from the additional investment is Fp(q) ε+O(ε2). It is then necessarily

the case that, in equilibrium, K ′(q)= Fp(q).

Note that if q > 0 then some equilibrium offers are rejected for sure. Indeed, if all

equilibrium price offers were in the range [q, q∗], the seller would strictly prefer not to

invest than choosing quality q. This would allow her to obtain a payoff Ep[p] instead

of Ep[p]−K(q). In fact, if q > 0, the probability that the buyer chooses a price which is

rejected for sure is equal to K ′(q) ∈ (0,1).

Equilibrium Investment. We now turn our attention to part 1 of Proposition 3.2. The

condition ensures that the quality distribution is such that any price offer in [q, q∗] gives

the buyer the same payoff. To see this, consider an decrease of the price offer from some

p ∈ (q, q∗] to p− ε ≥ q, for some ε > 0 small. As usual, when the quality is lower than

p−ε, the buyer still acquires the good, but now at a lower price. The decrease on the total

payment of the buyer for these quality levels is Fq(p−ε) ε. Additionally, since the price is

lower, the seller now does not agree to sell the good when q ∈ (p−ε, p]. The change on the

buyer’s payoff from the lower trade is −F ′
q(p) (U(p)−p) ε+O(ε2). As a result, the buyer is

indifferent between offering p−ε and p, for any small ε, only if Fq(p)= F ′
q(p) (U(p)− p).

As we argued before, the equilibrium quality never exceeds q∗, and this is indepen-

dent of the value of the socially-optimal investment level. Still, if the gains from trade in-

crease (i.e., if U(q)−q weakly increases for each q, while q remains the same), the equilib-

rium investment is higher—in a first-order stochastic sense—and the good is transacted

more often.
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Payoffs. As argued in Lemma 3.1, the seller’s payoff is independent of whether the in-

vestment is observable or not. The buyer’s payoff, instead, is lower when the investment

is not observable. Offering q∗ is still optimal, but the quality of the good is lower than

q∗ with probability one. In fact, for any q ∈ [0, q∗], the standard take-it-or-leave-it logic

dictates that the unique equilibrium continuation in the second stage would give him

max{U(q)− q,0}. In our equilibrium, a price equal to p is accepted by the seller only if

the actual quality choice is weakly lower than p, so the transaction probability is lower

and the buyer obtains a good of lower quality than if q was observable. Hence, if the

quality was known, the buyer’s payoff would be higher than his payoff in our equilibrium

(strictly if the quality was known to be in (q, q∗]).

To obtain further intuition, consider first the case where there is common knowledge

of gains from trade, that is, U(q) > q for all q ∈ [0, q∗]. In this case, the buyer’s payoff is

strictly lower than his payoff when the investment is observable, but it is strictly posi-

tive. As a result, q = 0 and all equilibrium offers are accepted with positive probability.

Trade is beneficial in the presence of gains from trade, but the adverse selection from the

privacy of the investment lowers its efficiency.

Consider now the case where there is no common knowledge of gains from trade.

A remarkable consequence of Proposition 3.2 is that, in this case, the buyer does not

obtain any surplus from trade. The buyer is willing to make offers arbitrarily close to

q, which generate an arbitrarily small gain from trade. Trade is, in this case, socially

neutral—neither increases nor decreases the ex-ante payoff of the buyer and the seller.

The equilibrium effects of the adverse selection are drastic enough that, even though the

gains from trade in the trade stage of the game are strictly positive with probability one,

the buyer makes offers which are rejected for sure.

Remark 3.1. In equilibrium, the seller investment choice is, with probability one, below

the level she would choose in the absence of trade concerns. This does not necessarily im-

ply that the equilibrium investment is less efficient than when investment is observable.

Indeed, the socially optimal investment level maximizes U(q)−K(q). Such an investment

level is lower than the seller-optimal investment q∗ if, for example, the derivative of U is

below K ′(0). Nonetheless, even if the equilibrium investment is more efficient when it is

not observable by the buyer than when it is, the equilibrium surplus from trade is lower.

While in the case where the investment is observable the inefficiency arises from the ex-

cessive investment by the seller, in the non-observable case such an inefficiency is lower,

but there is an additional large inefficiency from the fact that the good is transacted with

a lower probability.
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Remark 3.2. Proposition 3.2 shares some similarities with Proposition 1 in Gul (2001),

who assumes that the buyer does not value the seller’s investment. This corresponds

to the case where U is constant (and higher than q∗), so q = 0. Our exercise identifies

the features that can be generalized, and which of them fail when the buyer value for

the good depends on its quality. For example, the finding that the equilibrium quality

choice of the seller never exceeds q∗ is general: it is independent on how valuable the

seller’s investment to the buyer. The lowest equilibrium quality may, instead, be bounded

away from 0, so not investing may be strictly suboptimal. Even though there is common

knowledge of gains from trade in the trade stage, some equilibrium offers are rejected for

sure in some circumstances.

Our results indicate that the welfare implications of private investments may be more

severe than previously thought. The buyer is strictly worse off (instead equally well off)

with respect to the case where the investment is observable. Most saliently, when there

is no common knowledge of gains from trade, he does not gain from trading with the

seller. That is, even if trade would be socially beneficial for a wide range of investments,

and even though the seller only chooses investment levels where the gains from trade

are strictly positive, the equilibrium surplus from trade is zero.7 Owed to the adverse

selection, trade is not socially beneficial.

4 Competitive Offers

All results presented so far rely on the assumption that there is only one buyer in the

market. In this section we study the effects of private investments by a seller in a com-

petitive environment. In particular, we consider the opposite case of a monopsonist: now,

in the second stage, two buyers (Bertrand-)compete to buy the good.

We analyze the following game, played by a seller and two buyers. As in our base

model in Section 2, the seller decides the quality of the good q ∈ R+ at cost K(q) in the

investment stage (K satisfies the same conditions as in Section 2). Now, in the trade

stage, two buyers simultaneously make take-it-or-leave-it offers. The seller decides then

to either accept one of them or to keep the good.

7In some applications, no investing severely reduces the gains from trade. In this situation, if there are

transaction costs (legal fees, taxes,...), the trade surplus from the sale of a good with the lowest quality

may be negative.
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A strategy of the seller consists on a distribution of quality choices Fq ∈∆(R+) and an

acceptance decision β : R+×R
2 → ∆({0,1,2}) (where 0 means not selling the good, while

i ∈ {1,2} means selling it to buyer i), which now depends on the quality chosen and the

price offered by each of the buyers. A strategy of buyer i ∈ {1,2} is a distribution of prices

F i
p ∈∆(R). Given an outcome (q, p1, p2,b) ∈R+×R

2 × {0,1,2}, the payoff of the seller is

ΠS(q, p1, p2,b)≡ Ib=0 q+ Ib=1 p1 + Ib=2 p2 −K(q) ,

and the payoff of the i-buyer, for each i ∈ {1,2}, is

Π
i
B(q, p1, p2,b)≡ Ib=i (U(q)− pi) ,

where U satisfies the same conditions as in Section 2.

A strategy profile (Fq,β,F1
p,F2

p) is a competitive equilibrium if it is a perfect Bayesian

equilibrium. For a given equilibrium (Fq,β,F1
p,F2

p), it will be useful to use Fp = F1
p F2

p

and P as, respectively, the distribution of the maximal offer and its support. Note that

Fp is the relevant distribution to determine the seller’s incentives.

To avoid trivial competitive equilibria, we will focus on the case where following as-

sumption holds:

Assumption 1. q∗−K(q∗) >U(0), that is, if the seller anticipates a price equal to U(0),

the seller prefers investing optimally and keeping the good.

The proof of Proposition 4.1 shows that if Assumption 1 strictly fails (i.e., whenever

q∗ − K(q∗) < U(0)), the unique competitive equilibrium features no investment and a

single price offer equal to U(0). Differently from the monopsony case, if q∗−K(q∗)<U(0)

then competitive buyers give enough equilibrium rents to the seller to deter her from

investing. In this case, trade happens for sure. Note that the quality chosen by the seller

may differ from the socially optimal: 0 may not maximize U(q)−K(q) among all q ≥ 0.8

The following result characterizes the set of competitive equilibria of our model. We

focus on the case of common knowledge of gains from trade as it is more illustrating of

the effects of introducing buyer competition (see Remark 4.1 below):

8For example, in the extreme case where the investment of the seller is invaluable for the buyer (so U is

equal to some ū > q∗−K(q∗)), buyers offer ū for sure in the unique equilibrium, and the seller does not

invest. This indicates that in settings where the uninformed part does not value the investment, such as

Gul (2001), the competitive equilibrium is trivial.
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Proposition 4.1. Assume Assumption 1 holds and U(q)> q for all q ∈ [0, q∗]. Then, there

is some qmin ∈ (U(0), q∗] such that for each q ∈ [qmin, q∗] there is a competitive equilibrium

(Fq,β,F1
p,F2

p) satisfying

1. Q = {0}∪ [q, q∗] and the payoff of the seller is q∗−K(q∗);

2. P = {U(0)}∪ [q, q∗] and the payoff of both buyers is 0; and

3. parts 1 and 2 of Proposition 3.2 apply to Fq and Fp in [q, q∗].

Furthermore, all competitive equilibria satisfy the above properties for some q ∈ [qmin, q∗].

Proposition 4.1 establishes that the equilibrium distribution of transaction prices is

non-degenerated even under perfect competition. Under Assumption 1, there is no equi-

librium without investment: the seller’s payoff in a putative equilibrium without invest-

ment (equal to U(0)) would be lower than the payoff from investing optimally and keeping

the good. Instead, in any equilibrium, the supports of the value choices and price offers

feature two regions: a higher region with properties that resemble the monopsonist out-

come in Proposition 3.2, and a low isolated value.

No gains from trade for the buyers. We first shed light on an important property of all

equilibria: buyers do not obtain any gain from trade. This result is expected in Bertrand

competition settings where the quality is observable: in these settings, all buyers offer

their valuation for the good. In our setting, the quality is endogenous and unknown to

the buyers, and this generates a distribution of equilibrium price offers.

An intuition for the proof of the result is obtained in two steps. The first illustrates

why buyers obtain the same payoff in any equilibrium. To see this, note that a buyer can

offer a price slightly higher than the maximum price offer the other buyer is willing to

make. Such a price is accepted for sure, and so the buyer can secure a payoff no lower

than the other buyer’s payoff. The second step consists on assuming, with the aim of

reaching a contradiction, that the buyers’ payoff is not zero in some equilibrium. In this

case, the minimum offer a buyer is willing to make must be accepted with a positive

probability, and so the minimal offers made by each buyers in equilibrium must coincide.

Also, it must be that when both buyers make such minimal offer, each of them obtains

the good with positive probability. It is then clear that each buyer has the incentive

to over-price the other buyer: offering a price slightly higher than the minimum offer

significantly increases the probability of the offer being accepted, and hence buyers have

a profitable deviation.
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No gains from trade for the seller. We proceed illustrating why, even though the

buyers’ market is competitive, the seller’s payoff is equal to his reservation value from

not trading. We first claim that, in any equilibrium, the maximum offered price cannot

be strictly higher than the highest investment. Heuristically, if there was an equilib-

rium with maxP > maxQ, both a price p ∈ (maxQ,maxP ) and a price equal to maxP

would be accepted with positive probability and, conditional on being accepted, the ex-

pected buyer’s valuation for the good would the same in both cases (equal to Eq[U(q)]).

Hence, offering p would give a buyer a strictly positive payoff, which would contradict

our previous result that the payoff of the buyers is 0 in any equilibrium. We then have

that maxP ≤ maxQ. Consequently, notice that if the seller chooses quality maxQ, she

is weakly unwilling to sell the good, and so she obtains maxQ−K(maxQ). We conclude

that maxQ = q∗ and that the seller’s payoff is equal to q∗−K(q∗). Even though the mar-

ket is competitive and there is common knowledge of gains from trade, the seller does not

benefit from trading.

Low, isolated price. There is a salient property of the equilibrium outcome: the exis-

tence of a low, isolated price. We now illustrate why this feature is necessary for ensuring

that any offer above minP (which is accepted with positive probability) gives a buyer a

non-positive payoff in equilibrium.

Notice that buyers obtain a payoff equal to 0 only if minP ≥ U(minQ): otherwise,

offering a price in the set (minQ,U(minQ))∩ (minP ,U(minQ)) would give a buyer a

strictly positive payoff. Consider the seller’s incentive to invest. It is clear that the choice

of a quality q ∈ (0,minP ] is strictly dominated, from the seller’s perspective, by choos-

ing 0—in both cases the seller’s payoff in the second stage of the game is equal to Ep[p],

but the investment cost of choosing q is strictly higher than choosing 0. Hence, it is

necessary that minQ = 0, minP ≥ U(0) and, defining q ≡ min(Q\{0}), that q > minP .

Furthermore, since a price in [minP , q) is only accepted by the seller, in equilibrium,

when the quality is 0, we have minP = U(0). We then conclude that, since by As-

sumption 1 we have that Fp cannot be degenerated at U(0), P \{U(0)} is not empty and

min(P \{U(0)}) ≥ q >U(0).9 The “very low, isolated price” U(0) serves as an equilibrium

“punishment” for the seller if she chooses a low investment 0. Choosing q = 0 saves in-

vestment costs, while choosing q = q is costly but increases the value of keeping the good

if the price offer is low.

9The proof of the proposition shows that, in fact, min(P \{U(0)}) = q. The argument is similar to the ones

given after Lemma 3.1.
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Equilibrium multiplicity. Finally, notice that Proposition 4.1 establishes that there

is some multiplicity of competitive equilibria. This multiplicity is, nevertheless, limited.

The arguments used in Section 3 apply in [q, q∗]: the seller’s payoff is the same for all

quality choices in this region, and the buyers’ payoffs are also zero for all prices between

q and q∗. The multiplicity of equilibria arises because there is a non-degenerated range

of values of q that support an equilibrium, [qmin, q∗], which is determined as follows.

Recall that both 0 and q are optimal choices for the seller in equilibrium. Hence, the

payoff function of the seller in the trade stage, W(·) (see equation (3.1)), must satisfy:

K(q)=W(q)−W(0)= Fp(U(0)) (q−U(0)) . (4.1)

Assumption 1 guarantees that there is some value Fp(U(0)) < 1 such that the previous

equation holds when q = q∗. Similarly, when q approaches U(0), the right hand side

of equation (4.1) is lower than its left hand side for all Fp(U(0)) ≤ Fp(q) = K ′(q), so no

equilibrium exists. The value qmin is then obtained as the solution of the previous equa-

tion when Fp(U(0)) is replaced by K ′(q). Thus, a value Fp(U(0)) ≤ K ′(q) satisfying the

previous equation exists if and only if q ∈ [qmin, q∗].

Remark 4.1. Recall that Proposition 3.2 establishes that, in the absence of common

knowledge of gains from trade, the payoff of the monopsonist is zero. In this case, it

is not difficult to see that the trade outcomes equilibria in the model with a monopson-

ist buyer are also trade outcomes in the model with buyer competition. In the proof of

Proposition 4.1 we argue that this is indeed the case when Assumption 1 holds and there

is no common knowledge of gains from trade.

The Effect of Competition

To see the effect of adding competition in the buyers’ market, we now compare the equilib-

rium outcome of the competitive market in Proposition 4.1 with the one for the monopson-

istic market in Proposition 3.2 (when Assumption 1 holds and U(q)> q for all q ∈ [0, q∗]).

We begin by noting that the expected “highest” price is the same in a monopsonistic

and a competitive market: Ep[p] = q∗−K(q∗). This is a consequence of the fact that, in

both cases, both 0 and q∗ are optimal choices for the seller in equilibrium. The distribu-

tions of price offers are, however, remarkably different. In a monopsonistic market, the

buyer chooses the price offer using a distribution with an interval (connected) support,

with prices ranging from the seller’s value for the good in the trade stage if she does not

invest, 0, to the value when she invests optimally, q∗. Alternatively, if the buyers’ market
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is competitive the price distribution is disconnected: there is a low, isolated price, and a

range of high prices. Hence, price dispersion may not necessarily be an indicator of the

lack of competitiveness of the buyers’ market. Instead, a unimodal price distribution—in

contrast of a bimodal one—may be.

We continue with the observation that, in comparison with the monopsonist case, the

equilibrium distribution of quality levels when the buyers’ market is competitive is more

extreme. To state this more precisely, fix some q ∈ [qmin, q∗], and let F c
q(·) and Fm

q (·)

denote, respectively, the distribution of investment choices in the (unique) equilibrium

outcome when there is a monopolist buyer, and the distribution of investment choices in

the (unique for the fixed value q) equilibrium outcome when the buyer market is competi-

tive. Then, it is easy to see that there exists some q̂ ∈ (0, q) such that F c
q(q)≥ Fm

q (q) for all

q ≤ q̂ and F c
q(q) ≤ Fm

q (q) for all q ≥ q̂. Hence, F c
q(·) and Fm

q (·) satisfy the so-called single

crossing condition, a standard measure of dispersion. The additional dispersion of qual-

ity values in the competitive market lowers the buyers’ payoff from offering intermediate

prices, ensuring that no price gives them a positive expected surplus from trade.

The previous observations imply that, independently degree of competitiveness of the

market, trade does not make the seller better off. In both the monopsonistic and competi-

tive cases, the highest equilibrium price is q∗ and the seller is willing to invest optimally,

so her payoff is equal to q∗−K(q∗). This has an important consequence: in the presence

of common knowledge of gains from trade, buyers’ competition lowers the social surplus

with respect to the monopsonist case (where the seller obtains a positive surplus from

trade).10 The additional adverse selection required to lower the buyers’ surplus from

trade destroys all gains from trade. Compared to the monopsonistic case, competition

lowers the rents obtained by the buyers and does not make the seller better off. Further-

more, the seller strictly benefits from making the investment observable (or contractible)

in the competitive case: if investment was observable, she would obtain

max
q

(U(q)−K(q))≥U(q∗)−K(q∗)> q∗−K(q∗) .

Remarkably, things are quite different when Assumption 1 fails. In this case, when

10There are other reasons for why more competition may be detrimental for social welfare. For example,

Hauswald and Marquez (2006) show that more competition between sellers may lower their incentive to

acquire information, while Polevoy, Smorodinsky, and Tennenholtz (2014) show in a different model that

more competition between sellers may lower their incentive to provide precise information. We focus on

increased competition between buyers and its effect on the endogenous adverse selection generated by

the unobservable investment by the seller.
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the buyers’ market is competitive, the seller uses a pure strategy in equilibrium (she

does not invest at all) and there is no price dispersion (of accepted prices). The absence of

adverse selection at the trade stage ensures that trade occurs for sure, and that the seller

strictly gains from trade. This contrasts with the case where there is a monopsonistic

buyer, where there is a significant equilibrium dispersion of qualities and prices. Hence,

low quality goods and low prices may indicate that the buyers’ market is competitive.

5 Discussion and Conclusions

5.1 Discussion

Partial observation of the investment: In some situations, the amount of physical

and financial assets owned by a firm may be verifiable in a due diligence by potential

buyers, but the riskiness of their return may be difficult to assess. For example, a national

bank acquiring a regional bank may be able to assess the volume its loans, but their

riskiness (which depends on many idiosyncratic details that have to be evaluated case-

by-case) may be very costly to determine.11 Also, the amount of information that can

be shared before a horizontal acquisition is typically severely limited both because of

strategic concerns (the buyer can use the information against the seller if he does not

purchase) and different legal constraints.12 Similar considerations apply for the sale of

durable goods, such as cars or houses; buyers only partially observe the investment (some

spending is verifiable, for example, through receipts), but not its appropriateness.

Appendix B illustrates the effect of introducing partial observability in our model.

We extend our model by assuming that buyers can see the value of the firm’s investment,

but not its riskiness.13 To do this, we separate the seller’s investment and the product’s

11According to Damodaran (2012), “accounting statements do a reasonably good job of categorizing the

assets owned by a firm, a partial job of assessing the values of these assets and a poor job of reporting

uncertainty about asset values.”

12Until the an acquisition deal is closed, antitrust laws treat the two firms as independent companies.

Therefore the amount of information that can be made available through a due diligence in a horizontal

acquisition is severely limited in practice, as it could serve the firms to coordinate pricing or engage in

other joint activities.

13See Lau (2008) for a model of stochastic observation of the investment. Our setting may correspond, for

example, to a horizontal acquisition of firms in the same market. In this case, the acquiring firm may

have limited access to some information because of legal constraints (anti-trust laws apply before the

deal is closed) or strategic concerns (the information can be used by the buyer to unfairly compete in the
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quality. Thus, the seller decides the distribution of investments k̄∈R, and the distribution

of returns Fk with E[k|Fk]= k̄, but the buyer observes only k̄. Before the trade stage, a

realized investment k is realized (drawn from Fk), observed only by the seller before

the trade stage begins. The resulting quality for the good is K−1(k), and the cost of the

investment is k.14

We show that the additional observability of the investment increases the seller’s

equilibrium investment choice, which may be above her optimal choice in the absence

of trade, K(q∗). Also, she adds a considerable level of riskiness to the investment, even

though this would be suboptimal in the absence of trade considerations (since K−1 is

strictly concave). While, in our base model, she sometimes chooses a high investment

level to increase her payoff when the offer made by the buyer is low, she now increases the

riskiness of the investment to sell the firm when its outcome is low and to keep it when

it is high. In equilibrium, and unlike the previous cases, the seller strictly benefits from

trade, while the buyer is strictly worse off than he would have been had the investment

and its riskiness been observable, or had the investment been completely unobservable.

Learning: Investing can be reinterpreted, in some settings, as learning about the quality

of the good, which is also a costly and private process. Adapting our investment model to

accommodate learning requires making different assumptions on the investment technol-

ogy, since the outcome of a learning process is stochastic and constrained by the Bayes’

rule. The early version of this paper in Dilmé (2017) analyzes a variation of our base

model where, before meeting the buyer, the seller can learn about its valuation for the

good through a costly process of information acquisition.15 We obtain that the equilib-

rium outcome is similar to the one we obtain in our base model: (1) after the learning

stage the support of the seller’s valuations is an interval, and (2) the buyer randomizes

the price offer in the support of valuations.

This variation of our model allows us to investigate how the trade outcome depends

future if no deal is reached). Instead, the acquiring firm may have access to some aggregate statistics.

14Producing a good of quality q requires investing k solving K−1(k)= q. Hence,as in our model, the cost of

producing a good of quality q is K(q).

15Even though our base model is written in terms of the seller undertaking the private investment and then

meeting a buyer, it can easily be rewritten as a model where the buyer first learns about his valuation

of the good and then he meets the seller (and the seller makes the offer). In order to preserve the

interpretations as close as possible to our base model, we assume that it is the seller who learns about

her valuation of the good. An example of seller’s information gathering is given by the sale of firms by

entrepreneurs who initially patent a business idea, but they are unsure on how profitable it is.
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on the cost of information gathering. For example, it has been claimed that recent techno-

logical innovations and public policies may have significantly lowered the cost of learning

about products. In the model, in the limit where learning becomes costless, the pricing

policy of the buyer becomes extreme: either he offers a very high price (to ensure trade)

or he offers a very low price (to obtain the good only when its quality is low). Such an

extreme pricing policy lowers the equilibrium value of information gathering and, in con-

sequence, the seller chooses to remain partially uninformed. When the gains from trade

are large, the buyer offers prices that are close to the seller’s highest valuation to increase

the probability of transaction. In this instance, the seller obtains all information rents,

and trade happens with probability one. When gains from trade are moderate, the buyer

becomes less aggressive than he would be if the seller was perfectly informed about her

valuation for the good and offers a high price which, in turn, lowers the incentive of the

seller to gather information. Now, the seller is better off when the information-gathering

costs are low (but positive) than when she is fully informed. Finally, when the gains from

trade are low, the buyer offers prices that are close to the seller’s lowest valuation. In the

limit, the price distribution coincides with that in the case where the seller is fully in-

formed about her valuation for the good, but the probability of trade is noticeably lower.

In this case, the seller is found to be better off when the cost of information gathering

is moderate as opposed to very low or very high. This reduces the severity of the equi-

librium adverse selection. Our analysis highlights that understanding the incentives in

markets with endogenous adverse selection is important to determine the effectiveness

of some policies regarding the accessibility of consumers to product information or the

privacy of their learning process (monitored sometimes by the sellers using, for example,

cookies).

5.2 Conclusions

Private investments may have an important impact on investment choices and trade out-

comes. For example, when a sale is likely to occur soon, owners of firms or durable goods

may tend to invest less in assets or components that are not observable by potential buy-

ers, or to increase their riskiness. The anticipation of the owner’s incentives may make

buyers more cautious, lowering their willingness to pay and, as a result, the probability

of trade. The additional caution of the buyers may lower the owner’s incentive to under-

invest. As we have seen, both investment and price dispersion are likely to take place,

exacerbating the effects of the adverse selection and lowering the resulting probability of

trade.

19



Our results indicate that the possibility of private investments tends to make both

sellers and buyers worse off.16 On the one hand, buyers suffer from the adverse selec-

tion arising from private investments, since sellers gain private information about the

value of their goods at the moment of trade. On the other hand, sellers suffer from the

additional precaution of the buyers: even if the buyers’ market is competitive, the antic-

ipation that price offers are only accepted by the seller when the good has a low value

severely diminishes expected trade surplus. We obtain that the seller benefits from trade

only when the size of the investment, but not its riskiness, is observable. Thus, our model

indicates that regulations regarding the transparency or verifiability of a firm’s financial

status—or the set of contractible terms in a firm’s transaction—, or regarding the buyers’

accessibility to the previous history of durable goods, may be welfare improving. Making

the investment observable will benefit buyers when they have bargaining power, and will

benefit sellers when buyers are competitive. Such actions may not only prevent sellers’

suboptimal behavior; they may also increase the probability of efficient trade.

16Our paper shows that this is robust to different specifications. The early version of this paper in Dilmé

(2017) obtains results similar to those in Sections 3 and 4 in the case where the seller’s investment

is stochastic and takes the form of a sequential process. This may apply, for example, to sequential

investments in durable goods (such as houses or cars) or to sequential learning.
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A Proofs of the Results

Notation for the Proofs and Preliminary Results

Before beginning the proofs, we introduce some notation and two auxiliary results which

are going to simplify the posterior arguments.

The following notation is going to be convenient in the proofs to simplify the notation

and shorten the expressions. Fix an equilibrium (Fq,α,Fp). We let Π∗
S

and Π
∗
B

be, respec-

tively, the equilibrium payoffs of the seller and the buyer. Also, we let ΠS(q) and ΠB(p)

denote, respectively, the payoff of the seller if (on or off the path of play) she chooses a

valuation q (given α and Fp) and the payoff of the buyer if he offers (on or off the path of

play) a price p (given Fq and α). As in the main text, we let Q and P be, respectively,

the supports of Fq and Fp, and P̂ be the support of Fp intersected with [minQ,∞). We

finally use P̂
′ to denote the intersection of P̂ with F−1

q ((0,1]), which is equal to P̂ if

Fq(minQ)> 0 and P̂ \{minQ} if Fq(minQ)= 0.17

We first establish a useful property of P̂
′. If it is not stated explicitly, the auxiliary

lemmas in the proofs of the results in Section 3 presume a fixed equilibrium (Fq,α,Fp)

and determine some of its properties.

Lemma A.1. For any p ∈ P̂
′ there exists a sequence (pn)n in P̂

′ converging to p such that

ΠB(pn)=Π
∗
B

for all n ∈N.

Proof. Assume, for the sake of contradiction, that there is some p ∈ P̂
′ such that there is

no sequence (pn)n in P̂
′ converging to p satisfying that ΠB(pn) =Π

∗
B

for all n ∈N. This

implies that there is some ε > 0 such that ΠB(p′) < Π
∗
B

for all p′ ∈ [p− ε, p+ ε). Since

p ∈ P̂ , we have x ≡ Fp((p+ε)−)−Fp((p−ε)−)> 0. Then, we have that Π̂B ≡ Ep′

[

ΠB(p′)
∣
∣p′ ∈

[p−ε, p+ε)
]

<Π
∗
B

. Therefore,

Π
∗
B = x Π̂B + (1− x) Ep′

[

ΠB(p′)
∣
∣p′ 6∈ [p−ε, p+ε)

]

.

If x = 1 we have a clear contradiction. If, instead, x < 1 we have that Ep′

[

ΠB(p′)
∣
∣p′ 6∈

[p−ε, p+ε)
]

>Π
∗
B

. Define then the distribution

F̂p(p′)=







1
1−x

Fp(p′) if p′ < p−ε ,

1− 1
1−x

(1−Fp(p+ε)) if p′ ∈ [p−ε, p+ε) ,

1− 1
1−x

(1−Fp(p′)) if p′ ≥ p+ε ,

17Notice that if Fq(minQ) = 0 then a price offer equal to minQ is rejected with probability one in equilib-

rium. This is the case when there is no common knowledge of gains from trade (see Proposition 3.2).
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Notice that, indeed, F̂p is a distribution, since

F̂p(p−ε)− F̂p((p−ε)−)= 1− 1
1−x

(1−Fp((p+ε)−))− 1
1−x

Fp((p−ε)−)= 0 ,

so it is weakly increasing and belongs to [0,1]. Notice also that Ep′[p′|F̂p]= Ep′

[

ΠB(p′)
∣
∣p′ 6∈

[p−ε, p+ε)
]

> Π
∗
B

. Thus, the seller has a profitable deviation (by playing F̂p instead of

Fp), which is a contradiction.

We now show that any pair of the value and price distributions where there is common

knowledge of gains from trade in equilibrium (as it is the case in the equilibria described

in Proposition 3.2) generates a unique trade outcome:

Lemma A.2. Let (Fq,α,Fp) be an equilibrium satisfying that Pr(U(q)> q|Fq)= 1. Define

α̂(q, p)=







0 if q < p,

1 if q ≥ p.
(A.1)

Then, (Fq, α̂,Fp) is also an equilibrium, and has the same trade outcome as (Fq,α,Fp).

Proof. An acceptance decision α is sequentially optimal if and only if α(q, p) = 1 when

q < p and α(q, p)= 0 when q > p. It is then clear that (Fq, α̂) is a best response to Fp.

We now prove that Fp is a best response to (Fq, α̂). The payoff the buyer obtains from

offering any price p such that Fq(p)−Fq(p−)= 0 (that is, where Fq does not have a mass

point) is the same for both (Fq,α) and (Fq, α̂). Assume that Fq has a mass point at p (and

so U(p) > p) and α(p, p) < α̂(p, p) = 1. Take a sequence of prices (pn)n strictly decreasing

towards p. We have

lim
n→∞

ΠB(pn)= Fq(p) E[U(q)−q|q ≤ p]

> Fq(p−) E[U(q)−q|q < p]+ (Fq(p)−Fq(p−)) α(p, p) (U(p)−p)
︸ ︷︷ ︸

=ΠB(p)

, (A.2)

where we used that U(p) > p. The previous expression illustrates that the buyer’s pay-

off (in the equilibrium (Fq,α,Fp)) is no lower than Fq(p) E[U(q)−q|q ≤ p], and that by

offering a price equal to p he obtains a strictly lower payoff. Hence, the equilibrium prob-

ability with which he offers a price p must be 0 (that is, Fp(p)−Fp(p−)= 0). As a result,

Fp is a best response by the buyer to both (Fq, α̂) and (Fq,α). Hence, (Fq, α̂,Fp) is an

equilibrium.

Finally, note that (Fq, α̂,Fp) generates the same trade outcome as (Fq,α,Fp). Indeed,

it generates the same distribution of investments. Also, for each p, either the probability
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that the seller chooses the quality to be p is 0, or the buyer chooses the price to p with

probability 0, or α(p, p) = 1 = α̂(p, p). Hence, each price is offered and accepted with the

same probability under both (Fq,α,Fp) and (Fq, α̂,Fp).

Proof of Lemma 3.1

Proof. Fix an equilibrium (Fq,α,Fp). We begin establishing the continuity of ΠS and

another property of P̂
′.

Lemma A.3. ΠS is continuous, so ΠS(q) =Π
∗
S

for all q ∈ Q. Furthermore, for all p ∈ P̂
′

we have that Fq(p) Eq[U(q)−p|q≤p]=Π
∗
B

and U(p)− p ≥ 0.

Proof. Proof of the continuity of ΠS(·). To prove that ΠS(q) is continuous for all q ∈

[0,+∞), fix some q ∈ [0,+∞), and notice that

ΠS(q)= Fp(q) q+(1−Fp(q)) Ep[p|p>q]−K(q)

= Fp(q−) q+(1−Fp(q−)) Ep[p|p≥q]−K(q) , (A.3)

where Fp(q−) ≡ limq̃րq Fp(q̃). The equality holds because, whenever the price equals q

(which happens with probability Fp(q)−Fp(q−)), the seller is indifferent on selling the

firm or not. Take a sequence qn → q. Assume first that the sequence is strictly increasing.

In this case, using the second equality in equation (A.3), we have

lim
n→∞

ΠS(qn)= lim
n→∞

(

Fp(q−
n) qn + (1−Fp(q−

n)) Ep[p|p≥qn]−K(qn)
)

= Fp(q−) q+ (1−Fp(q−)) Ep[p|p≥q]−K(q)=ΠS(q) .

Assume now that the sequence is, instead, decreasing. In this case, the result holds using

the first equality of equation (A.3). Then, all q ∈Q give the same payoff to the seller.

Proof that U(p)− p ≥ 0 for all p ∈ P̂
′. To see this, notice that for any p ∈R we have

ΠB(p)= Fq(p−) Eq[U(q)−p|q<p]+ (Fq(p)−Fq(p−)) α(p, p) (U(p)−p)

= Fq(p) Eq[U(q)−p|q≤p]− (Fq(p)−Fq(p−)) (1−α(p, p)) (U(p)−p) , (A.4)

where recall that α(q, p) is the probability with which the seller accepts the offer p when

her value for the firm is q (notice that, when q = p, she is indifferent). Assume, for the

sake of contradiction, that there is some p ∈ P̂
′ such that U(p)< p. By Lemma A.1 and

the assumption that U is continuous, we have that there exists some p′ such that both
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ΠB(p′)=Π
∗
B

and U(p′)<p′. Let p′′ < p′ be such that U(p̃)< p̃ for all p̃ ∈ [p′′, p′]. Then

Π
∗
B =ΠB(p′)≤ Fq(p′) Eq[U(q)−p′|q<p′]

< Fq(p′′) Eq[U(q)−p′′|q≤p′′]≤ΠB(p′′) , (A.5)

The first inequality holds by because the second term on the right hand side of the first

equality in equation (A.4) (applied to p′ instead of p) is negative. The second inequality

holds because U(p̃)− p̃ < 0 for all p̃ ∈ [p′′, p′] and p′′ < p′. The last inequality holds

because the second term on the right hand side of equation (A.4) for p′′ is negative. This

contradicts that ΠB(p′)=Π
∗
B

.

Proof that Fq(p) Eq[U(q)−p|q≤ p] = Π
∗
B

for all p ∈ P̂
′. Fix some p ∈ P̂

′. Let pn → p

be a sequence such that ΠB(pn) = Π
∗
B

for all n (which exists by Lemma A.1). Such a

sequence has a subsequence which can be chosen (taking a subsequence if necessary),

without loss of generality for our argument, to be either constant, strictly increasing or

strictly decreasing. This gives us three cases:

• Assume first that ΠB(p) = Π
∗
B

(this is necessarily the case if, for example, p is an

isolated point of P̂
′). From equation (A.4) we see that if either α(p, p) = 1, Fq(p)−

Fq(p−) = 0 or U(p)−p = 0, then the result clearly holds. Assume otherwise, that is,

assume α(p, p) < 1, Fq(p)−Fq(p−) > 0 and U(p)−p > 0. In this case, offering p+ε,

for ε> 0 small enough, dominates offering p, since

ΠB(p+)≡ lim
p′ցp

ΠB(p′)= Fq(p) Eq[U(q)−p|q≤p] , (A.6)

which is the same as the right hand side of equation (A.4) when α(p, p) = 1. Since

U(p)−p > 0 we have ΠB(p+) > ΠB(p) = Π
∗
B

, so ΠB(pn) > Π
∗
B

for some n, which is a

contradiction. Therefore, ΠB(p)= Eq[U(q)−p|q≤p].

• Assume now that the sequence (pn)n is strictly decreasing. In this case, by right

continuity of Fq, we have that ΠB(p+) = Π
∗
B

. Since, by equation (A.6), ΠB(p+) =

Fq(p) Eq[U(q)−p|q≤p], the result holds.

• Assume finally that the sequence (pn)n is strictly increasing, and that ΠB(p) <Π
∗
B

.

In this case we have that

Π
∗
B = lim

n→∞
ΠB(pn)≡ Fq(p−) Eq[U(q)−p|q<p] . (A.7)

From equation (A.4) we have that if either α(p, p)= 0, or Fq(p)−Fq(p−)= 0 or U(p)−

p = 0, so ΠB(p)=Π
∗
B

, a contradiction. Assume then that α(p, p)> 0, Fq(p)−Fq(p−)>

0 and U(p)− p > 0. In this case, ΠB(p)>Π
∗
B

, which is again a contradiction.
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Hence, necessarily, ΠB(p)= Fq(p) Eq[U(q)−p|q≤p].

(Continuation of the proof of Lemma 3.1)

Assume, for the rest of the proof, that Q 6= {q∗}. This implies that P̂
′ is non-empty: if

it was empty, we would have ΠS(q) = q−K(q) for all q ∈ Q, but then choosing q∗ would

strictly dominate choosing any other value q ∈Q\{q∗}.

We first show that maxQ = maxP̂
′ = q∗. Clearly maxP̂

′ ≤ maxQ, since offering a

price p >maxQ is dominated by offering
maxQ+p

2
. Assume then, for the sake of contradic-

tion, that maxP̂
′ < q∗. Then, if the seller chooses a value q =maxP̂

′, she obtains q−K(q)

which is strictly smaller than q∗−K(q∗) ≤Π
∗
S

. Therefore, it is clear that maxP̂
′ 6∈Q, so

defining q′ ≡ max{q ∈ Q|q ≤ maxP̂
′} we have that q′ < maxP̂

′. Also, given that maxP̂
′

belongs to the support of Fp, there exists (by Lemma A.1) some p′′ ∈ (
q′+maxP̂

′

2
,maxP̂

′]

such that ΠB(p′′) = Π
∗
B

. This is a contradiction, since offering
q′+maxP̂

′

2
< p′′ dominates

offering p′′, since it is a lower price and guarantees the same probability of acceptance.

Therefore, maxP̂
′ = q∗. This implies that ΠS(q) = q−K(q) for all q ≥ q∗, so choosing q∗

dominates choosing any q > q∗. Hence, maxQ =maxP̂
′ = q∗.

We now show that P̂
′ ⊂ Q. To see this assume, for the sake of contradiction, that

p ∈ P̂
′ but p 6∈ Q. This implies, by Lemma A.1 and since Q is closed, that there is some

p′ 6∈Q such that ΠB(p′)=Π
∗
B

. Hence, there exists some ε> 0 such that (p′−ε, p′+ε)∩Q =

;. In this case, the buyer gets a strictly higher payoff offering the price p′− ε/2 than

offering the price p′, as it induces the same acceptance probability at a lower price; a

contradiction.

We continue the proof by showing that minQ = infP̂ ′. Notice first that, by the def-

inition of P̂
′, we have infP̂ ′ ≥ minQ. Assume then, for the sake of contradiction, that

infP̂ ′ >minQ. In this case, for all q ∈ [0, infP̂ ′], we have

ΠS(q)= Fp(q−) q+ (1−Fp(q−)) Ep[p≥q]−K(q)

= Fp(0−) 0+ (1−Fp(0−)) Ep[p≥0]
︸ ︷︷ ︸

=ΠS(0)

+Fp(0−) (q−0)−K(q) .

The previous expression shows that ΠS(q) is strictly concave for q ∈ [0, infP̂ ′], and this

implies that ΠS has a unique maximizer in [0, infP̂ ′]. Let q′ denote such a maximizer.

Notice that q′ < infP̂ ′ (since, by assumption, minQ < infP̂ ′) and therefore ΠS(infP̂ ′) <

ΠS(q′). This implies that min(Q\{q′}) > infP̂ ′, but this contradicts that P̂
′ ⊂ Q. Hence

minQ = infP̂ ′.

The proof is concluded by noticing that the argument in the main text proves that
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P̂
′ has no gaps. Then, since by the definition of P̂

′ we have that either P̂ = P̂
′ or

P̂ = P̂
′ ∪ {minQ}, and P̂ is closed, we have P̂ = [minQ, q∗] ⊂ Q, so in fact Q = P̂ =

[minQ, q∗].

Proof of Proposition 3.1

Proof. Fix an equilibrium. Assume that the seller chooses (on or off the path of play) some

value q ≥ 0 (which is observed by the buyer). If U(q)≤ q then, it is clearly suboptimal for

the buyer to make a price offer p > q, since it is accepted for sure by the seller and, as a

result, the buyer obtains U(q)−p < 0 (while offering a price p < q gives him a payoff equal

to 0). This implies that the payoff that the seller expects from choosing q is q−K(q). If,

instead, U(q) > q then, in the unique continuation play, the buyer offers a price q and

transaction happens for sure. To see why, notice that if the buyer offers a price q+ε, for

any ε> 0, the seller accepts the offer for sure. Hence, the payoff of the buyer is, at least,

lim
εց0

U(q)− (q+ε)=U(q)− q > 0 .

This payoff is clearly higher than offering a price strictly below q (which is rejected for

sure). Notice that U(q)− (q+ε) is strictly decreasing in ε. Also, offering q gives the buyer

U(q)− q multiplied by the probability of acceptance (note that the seller is indifferent

between accepting and rejecting in this case). As a result, the only possible equilibrium

play after the seller chooses q is one where the seller offers a price q and transaction

happens for sure. Then, the seller obtains again in this case q−K(q). Thus, since the

seller obtains q−K(q) for any choice q ∈ [0,∞) and q∗ is the unique maximizer of q−K(q),

the equilibrium probability that the seller chooses a value q such that q 6= q∗ is zero, and

Q = {q∗}.

Assume that U(q∗)< q∗. In this case there is no transaction on the path of play, since

when the buyer makes an offer which is accepted with positive probability (and therefore

weakly higher than q∗), and therefore making such an offer gives him a negative payoff.

Conversely assume that U(q∗)> q∗. In this case, as we argued before, the buyer offers for

sure a price equal to q∗ in equilibrium, and the seller accepts the offer also for sure.

Proof of Proposition 3.2

Proof. It is convenient to divide the proof into two steps, depending on whether there is

common knowledge of gains from trade or not.
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Step 1: We first prove the result for the case where there is common knowledge of gains

from trade, that is, for the case where U(q) > q for all q ∈ [0, q∗]. As in the statement of

Lemma 3.1, we define q ≡minQ. We divide this step into four sub-steps.

Step 1a. We begin the proof by noticing that if the buyer obtains a positive payoff in

equilibrium. To see this, take some price p ∈ (q,U(q)). Using equation (A.4) we have

that, by offering a price slightly below p, the buyer can obtain a payoff arbitrarily close

to

Fq(p−)
︸ ︷︷ ︸

>0

(

Eq[U(q)|q<p]
︸ ︷︷ ︸

≥U(q)>p

−p
)

> 0 .

Therefore, the equilibrium probability that the buyer makes an offer that is rejected for

sure is zero; that is, Fp(q−)= 0. This implies that Π∗
B
> 0 and, by Lemma 3.1, P = [q, q∗].

Notice also that Π∗
S
= q∗−K(q∗).

Step 1b. We now show that q = 0. Assume, for the sake of contradiction, that q > 0.

In this case, the payoff of the seller from investing q is equal to Ep[p]− K(q). If the

seller instead chooses 0 she obtains a payoff equal to Ep[p], which is strictly higher than

choosing q; a contradiction. So, q = 0.

Step 1c. We now prove that part 2 of the statement of the proposition holds. We first

verify that, indeed, Fp(q) = K ′(q) for all q ∈ [0, q∗] makes the seller indifferent between

choosing any q ∈ [0, q∗]. To see this notice that, if Fp(q) = K ′(q), the payoff of the seller

from choosing q ∈ [0, q∗] is

K ′(q) q+

∫q∗

q
p K ′′(p) dp−K(q)= K ′(q∗) q∗+

∫q∗

q
K ′(p) dp−K(q)

= K ′(q∗) q∗−K(q∗)= q∗−K(q∗) ,

where we used that K ′(q∗) = 1. Now, assume that there is some other distribution Fp

that also gives the seller a payoff q∗−K(q∗) for all choices of q in [0, q∗]. In this case, we

have that, for all q,

Π
∗
S = Fp(q) q+

∫

(q,q∗]
p Fp(dp)−K(q)= q+

∫

(q,q∗]
(p−q) Fp(dp)−K(q) . (A.8)

Let G denote the (not necessarily a probability) distribution of a uniform measure with

on [q, q∗] such that G(p) = p− q for all p ∈ [q, q∗]. We can then use the Fubini theorem

to switch the order of the terms in the integral term of the right hand side of the second

equality of equation (A.8). Using the standard notation for measure theory, and defining
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the set A ≡ {(x, y) ∈ (q, q∗]2|x ≤ y}, we have
∫

(q,q∗]

∫

(q,q∗]
1A dFp dG

︸ ︷︷ ︸

=
∫

(q,q∗](Fp(q∗)−Fp(q)) G(dp)

=

∫∫

1Ad(Fp ×G)=

∫

(v,v∗]

∫

(q,q∗]
1A dG dFp

︸ ︷︷ ︸

=
∫

(q,q∗](G(q∗)−G(p−)) Fp(dp)

.

where, with some abuse of notation, G ×Fp denotes the product measure from the mea-

sures that have G and Fp as distribution functions. From the previous expression we

have an integration by parts formula for distributions:
∫

(q,q∗]
G(p−) Fp(dp)

︸ ︷︷ ︸

=
∫

(q,q∗](p−q) Fp(dp)

=−

∫

(q,q∗]
Fp(p) G(dp)

︸ ︷︷ ︸

=−
∫

(q,q∗] Fp(p) dp

+Fp(q∗) G(q∗)−Fp(q) G(q)
︸ ︷︷ ︸

=q∗−q

,

So, we have

Π
∗
S =−

∫

(q,q∗]
Fp(p) dp

︸ ︷︷ ︸

(∗)

+ q∗−K(q) .

It is then clear that the term (∗) is differentiable (since the rest of the terms are differ-

entiable) and, by the Fundamental Theorem of Calculus, its derivative is equal to Fp(q),

so

K ′(q)= Fp(q) .

Therefore, part 2 of the statement of Proposition 3.2 holds.

Step 1d. We now prove part 1 of the statement of the proposition. By Lemma A.3 we

have that Eq[U(q)−p|q≤p]=Π
∗
B

for all p ∈ [0, q∗]. We can use again integration by parts

(using the same arguments as before) to obtain that, for all p ∈ [0, q∗] it is the case that

Π
∗
B =

∫p

0
(U(q̃)−p) Fq(dq̃)

= (U(p)−p) Fq(p)− (U(0)−p) Fq(0)−

∫p

0
U ′(q̃) Fq(q̃) dq̃ .

It is then clear that Fq(·) is continuous in [0, p] and, using the Fundamental Theorem

of Calculus, that it is also differentiable in (0, p). Hence, from the previous expression,

Fq(·) satisfies the condition in part 1 of the statement. The proof is concluded observing

that, by Lemma A.2, the uniqueness of the value and price distributions (showed above)

implies the uniqueness of the trade outcome.

Step 2: We now prove the result for the case where there is no common knowledge of

gains from trade, that is, for the case where U(q) ≤ q for some q ∈ [0, q∗]. We divide this

part of the proof in 3 cases:
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1. Consider first the case where U(q∗) < q∗. Fix some equilibrium. By Lemma 3.1 we

have that maxQ ≤ q∗. Assume, for the sake of contradiction, that q ≡ minQ < q∗.

This implies, by Lemmas 3.1 and A.1, that the set {p∈ [q, q∗]|ΠB(p) =Π
∗
B

} is dense

in [q, q∗]. Let p′′∈ (q, q∗) be such that U(p̃) < p̃ for all p̃ ∈ [p′′, q∗]. Let p′ ∈ (p′′, p∗]

be such that ΠB(p′)=Π
∗
B

. In this case, equation (A.5) hods, that is, ΠB(p′′)>ΠB(p′),

and so we have a contradiction. So, if U(q∗)< q∗, we have Q = {q∗}. Since offering a

price equal to q∗ is, in this case, suboptimal if it is accepted with positive probability,

we have that there is no trade in equilibrium.

2. Consider now the case where U(q∗) > q∗. Fix an equilibrium. Using the same

arguments as in the proof of Proposition 3.2 we have that, in this case, there is no

equilibrium where Q = {q∗}. Hence, by Lemma 3.1, there is some q < q∗ such that

Q = P = [q, q∗]. As we show in Step 1d, the buyer is indifferent on offering any

price p ∈ [q, q∗] only if Fq is continuous on [q, q∗] and Fq(p) = F ′
q(p) (U(p)− p) for

all p ∈ (q, q∗). So, for each q ∈ (q, q∗], we have

Fq(q)= exp
(

−

∫q∗

q

1

U(q̃)− q̃
dq̃

)

. (A.9)

Let q† be the lowest quality level such that there are strictly positive gains from

trade in (q†, q∗] (see footnote 6 for the formal definition). We want to show that

q = q†. Assume first q† > 0. Given that the derivative of U is bounded on [q†, q∗]

(since U is continuously differentiable), we have that the term on the the right hand

side of the previous equation (A.9) tends to 0 as q tends to q† from above, that is,

limqցq† Fq(q) = 0. Therefore, q ≥ q†. Assume then, for the sake of contradiction,

that q > q†. In this case, by offering a price in (q,U(q)) the buyer obtains a strictly

positive payoff, so Π
∗
B
> 0, and therefore Fp(q−)= 0 (since offering a price p < q gives

the buyer a payoff equal to 0). Nevertheless, this implies that

Π
∗
S =ΠS(q)= Ep[p]−K(q)< Ep[p]=ΠS(0) ,

and this is a contradiction. Hence, we have that q = q†, Fq(q†) = 0, and Π
∗
S
= 0. In

this case, it is clear that q† ≥ 0. Applying the same argument as before, we have

again that that q = q†, Fq(q†)= 0, and Π
∗
S
= 0.

Since, in equilibrium, the probability that the seller chooses a value q such that

U(q)− q > 0 is one, it is easy to show (proceeding analogously as in the proof of

Lemma A.2) that, if an equilibrium exists, the trade outcome is independent of the

equilibrium. It is then only left to show that an equilibrium exists. We do this ex-

plicitly showing that (F∗
q , α̂,F∗

p) is an equilibrium, with F∗
q characterized by equation
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(A.9), α̂ by equation (A.1), and F∗
p such that

F∗
p(q)=







0 if q < 0,

K ′(q) if q ∈ [0, q),

K ′(q) if q ≥ q.

It is clear that α̂ is optimal for the seller. We showed that the buyer obtains a payoff

equal to zero from offering any price p ∈ [q, q∗]. It is then clear that he obtains the

same payoff if he offers any price below q (since minQ = q), and a negative payoff

if he offers a price strictly above q∗, so F∗
p is a best response to F∗

q . Also, as we

show in the proof of Proposition 3.2, all value choices q ∈ [q, q∗] give the seller the

same payoff. Furthermore, the seller prefers choosing q∗ than any q > q∗ (since

choosing q > q∗ gives her a payoff q − K(q) < q∗ − K(q∗)), and also it is the case

that ΠS(0) >ΠS(q) for all q ∈ [0, q). Thus, we finally verify that choosing 0 is not a

profitable deviation for the seller. Note first that

ΠS(0)= Fp(q−) 0+ (1−Fp(q−)) Ep[p|p≥q]

=ΠS(q)−Fp(q−) (q−0)+K(q) .

Further, we have that Fp(q)= K ′(q). So, ΠS(0)≤Π
∗
S

if and only if

K(q)≤ K ′(q) (q−0) .

This condition is satisfied by the convexity of K and the fact that K(0) = 0. Hence,

F∗
q is a best response to F∗

p .

3. Consider finally the case U(q∗)= q∗ > 0. Assume first, for the sake of contradiction,

that Q 6= {q∗}, so by Lemma 3.1 we have that Q = [q, q∗] for some q < q∗. In this

case, using the previous arguments, we have that parts 1 and 2 of the statement

of Proposition 3.2 hold in [q, q∗]. This is a contradiction, since by equation (A.9)

we have that Fq(q) = 0 for all q < q∗. Thus, Q = {q∗}. Assume now that there

is trade with positive probability. Following a similar argument as in the proof of

Proposition 3.1, we have that, necessarily, Fp((q∗)−) < Fp(q∗) = 1 (that is, no price

strictly higher than q∗ is offered with positive probability, and q∗ is offered with

positive probability). Notice that if the seller chooses an quality equal to q∗−ε, for

some small ε> 0, she obtains a payoff equal to

ΠS(q∗−ε)= Fp(q∗−ε) (q∗−ε)+ (1−Fp(q∗−ε)) Ep

[

p
∣
∣p∈(q∗−ε, q∗]

]

−K(q∗−ε)

≥ Fp((q∗)−) (q∗−ε)+ (1−Fp((q∗)−)) Ep[p|p∈(q∗−ε, q∗]]−K(q∗−ε) ,

30



where the inequality holds because q∗−ε < Ep[p|p ∈ (q∗−ε, q∗]] and Fp(q∗−ε) ≤

Fp((q∗)−). Since Fp has a mass point at q∗, we have Ep

[

p
∣
∣p∈(q∗−ε, q∗]

]

= q∗+ o(ε)

as ε→ 0. Therefore, we have that

ΠS(q∗−ε)≥ q∗−K(q∗)+ (K ′(q∗)−Fp((q∗)−)) ε+ o(ε) .

as ε→ 0. Since K ′(q∗)= 1> Fp((q∗)−), the previous expression implies that ΠS(q∗−

ε) > q∗−K(q∗) for ε > 0 small enough. Therefore, the seller has a profitable devia-

tion, a contradiction.

Proof of Proposition 4.1

Proof. Before proving Proposition 4.1, we introduce some notation and preliminary re-

sults presented in Lemmas A.4-A.6 (note that Lemma A.6 is not necessary for proving

Proposition 4.1, but it is helpful for the discussion in the main text).

In the results below, we some competitive equilibrium (Fq,β,F1
p,F2

p) (assuming it ex-

ists). We use Q, P1 and P2 to denote, respectively, the supports of Fq, F1
p and F2

p. Also,

as in the main text, P is the support of Fp = F1
p F2

p. Similar to our definition in our base

model, we define P̂
′ as all p ∈ P such that p > max{minQ,minP }. We let Π

1∗
B

and Π
2∗
B

denote the payoff of buyer i ∈ {1,2}. Define p
i
≡minP

i and p̄i ≡maxP
i, where P

i is the

support of F i
p, for each i = 1,2.

Lemma A.4. Assume U(q) > q for all q ∈ [0, q∗]. Then, in any competitive equilibrium

both buyers obtain a payoff equal to 0.

Proof. In this proof we assume, for the sake of contradiction, that there is a competitive

equilibrium where at least one of the buyers obtains a strictly positive payoff. Assume,

without loss of generality, that Π1∗
B

> 0 and Π
1∗
B

≥Π
2∗
B

.

Before beginning the proof, we introduce some useful notation. It is useful to define,

for each p,

Ā(p)≡ Fq(p) Eq[U(q)−p|q≤p] . (A.10)

Note that, by offering a price slightly higher than p, buyer 1’s payoff can be made ar-

bitrarily close to F2
p(p) Ā(p). Hence, the equilibrium payoff of buyer 1 is no lower than
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F2
p(p) Ā(p). The payoff of buyer 1 from offering price p is

Π
1
B(Fq,β, p,F2

p)= F2
p(p−)

≡A1(p)
︷ ︸︸ ︷

Fq(p) Eq,p2
[β(1|q, p, p2) (U(q)− p)|p2<q, q≤p]

+ (F2
p(p)−F2

p(p−)) Fq(p) (Eq[β(1|q, p, p) (U(q)− p)|q ≤ p])
︸ ︷︷ ︸

≡B1(p)

. (A.11)

The term A1(p) in the previous expression can be written as

A1(p)= Ā(p)

≤0 (since, by Step 0, Fq(p)−Fq(p−)> 0 only if p ≤ q∗)
︷ ︸︸ ︷

− (Fq(p)−Fq(p−)) Ep2
[β(0|p, p2, p)|p2<p] (U(p)−p) ≤ Ā(p) , (A.12)

where we used that, by sequential rationality, β(1|q, p, p2) = 1 whenever p > max{q, p2}

and β(0|p, p2, p)+β(1|p, p2, p)= 1 whenever p2 < p. Similar expressions can be obtained

for buyer 2 (and we can define A2(p) and B2(p) analogously). Note also that

B1(p)+B2(p)= Ā(p)−Fq(p) (Eq[β(0|q, p, p) (U(q)− p)|q ≤ p])≤ Ā(p) . (A.13)

The rest of the proof is divided into 3 steps:

Step 0. Quality is lower than q∗. Note that maxQ ≤ q∗. Indeed, choosing any quality

strictly higher than q∗ gives a strictly lower payoff to the seller both when she sells the

good (since the investment cost is larger) and when she keeps the good (since q∗ is the

optimal investment level in this case). It is then clear that p
1
<U(q∗).

Step 1. Same payoffs. We first want to show that the payoffs of the two buyers are

the same. To do this, we focus on the price p̄1, that is, the maximum of the support of

prices offered by buyer 1. There are two cases. The first is where buyer 1 offers p̄1 with

probability 0. By Lemma A.1, there is a strictly increasing sequence converging to p̄1

giving buyer 1 his equilibrium payoff. This implies that the equilibrium payoff of buyer

1 is

Π
1∗
B = F2

p(p̄−
1 ) Fq(p̄−

1 ) Eq[U(q)− p̄1|q < p̄1] .

By offering a price slightly lower than p̄1, buyer 2 can obtain a payoff arbitrarily close to

Fq(p̄−
1 ) Eq[U(q)− p̄1|q < p̄1]≥Π

1∗
B .

Hence, since the left hand side of the previous equation is weakly lower than Π
2∗
B

(other-

wise buyer 2 would have a profitable deviation), and since Π
1∗
B

≥Π
2∗
B

, we have Π
1∗
B

=Π
2∗
B

in the first case. The second case is where buyer 1 offers p̄1 with positive probability, that
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is, F1
p(p̄1)−F1

p(p̄−
1 )> 0. In this case, Π1∗

B
=Π

1
B

(Fq,β, p,F2
p). There are now two sub-cases.

In the first sub-case, buyer 2 offers p̄1 with probability 0. We then have

F2
p(p̄1) Ā(p̄1)≤Π

1∗
B =Π

1∗
B (Fq,β, p̄1,F2

p)≤ F2
p(p̄−

1 ) Ā(p̄1)= F2
p(p̄1) Ā(p̄1) ,

where the first inequality arises from the fact that buyer 1 can offer a price slightly

higher than p̄1 and obtain a payoff arbitrarily close to F2
p(p̄1) Ā(p̄1), and the second

inequality comes from equations (A.11) and (A.12). We conclude that Π1∗
B

= F2
p(p) Ā(p̄1).

Nevertheless, by offering a price slightly above p̄1, buyer 2 can obtain a payoff arbitrarily

close to Ā(p̄1) ≥ Π
1∗
B

, so Π
1∗
B

= Π
2∗
B

in this sub-case. The second sub-case occurs when

F2
p(p)−F2

p(p−)> 0. In this case, both buyers offer p̄1 with positive probability. Hence, we

can write

(*)
︷ ︸︸ ︷

Π
1
B

(Fq,β, p̄1,F2
p)

F2
p(p̄1)−F2

p(p̄−
1

)
+
Π

2
B

(Fq,β,F1
p, p̄1)

F1
p(p̄1)−F1

p(p̄−
1

)

≤
( F1

p(p̄−
1 )

F1
p(p̄1)−F1

p(p̄−
1

)
+

F2
p(p̄−

1 )

F2
p(p̄1)−F2

p(p̄−
1

)

)

Ā(p̄1)+B1(p̄1)+B2(p̄1)

≤
(

1+
F1

p(p̄−
1 )

F1
p(p̄1)−F1

p(p̄−
1

)
+

F2
p(p̄−

1 )

F2
p(p̄1)−F2

p(p̄−
1

)

)

︸ ︷︷ ︸

(**)

Ā(p̄1) , (A.14)

where the first and second inequalities follow from equations (A.12) and (A.13), respec-

tively. Since both buyers offer p̄1 with a positive probability, we have Π
1∗
B

=Π
1
B

(Fq,β, p̄1,F2
p)

and Π
2∗
B

=Π
2
B

(Fq,β,F1
p, p̄1). Also, as we argued, Π1∗

B
≥ F2

p(p̄1) Ā(p̄1) and Π
2∗
B

≥ F1
p(p̄1) Ā(p̄1).

Hence, we have that the term (*) in the previous expression is weakly higher than

( F2
p(p̄1)

F2
p(p̄1)−F2

p(p̄−
1

)
+

F1
p(p̄1)

F1
p(p̄1)−F1

p(p̄−
1

)

)

︸ ︷︷ ︸

(***)

Ā(p̄1) .

Simple algebra shows that (**) > (***), and so in this sub-case (by equation (A.14)) we

have Ā(p̄1) = 0 and Π
1∗
B

= Π
2∗
B

= 0. Then, in all cases we obtain that the payoffs of the

buyers coincide, and we use Π
∗
B
≡Π

1∗
B

=Π
2∗
B

to denote them.

Step 2. Same minimum price. We now show that p
1
= p

2
. To see this note that if a

buyer offers a price below the minimum of the other buyer’s support of price offers, such

a price is rejected for sure in equilibrium. Offering such a price is strictly suboptimal

since we assume Π
∗
B
> 0. Let then p denote the common minimum of the supports of F1

p

and F2
p.
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Step 3. Zero payoff. We conclude this part of the proof by reaching a contradiction

and therefore concluding that, necessarily, Π
1∗
B

= Π
2∗
B

= 0 in any equilibrium. We do

this by noting that either F2
p(p) = 0 or not. Assume first that F2

p(p) = 0. Since p is in

the support of F1
p, there exists a sequence of prices (pn)n weakly decreasing towards p

such that buyer 1 is willing to offer them (i.e., each of them gives him the equilibrium

expected payoff). His payoff from offering pn is given by equation (A.11) (replacing p by

pn). By right-continuity of F2
p, we have Π

1
B

(Fq,β, pn,F2
p) tends to 0 as n →∞, which is a

contradiction. Note that this implies that both F1
p(p)> 0 and F2

p(p)> 0.

Now assume that F1
p(p),F2

p(p)> 0. Buyer 1’s payoff from offering p is equal to

Π
∗
B = F2

p(p) Fq(p−) Eq[β(1|q, p, p) (U(q)− p)|q < p]

+F2
p(p) (Fq(p)−Fq(p−)) β(1|p, p, p) (U(p)− p) .

A similar expression can be obtained for buyer 2. Using the fact that β(1|q, p, p) +

β(2|q, p, p) = 1 whenever q < p (that is, the seller accepts for sure one of the offers when

both are equal to p and q < p), we can use the previous expression to find

Π
∗
B <

Π
∗
B

F2
p(p)

+
Π

∗
B

F1
p(p)

= Fq(p−) Eq[U(q)−p|q<p]+ (Fq(p)−Fq(p−)) (1−β(0|p, p, p)) (U(p)−p)
︸ ︷︷ ︸

≡(∗)

.

Take a sequence (pn)n strictly decreasing toward p. Buyer 1’s payoff from offering pn is

no lower than

Fq(p−) Eq[U(q)− pn|q < p]+ (Fq(p)−Fq(p−)) (U(q)− pn) .

The limit of the previous expression is no smaller than (∗) (equal when β(0|p, p, p) = 0).

Hence, buyer 1 has a profitable deviation, which is again a contradiction. Hence, the

payoff of both buyers is equal to 0.

Lemma A.5. Assume U(q) > q for all q ∈ [0, q∗]. Then, Eq[U(q)− p|q ≤ p] ≤ 0 for all

p >max{minQ,minP } and Eq[U(q)− p|q ≤ p]= 0 for all p ∈ P̂
′.

Proof. Step 1. Proof that Eq[U(q)− p] ≤ 0 for all p > max{minQ,minP }. Fix p >

max{minQ,minP }. As we argued in the proof of Lemma A.4, the payoff of buyer 1 is no

lower than F2
p(p) Ā(p) (where Ā is defined in equation (A.10)). Since by Lemma A.4 the

payoff of buyer 1 is 0, and since Fq(p),F2
p(p)> 0, we have that Eq[U(q)− p|q ≤ p]≤ 0.
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Step 2. Proof that Eq[U(q)− p]= 0 for all p ∈ P̂
′. Recall the decomposition of buyer 1’s

payoff from offering a price p and the definitions of A1(p) and B1(p) in equation (A.11).

Assume first that Π1
B

(Fq,β, p,F2
p) = 0, and consider the following two cases. The first

case occurs if F2
p(p)−F2

p(p−)= 0. Then, Π1
B

(Fq,β, p,F2
p)= F2

p(p−) Ā(p) and therefore, since

F2
p(p−) > 0 (because p > minP }, we have that Ā(p) = 0. Given the definition of Ā(p) and

since Fq(p) > 0 (because p > minQ), we have Eq[U(q)−p|q≤ p] = 0. Consider now the

second case, where F2
p(p)−F2

p(p−)> 0. Equation (A.12) implies that A1(p)≤ Ā(p), and so

Step 1 implies A1(p)≤ 0. Hence, from expression (A.11) we have

Π
1
B(Fq,β, p,F2

p)≤ B1(p)= (F2
p(p)−F2

p(p−)) Fq(p) (Eq[β(1|q, p, p) (U(q)− p)|q ≤ p]) .

Since buyer 2 obtains an equilibrium payoff equal to 0 (by Lemma A.4) and offers p with

a positive probability (since F2
p(p)−F2

p(p−) > 0), we have Π
2
B

(Fq,β,F1
p, p) = 0. Repeating

the previous argument, we have two sub-cases: either Eq[U(q)− p|q ≤ p] = 0 or F1
p(p)−

F1
p(p−)> 0. In the first sub-case, the result holds. In the second sub-case, we can write

0=
Π

1
B

(Fq,β, p,F2
p)

F2
p(p)−F2

p(p−)
+
Π

2
B

(Fq,β,F1
p, p)

F1
p(p)−F1

p(p−)
≤

(***)
︷ ︸︸ ︷

Fq(p) (Eq[(1−β(0|q, p, p)) (U(q)− p)|q ≤ p] .

We can express the term (***) in the previous equation using an expression similar to

equation (A.12) as

Fq(p)

≤0
︷ ︸︸ ︷

Eq[U(q)−p|q≤p]

≤0
︷ ︸︸ ︷

−(Fq(p)−Fq(p−)) β(0|p, p, p) (U(p)−p)≤ 0 .

Consequently, (***) = 0, which implies again that Eq[U(q)−p|q≤ p] = 0. We have shown

that if p ∈ P̂
′ is such that Π1

B
(Fq,β, p,F2

p)= 0 then Eq[U(q)−p|q≤p]= 0.

Take now any p ∈ P̂
′ (not necessarily satisfying Π

1
B

(Fq,β, p,F2
p) = 0). We can use

Lemma A.1 to show that there exists a sequence (pn)n converging to p such that Π1
B

(Fq,β, p,F2
p)=

0. As a result, there is a subsequence (p jn
)n of (pn)n which is either strictly increasing,

strictly decreasing, or constant. If (p jn
)n is strictly strictly decreasing, then we have

0= lim
n→∞

Π
1
B(Fq,β, p jn

,F2
p)= Fq(p) F2

p(p) Eq[U(q)− p|q ≤ p] ,

so the result holds. If the sequence is constant, then Π
1
B

(Fq,β, p,F2
p) = 0, and so again

Eq[U(q)− p|q ≤ p]= 0. Finally, if the sequence is strictly increasing, then

0= lim
n→∞

Π
1
B(Fq,β, p jn

,F2
p)= Fq(p−) F2

p(p−) Eq[U(q)− p|q < p] ,
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and so Eq[U(q)− p|q < p]= 0. Finally note that

0≥ Eq[U(q)−p|q≤p]=
Fq(p−)

Fq(p)

=0
︷ ︸︸ ︷

Eq[U(q)−p|q<p]+

≥0
︷ ︸︸ ︷

Fq(p)−Fq(p−)

Fq(p−)
(U(p)− p)≥ 0 ,

where the first inequality comes from Step 1, and the second inequality comes from the

fact that, by Step 0 of the proof of Lemma A.4, we have that Fq(p)−Fq(p−) > 0 only if

p ≤ q∗. Hence, Eq[U(q)− p|q ≤ p]= 0 for all p ∈ P̂
′.

Lemma A.6. Assume U(0) > q∗ −K(q∗) and U(q) > q for all q ∈ [0, q∗]. Then, in any

competitive equilibrium, Q = {0} and P = {U(0)}.

Proof. First notice that there is a competitive equilibrium where Q = {0} and P
1 =P

2 =

P = {U(0)}, for any sequentially rational β (one can take, for example, β defined in equa-

tion (A.17) below). Indeed, if P = {U(0)} it is clearly suboptimal for the seller to choose

any quality other than 0. Further, if a buyer offers a price lower than U(0), such a price

is accepted with probability zero. Also, if a buyer offers a price higher than U(0), such a

price is accepted for sure, but it gives him a negative payoff.

Assume first that there is a competitive equilibrium where Q = {0} but assume, for

the sake of contradiction, that P 6= {U(0)}. If maxP >U(0) then there is a positive equi-

librium probability that a price in (U(0),maxP ] is offered and accepted, but this gives

a negative payoff to the buyer who offers it. Alternatively, if minP <U(0) then offering

a price in (minP ,U(0)) would give a positive payoff to one of the buyers, contradicting

Lemma A.4.18 Hence, if Q = {0}, we have P = {U(0)}.

Assume then for the rest of the proof, and with the aim of finding a contradiction, that

there is an equilibrium where Q 6= {0}. We first argue that minP ≥U(minQ). Indeed, if it

was the case that minP <U(minQ) then offering a price in (max{minQ,minP },U(minQ))

would give a positive payoff to one of the buyers. This implies minQ = 0, since otherwise

choosing 0 would be a profitable deviation for the seller, as she would obtain a payoff

Ep[p]> Ep[p]−K(minQ).

Note now that minP < maxP . Indeed, if minP = maxP , the payoff of the seller

from choosing quality q > 0 is

max{q−K(q),minP −K(q)}<max{q∗−K(q∗),minP }=minP ,

18We keep some of the arguments intuitive, and they can be easily formalized using Lemma A.5. For exam-

ple, if minP <U(0) (and Q = {0}) then we have E[U(q)− p|q ≤ p]=U(0)− p > 0 for any p ∈ (minP ,U(0)).

This contradicts Lemma A.5, since p >max{minQ,minP }.
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which is strictly lower than the payoff from choosing quality 0 (the last equality follows

from the fact that minP ≥U(minQ)≥U(0)> q∗−K(q∗)). Nevertheless, we assumed that

Q 6= {0}, so it is necessarily the case that minP <maxP .

Let q̄ ≡maxQ > 0. If maxP ≤ q̄ then we have19

Π
∗
S =ΠS(q̄)= q̄−K(q̄)≤ q∗−K(q∗)<U(0)≤ΠS(0)≤Π

∗
S ,

which is a contradiction. Assume, instead, that maxP > q̄. Since, by Lemma A.4, the

payoff of the buyers is 0, it is the case that maxP = Eq[U(q)]. Also, it is the case that of-

fering a price p ≡
maxP +max{q̄,minP }

2
<maxP ensures a positive probability of acceptance,

and conditionally on being accepted gives a payoff equal to Eq[U(q]−p > 0. Since this is a

contradiction, we have that if U(0)> q∗−K(q∗) then Q = {0} and, since the buyers’ payoff

is zero, we have P = {U(0)}, so the result holds.

(Continuation of the proof of Proposition 4.1)

Assume for the rest of the proof that Assumption 1 holds (that is, U(0) < q∗−K(q∗))

and U(q)> q for all q ∈ [0, q∗]. We split the arguments into five steps. For steps 1 to 3 we

fix some equilibrium (Fq,β,F1
p,F2

p) (assuming it exists).

Step 1: Proof that minQ = 0, minP =U(0), and min(Q\{0}) = min(P \{U(0)}) >U(0).

The same argument as in the proof of Lemma A.6 implies that minQ = 0 and minP =

U(0). Also, it is clear that Assumption 1 implies that Q 6= {0}. Furthermore, note that

min(Q\{0}) >U(0). Indeed, if Q∩ [0,U(0)] 6= {0} then (by continuity of ΠS(·)) there exists

some value q ∈ (0,U(0)] such that ΠS(q)=ΠS(0), but

ΠS(q)= Ep[p]−K(q)< Ep[p]=ΠS(0) ,

so we have a contradiction. Therefore, defining q ≡min(Q\{0}), we have that q >U(0).

Note that P ∩ [0, q) = {U(0)}. To see this recall that minP =U(0) and Q∩ [0, q) = {0}.

Hence, when a buyer offers a price p ∈ (U(0), q), such a price is accepted with positive

probability. Furthermore, such a price p is only accepted by the seller, in equilibrium,

when the quality is 0, so it gives the buyer a strictly negative payoff. Note also that,

maxP > U(0), since otherwise P = {U(0)}, but then Q = {q∗} and a buyer profitably de-

viates by offering a price in (q∗,U(q∗)). Define p ≡ min(P \{U(0)}). It then follows that

p ≥ q, since offering a price in (U(0), q) gives a buyer a strictly negative payoff. Assume

19As in the previous proofs, we use Π
∗
S

and ΠS(q) to indicate, respectively, the equilibrium payoff of the

seller and her payoff if he chooses (on or off the path of play) quality q.
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then, for the sake of contradiction, that p > q. In this case, p ∈Q, since otherwise for any

price p < p such that [p, p]∩Q =; we would have

0≥ Eq[U(q)− p|q ≤ p]> Eq[U(q)− q|q ≤ q]= 0 ,

where the first inequality and the equality follow from Lemma A.5. Thus, given that

q, p ∈ Q (so ΠS(q) = ΠS(p) = Π
∗
S

) and that (q, p)∩P = ;, equation (3.2) holds for q ∈

[q, p] with q instead of p1 and p instead of p2. Similar to the argument that follows

the equation, we have that ΠS(·) = W(·)− K(·) strictly concave on [q, p], but this is a

contradiction. Hence, p = q.

Step 2: Proof that Q = {0}∪ [q, q∗] and P = {U(0)}∪ [q, q∗]. We first prove that q̄ ≥ p̄

(where q̄ = maxQ and p̄ = maxP ). Assume, for the sake of contradiction, that q̄ < p̄.

Since q̄ >max{minQ,minP }, Lemma A.4 implies that Eq[U(q)]− q̄ ≤ 0. Also, since p̄ ∈ P̂
′

and p̄ > q̄, Lemma A.4 implies that Eq[U(q)− p̄] = 0. Nevertheless, this implies that for

all p ∈ (q̄, p̄) we have

Eq[U(q)− p|q ≤ p]= p̄− p > 0 ,

which is contradicts Lemma A.4 since p >max{minQ,minP }. Hence, we have p̄ ≤ q̄.

Since p̄ ≤ q̄ we have that q̄ = q∗ (since, otherwise, the seller’s payoff form choosing

q̄ ≥ p̄ is q̄ − K(p̄) < q∗ − K(q∗)). Furthermore, max(Q\{q̄}) < p̄ (since the payoff from

choosing p̄ is p̄−K(p̄) < q∗−K(q∗)). A similar argument to that we used to prove that

p̄ ≤ q̄ can be now applied to show that p̄ ≤max(Q\{q̄}), so we have a contradiction. Then,

q̄ = p̄ = q∗.

The fact that Q and P have no gaps in [q, q∗] is obtained using arguments similar to

those used in the proof of Lemma 3.1. We first prove that P̂
′ ⊂ Q by assuming, for the

sake of contradiction, that p ∈ P̂
′ exists such that p ∉ Q. Then, for any p′ < p such that

[p′, p]∩Q =; and p′ >U(0), we have

0= Eq[U(q)− p|q ≤ p]= Eq[U(q)− p|q ≤ p′]< Eq[U(q)− p′|q ≤ p′] .

This contradicts Lemma 3.1, since p′ > max{minQ,minP }, and so we have P̂
′ ⊂Q. The

fact that Q\{0}⊂ P̂
′ and the absence of gaps of Q in [q, q∗] follows the same argument as

the one exposed in the main text after Lemma 3.1, since only the incentives of the seller

are used in this argument.

Step 3: Existence of qmin and Fp. The proof continues by showing that there is some

qmin ∈ (U(0), q∗) with the property that for all q ∈ [qmin, q∗] there exists a distribution Fp
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(which depends on q) such that the seller has a best response Fq with support {0}∪[q, q∗],

and there is no such distribution if q 6∈ [qmin, q∗]. Therefore, it is a necessary condition

for equilibrium that q ∈ [qmin, q∗].

The previous arguments in this proof show that if U(0) < q∗ −K(q∗) then, in each

each competitive equilibrium, there exists some q ∈ (U(0), q∗] such that Q = {0}∪ [q, q∗]

and P = {U(0)}∪ [q, q∗]. The same arguments used in the proof of Proposition 3.2 can

be used to show that Fq is continuous on [q, q∗] and satisfies Fq(p) = F ′
q(p) (U(p)− p)

(now the “indifference” condition of the buyer is replaced by the result in Lemma A.4

that Eq[U(q)− p|q ≤ p] = 0 for all p ∈ P̂
′) and Fp is continuous in [q, q∗] and satisfies

Fp(q)= K ′(q) (and all prices in [q, q∗] give the same payoff to the seller).

We now show that there is some qmin < q∗ such that, if q ∈ [qmin, q∗] there is a distri-

bution Fp with support equal to {U(0)}∪[q, q∗] that makes optimal for the seller to choose

any value in {0}∪ [q, q∗], and such a distribution does not exist if q < qmin. Fix some

q ≤ q∗, and assume that a distribution Fp that makes it optimal for the seller to choose

any quality in {0}∪[q, q∗] exists. As we showed before, this implies that Fp(p)= K ′(p) for

all p ∈ [q, q∗]. Notice that, since ΠS(0)=ΠS(q)=Π
∗
S

, the following equation holds

Ep[p]=ΠS(0)=ΠS(q)= Fp(U(0)) q+ (1−Fp(U(0))) Ep[p|p≥q]−K(q) .

Additionally, we have that

Ep[p]= Fp(U(0)) U(0)+ (1−Fp(U(0))) Ep[p|p≥q] .

Then, the previous expressions can be used to obtain

Fp(U(0)) (q−U(0))= K(q) .

Furthermore, since Fp(q)= K ′(q), we have

K ′(q)= Fp(q)≥ Fp(U(0))=
K(q)

q−U(0)
. (A.15)

Notice that the previous inequality holds when q = q∗ (since K ′(q∗) = 1 and, by assump-

tion, U(0) < q∗ − K(q∗)), and the reverse inequality holds if q is close enough to U(0)

(since the term on the right hand side of the last equality becomes arbitrarily large).

Rearranging the terms we have that

d

dq

(

(q−U(0)) K ′(q)−K(q)
)

= (q−U(0)) K ′′(q)> 0 .
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Therefore, there exists a unique qmin ∈ (U(0), q∗) such that equation (A.15) holds for all

q ∈ [qmin, q∗], and does not hold when q ∈ (U(0), qmin). It is also clear that, in any equilib-

rium, Q = {0}∪[q, q∗] for some q ∈ [qmin, q∗] (that is, q ∈ [qmin, q∗] is a necessary condition

for the seller to be indifferent on offering any price in [q, q∗]).

Step 4: Necessity. We now show that if there is an equilibrium (Fq,β,F1
p,F2

p) where

Q = {0}∪ [q, q∗] for some q ∈ [qmin, q∗] (which we showed is a necessary condition), then

such an equilibrium satisfying the properties established in the statement of Proposition

4.1. The previous argument shows that there is a unique distribution of maximum prices

Fp that makes the seller indifferent on choosing any quality in Q and weakly unwilling to

choose any quality outside Q. Such distribution satisfies Fp(q) = K ′(q) for all q ∈ (q, q∗),

so satisfies the properties established in the statement of the proposition. It is then

necessary that F1
p and F2

p are such that F1
p F2

p = Fp. By Lemma A.4, we have that

Eq[U(q)− p|q ≤ p] = 0 for all p ∈ [q, q∗]. It is also clear that Eq[U(q)−U(0)|q ≤U(0)] = 0.

This requires that Fq satisfies part 1 of Proposition 3.2 in [q, q∗]. Note that by Lemma

A.4 we have that

0= Eq[U(q)− q|q ≤ q]=
Fq(0)

Fq(q)
(U(0)−q)+

Fq(q)−Fq(0))

Fq(q)
(U(q)−q) . (A.16)

To see that Fq(0) ∈ [0,Fq(q)] satisfying the previous equation exists, define the following

equation for γ ∈ [0,1] and q ∈ [U(q), q∗]:

γ U(0)+ (1−γ) U(q)= q .

Notice that, for each q ∈ (U(q), q∗], there is a unique value γ(q) ∈ [0,1) such that the

previous equation holds. Indeed, if γ(q)= 0 then left hand side is strictly higher than the

right hand side, while if γ(q) = 1 the opposite is true. Hence, for each q ∈ [qmin, q∗] we

have Fq(0)= Fq(q) γ(q).

Step 5: Sufficiency. We finally show that for all q ∈ [qmin, q∗] there is an equilibrium

(Fq,β,F1
p,F2

p) where Q = {0}∪ [q, q∗] (and so, by the previous argument, such an equi-

librium satisfies the properties in the statement of the proposition). We let Fq be the

unique distribution that satisfies the properties of the statement in the proposition and

condition (A.16) (which we proved to be necessary). We let β be the unique satisfying

β(i|q, p1, p2)≡







0 if pi <max{q, p ī},

1 if pi = q > p ī,

1
2

if pi = p ī ≥ q,

1 if pi >max{p ī, q}.

(A.17)
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Note that such β is sequentially optimal for the seller, is such that the seller sells the

good for sure when she is indifferent on doing so, and treats both buyers symmetrically.

Finally, we let both F1
p and F2

p be equal to (Fp)1/2 (where Fp is the unique distribution

obtained in Step 3), and so we have Fp = F1
p F2

p. We have to verify that the buyers do

not have an incentive to deviate (notice that we have verified above that the seller best-

responds to Fp).

Clearly, offering any price in [0,U(0)] gives a buyer a payoff equal to 0. A price in

(U(0), q) is accepted with positive probability in equilibrium only when the quality is 0,

so it gives the buyer a negative payoff. By construction, offering a price in [q, q∗] gives a

buyer a payoff equal to 0.20 Finally, offering a price p strictly above q∗ gives a buyer a

negative payoff equal to

Eq[U(q)]− p < Eq[U(q)]− q∗ = 0 .

where we used that, by construction, Eq[U(q)]= q∗.

Step 6:. No common knowledge of gains from trade. Assume now that there is

no common knowledge of gains from trade, that is, there is some q ∈ [0, q∗] such that

U(q)≤ q. Proceeding as in Step 5 it is easy to show that for all equilibria when the buyer

is a monopsonist, described in Proposition 3.2, there is a competitive equilibrium with

the same trade outcome.
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B Online Appendix: Observable Value of the Assets

In this appendix we analyze how partial limitations on the observability of the charac-

teristics of the assets held by a firm affect the owner’s incentives and the trade outcome,

discussed in Section 5.1. More concretely, we investigate the seller’s incentive to increase

the riskiness of the capital stock of a firm before trade: if the investment is successful,

she can keep the firm, while if it is not she may have the option to sell.

We modify our base model in Section 2 as follows. Now, in the investment stage, the

seller first chooses the mean investment (or “total size” firm’s assets), k̄, and then the dis-

tribution of investment outcomes (or returns), Fk(·; k̄) ∈ ∆(R+) satisfying Ek[k|Fk(·; k̄)] =

k̄.21 At the beginning of the trade stage, the buyer observes the mean investment and de-

cides a distribution of price offers Fp(·; k̄). Finally the seller, after observing the outcome

of the investment stage and the price offer of the buyer, decides to accept it or reject it.

When the investment outcome is k, the seller’s value for the firm is Q(k), where Q(·)≡

K−1(·) and where K satisfies the same properties as in our base model. Notice that since

the seller’s valuation for the outcome of the investment outcome Q(·) is strictly concave,

the seller would not add any riskiness to the assets of the firm in the absence of trade

motives.

It is straightforward to generalize the strategies of the seller and the buyer. The

payoffs for the seller and the buyer if the seller chooses a total size of the firm’s assets k̄,

a distribution Fk with mean equal to k̄, the realized investment outcome is k, the buyer

offers p and the decision of the seller is a, is given by22

ΠS

(

k̄,Fk,k, p,a
)

≡ (1−a) Q(k)+a p− k̄ ,

ΠB(k̄,Fk,k, p,a)≡ a (U(Q(k))− p) .

The following result characterizes the equilibria of the model with observable invest-

ment. We focus for simplicity on the case where there is common knowledge of gains

from trade.

21We implicitly assume that there is a rich set of assets accessible to the seller, all of them giving the same

expected return (equal to 0).

22Note that the distribution Fk only influences the payoff of the seller and the buyer through the invest-

ment outcome. It is not difficult to verify that, in fact, if k̄ is replaced by k on the right hand side of the

expression for the payoff of the seller, the set of equilibria remains unchanged. This implies that, except

for the observability of the asset size, the new setting is equivalent to our base model.
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Proposition B.1. Assume that the investment mean is observable and that U(q) > q for

all q ∈ [0,+∞). Then, in any equilibrium, there exists a unique value q̄ > q∗ such that

Q = P = [0, q̄]. Furthermore, Proposition 3.2 applies replacing [q, q∗] by [0, q̄], now with

Fp(q)= K ′(q)/K ′(q̄).

Proposition B.1 illustrates how the observability of the total size of the firm’s assets

(but not their riskiness) influences the trade outcome. We obtain that, even though in-

creasing riskiness of the assets would be suboptimal for the seller in the absence of trade

considerations (recall that Q(·) is strictly concave), she exposes herself, in equilibrium, to

a remarkably large risk. The riskiness is large enough that there is a positive probability

that the firm looses all its value (it is easy to verify that Fq(0) > 0), and also there is a

positive probability that the firm ends up being more valuable than its value under the

seller-optimal investment level, q∗.

The intuition for the result is obtained as follows. As we argued before, we sepa-

rate the problem of the seller into two parts. The first consists on choosing the total

size of the firm’s assets, k̄, and the second consists on choosing its riskiness (or distri-

bution conditional on the mean). The proof of Proposition B.1 shows that, in fact, for

each choice k̄, there is a unique continuation trade outcome, with distributions denoted

using (Fk(·; k̄),Fp(·; k̄)) (with Ek[k|Fk(·; k̄)] = k̄). Furthermore, the pair (Fk(·; k̄),Fp(·; k̄)) is

such that Proposition B.1 applies replacing q̄ by Q(k̂(k̄)), for some continuous and strictly

increasing function k̂(·) such that k̂(k̄) > k̄ for all k̄ > 0, and Fp(q; k̄) = K ′(q)/K ′(Q(k̂(k̄))).

Using k̄no to denote the unique value satisfying k̂(k̄no)= k∗ ≡ K(q∗), we have that the dis-

tributions Fq(·; k̄no) and Fp(·; k̄no) coincide with those of the equilibrium outcome when

the total size of the firm’s assets is not observable, described in Proposition 3.2.

Fix a choice of the total size of the firm’s assets k̄ (and given the continuation play of

the buyer, Fp(·; k̄)). It is not difficult to see (see the proof of Proposition B.1) that, since

k̄ ∈ supp(Fq(·; k̄)), it is optimal for the seller not to add any riskiness. More formally,

Ep[max{Q(k̄), p}|Fp(·; k̄)]= Ek

[

Ep[max{Q(k), p}|Fp(·; k̄)]
∣
∣Fk(·; k̄)

]

. (B.1)

The result is intuitive: if the realization k̄ would give the seller a payoff lower than

her continuation value, the seller could simply replace such a realization by a lottery

with mean equal to k̄. Consequently, the first part of the seller’s problem consists on

maximizing W(k̄; k̄)− k̄ over all k̄ ∈ R+, where W(k; k̄) is the payoff of the seller in the

second stage of the game if total size of the firm’s assets is k̄ (so the price distribution is

Fp(·; k̄)) and realized value of the investment is k.23

23Notice that the definition of W(k; k̄) is analogous to the definition of W in equation (3.1), now defined as
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Clearly, W(k; k̄) is increasing in both k and k̄: a higher realization of the investment

gives a higher value to the seller from rejecting the buyers’ offer, while a higher value of

k̄ increases (in a first-order stochastic sense) the distribution of prices. Hence, we have

that for any k̄ and k̄′ such that k̄ < k̄no < k̄′ ≤ k∗

W(k̄; k̄)−k̄<W(k̄; k̄no)−k̄=W(k̄no; k̄no)−k̄no=W(k̄′; k̄no)−k̄′<W(k̄′; k̄′)−k̄′ .

Therefore, any optimal choice of the total size of the firm’s assets when it is observable,

k̄o, is strictly higher than k̄no, so it is the case that k̂(k̄o)> k̂(k̄no)= k∗.

Differently from the case where the total size of the firm’s assets is not observable, the

seller strictly benefits from trade: if trade was not feasible, she would obtain Q(k∗)− k∗,

while her equilibrium payoff is no lower than W(k∗;k∗)−k∗ >Q(k∗)−k∗. The observabil-

ity of the investment size makes the buyer, instead, strictly worse off. When the total size

of the firm’s assets is unobservable, he obtains a payoff equal to Fno
q (0) (U(0)−0), where

Fno
q is the equilibrium distribution in the case where the total size of the firm’s assets is

not observable specified in Proposition 3.2. In the case that it is observable, his payoff is

Fo
q(0) (U(0)−0), where now Fo

q is the distribution characterized in Proposition B.1. Since

both Fo
q and Fno

q follow the same equation (with Fno
q (q∗) = Fo

q(Q(k̂(k̄o))) = 1) and since

q∗ <Q(k̂(k̄o)), we have that Fno
q (0)> Fo

q(0). Hence, the additional investment undertaken

by the seller (notice that Fo
q first-order dominates Fno

q ) affects negatively the payoff of the

buyer, even when investment is desirable from his perspective. As in the previous parts

of the paper, this is owed to the increase in the adverse selection.

Remark B.1. The proof of Proposition B.1 shows that Fq(·; k̄no) dominates, in a first-order

stochastic sense, Fq(·; k̄o), that is, the observability of the total size of the investment (but

not its riskiness) increases the investment outcome with respect to our base model. This

result is reminiscent of the result in Lau (2008) showing that a positive probability that

the uninformed party observes the investment affects non-monotonically the equilibrium

investment level. In our case, when q∗> 0 we cannot rank (in a first-order stochastic

sense) Fq(·; k̄o) and the investment choice of the seller in the fully-observable case (which,

by Proposition 3.1, is degenerated at q∗). Nevertheless, it is worth noting that, when

q∗=0, the investment is equal to 0 in both the fully-observable and the non-observable

cases, while its support is [0,Q(k̂(k̄o))], with Q(k̂(k̄o))>0, when only the total size of the

capital stock is observable, so in this case we also obtain a non-monotonicity result.

a function of the investment level instead of the valuation of the seller.
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Proof of Proposition B.1

Proof. We begin with a technical but useful result:

Lemma B.1. Fix some Fk, and let K ⊂R+ be its support and k̄ its mean. Take any closed

set K
† ⊂K such that k̄ ∈ (minK

†,maxK
†) and some ε> 0. Let K

†
ε ≡ {k ∈K |d(k,K †)≤

ε}, where d(k,K †) = mink′∈K † |k− k′|. Then, there exist a distribution F
ε†

k
with support

contained in K
†
ε and some λ̄>0 such that, for all λ∈ [−λ̄, λ̄],

Fk+λ F
ε†

k

1+λ
is a distribution

with mean equal to k̄.

Proof. Let m ∈ (0,1) be such that

m Ek[k|k < k̄,K †
ε ,Fk]+ (1−m) Ek[k|k ≥ k̄,K †

ε ,Fk]= k̄ .

Note that m exists because, given our assumptions on K
†, the first expectation on the

left hand side of the previous expression is strictly below k̄, and the second strictly above

k̄. We now define F
ε†

k
as

F
ε†

k
(k)≡







m
M

∫

K
†
ε ∩[0,k]

Fk(dk) if k ∈ [0, k̄) ,

m
M

∫

K
†
ε ∩[0,k̄)

Fk(dk)+ 1−m
M

∫

K
†
ε ∩[k̄,k]

Fk(dk) if k ∈ [k̄,∞) ,

where M ≤ 1 is such that limk→∞ F
ε†

k
(k) = 1. It is clear that F

ε†

k
has support equal to

K
†
ε ∩K and is such that Ek[k|F

ε†

k
]= Ek[k|Fk].

Let λ ∈ [−M
m

, M
m

]. Note that Fk(k)+λ F
ε†

k
(k) is increasing in k on [0, k̄). Indeed, take

k1,k2 ∈ [0, k̄) such that k1 > k2. Then

Fk(k1)+λ F
ε†

k
(k1)−(Fk(k2)+λ Fk(k2))=Fk(k1)−Fk(k2)+λ (F

ε†

k
(k1)−F

ε†

k
(k2)

︸ ︷︷ ︸

≤ m
M

(Fk(k1)−Fk(k2))

)≥0 .

A similar argument proves that when λ ∈ [− M
1−m

, M
1−m

] then Fk(k)+λ F
ε†

k
(k) is increasing

in k on [0, k̄). Hence, defining λ̄ ≡ min{ M
m

, M
1−m

}, we have that
Fk+λ F

ε†

k

1+λ
is a distribution

with the same expectation as Fk for all λ ∈ [−λ̄, λ̄]: it is increasing and belongs to [0,1].

We divide the rest of the proof into 4 steps. In Steps 1 to 3, we exogenously fix the

mean investment at some value k̄ ∈ R++ and we characterize the continuation play.24 In

24As it is mentioned in the main text, it is convenient to think the strategy of the seller in the first stage

of the game as she choosing first the size and then its riskiness. So, we now “exogenously” fix k̄ and then

characterize the corresponding game where the seller’s strategy in the first stage consists on choosing

Fk(·; k̄) with Ek[k|Fk(·; k̄)]= k̄.
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these steps, we will use (Fk,α,Fp) to denote a continuation play such that Ek[k|Fk] = k̄,

and K and P to denote the supports of Fk and Fp, respectively. We use Fq(·) to denote

Fk(Q−1(·)) and Q to denote Q(K ). As in the main text, we use W(k; k̄) to denote the

payoff of the seller in the second stage of the game if mean investment is k̄ (so the price

distribution is Fp(·; k̄)) and realized investment outcome is k. Notice that it coincides

with W(Q(k)) (which is the payoff of the seller in the second stage, and it is defined in

equation (3.1)), replacing Fp by Fp(·; k̄). Therefore, as we argue after equation (3.1) (and

by the continuity of Q), W(·; k̄) is continuous. In Step 4 we discuss the properties of the

optimal choice of k̄.

Step 1. Characterization of optimality. Fix any closed K
† ⊂ K such that k̄ ∈

(minK
†,maxK

†). Fix also some ε > 0. Then, letting K
†
ε , F

ε†

k
and λ̄> 0 denote the

same as in Lemma B.1, we have that for all λ ∈ (−λ̄, λ̄) the following holds:

Ek

[

W(k; k̄)
∣
∣ 1

1+λ
(Fk+λ F

ε†

k
)
]

= 1
1+λ

(

Ek[W(k; k̄)|Fk]+λ Ek[W(k; k̄)|F
ε†

k
]
)

.

Since choosing Fk is optimal, it is necessarily the case that the derivative of the previous

expression with respect to λ at λ= 0 is equal 0, that is,

0= d
dλ

Ek

[

W(k; k̄)
∣
∣ 1

1+λ
(Fk+λ F

ε†

k
)
]∣
∣
λ=0

=−Ek[W(k; k̄)|Fk]+Ek[W(k; k̄)|F
†

k
]

=ΠS(F
ε†

k
)−Π

∗
S .

Thus, ΠS(F
ε†

k
)=Π

∗
S

.

Fix now some k1,k2 satisfying k1 < k̄ < k2, and define

F
†

k
(k;k1,k2)≡







0 if k < k1,

k2−k̄
k2−k1

if k ∈ [k1,k2),

1 if k ≥ k2.

Then, it is easy to verify (from the proof of Lemma B.1) that, whenever k1,k2 ∈K , then

using K
† ≡ {k1,k2} and letting F

ε†

k
be the corresponding distribution (defined in the proof

of Lemma B.1) we have that

lim
ε→0

F
ε†

k
(k)= F

†

k
(k;k1,k2)

for all k ≥ 0. In particular, since W(·; k̄) is continuous, this implies that

Π
∗
S =

k2−k̄
k2−k1

W(k1; k̄)+
k̄−k1

k2−k1
W(k2; k̄) . (B.2)
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Step 2. Proof that Q = P = [0, q̄] for some q̄ > Q(k̄). We first prove that K 6= {k̄}. We

do this assuming, for the sake of contradiction, that K = {k̄}.25 Arguments paralleling

those in the proof of Proposition 3.1 show that, in this case, P = {Q(k̄)}. Nevertheless,

the seller can choose a distribution assigning probability 1
2

to both k̄−ε and k̄+ε, for some

ε ∈ (0, k̄). Such a distribution gives the seller a total payoff equal to

1
2

Q(k̄)+ 1
2

Q(k̄+ε)− k̄ >Q(k̄)− k̄ ,

so the seller has a profitable deviation.

The fact that P ⊂ Q is proved exactly as in the proof of Lemma 3.1. Let k and k̂ de-

note, respectively, minK and maxK , so we have that q ≡minQ =Q(k) and q̄ ≡maxQ =

Q(k̂). We first prove that P has no gaps to the left of Q(k̄), that is, P ∩ [q,Q(k̄)) has

no gaps. Assume then, for the sake of contradiction, that there are some k1,k′
1 < k̄, that

Q(k1),Q(k′
1) ∈P and that (Q(k1),Q(k′

1))∩P =;. In this case equation (3.2) can be rewrit-

ten, for all k ∈ [k1,k′
1], as

W(k; k̄)=W(k1; k̄)+
W(k2; k̄)−W(k1; k̄)

Q(k2)−Q(k1)
(Q(k)−Q(k1)) . (B.3)

Hence, since Q is a concave function, W(·; k̄) is a concave function in [k1,k′
1]. Neverthe-

less, proceeding similarly to the arguments used to derive equation (B.2), we have that

for any k ∈ [k1,k′
1] the following holds

W(k; k̄)≤− k̄−k

k2−k̄
W(k2; k̄)+

k2−k

k2−k̄
Π

∗
S . (B.4)

The right hand side of the previous equation is a convex function of k which is equal

to W(k1; k̄) when k = k1 and equal to W(k′
1; k̄) when k = k′

1, so we have a contradiction

with the fact that W(·; k̄) is concave in [k1,k′
1]. A similar argument applies to show that

P ∩ (Q(k̄), q̄] has no gaps.

We now prove that P has no gaps. Let k∗
1 ≡ sup{k ∈Q−1(P )|k< k̄} and k∗

2 ≡ inf{k ∈

Q−1(P )|k> k̄}. Assume, for the sake of contradiction, that k∗
1 < k̄. Assume also first that

k̄ ∉K , so k∗
2 > k̄. In this case, the previous argument applies: equation (B.3) (with k1 = k∗

1

and k2 = k∗
2) is valid for all k ∈ [k∗

1 ,k∗
2] and equation (B.4) applies for all k ∈ [k∗

1 , k̄), which

leads again to a contradiction. Assume then that k̄ ∈K . In this case, as before, equation

(B.3) holds with k1 = k∗
1 , k2 = k̄ and for all k ∈ [k∗

1 , k̄]. As argued before, this implies that

W(·; k̄) is strictly concave in [k∗
1 , k̄]. Let k

†
2
∈ K be such that k

†
2
> k̄ (notice that it exists

25Notice that we are focussing on a strictly positive total size of the firm’s assets, k̄ > 0. If k̄ = 0 then,

necessarily, K = {0} and Fk(·;0) is a distribution degenerated at 0.
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because k∗
1 < k̄, so the variance of Fk is positive, and its mean is equal to k̄). Nevertheless,

using equation (B.2) for k1 = k∗
1 and some k2 = k

†
2

and equation (B.4) for k2 = k
†
2

and any

k ∈ [k∗
1 , k̄), we can write

W(k; k̄)≤ k̄−k

k̄−k∗
1

W(k∗
1 ; k̄)+

k−k∗
1

k̄−k∗
1

Π
∗
S

for all k ∈ [k∗
1 , k̄). The right hand side of the previous equation is a convex function of

k in k ∈ [k∗
1 , k̄], equal to W(k∗

1 ; k̄) when k = k∗
1 and equal to W(k̄) for k = k̄. This, again,

contradicts that W(·; k̄) is concave on [k∗
1 , k̄]. Similar arguments (see also the proof of

Lemma 3.1) prove that minP = q and maxP = q̄. Hence, we have that Q =P = [q, q̄].

Assume now, for the sake of contradiction, that q > 0, that is, k > 0. Notice then that

Ek[W(k; k̄)|F
†

k
(k;k, k̂)]=

k̂− k̄

k̂−k
Ep[p|Fp]+

k̄−k

k̂−k
Q(k̂)

<
k̂− k̄

k̂−0
Ep[p|Fp]+

k̄−0

k̂−0
Q(k̂)

= Ek[W(k; k̄)|F
†

k
(k;0, k̂)] .

This is a contradiction, since choosing F
†

k
(·;k, k̂) is a best response to Fp, but choosing

F
†

k
(·;0, k̂) gives a higher payoff to the seller. Hence, k = 0. Since k < k̄, we have that

necessarily k̂ > k̄.

Step 3. Distributions. The fact that Fq(·) ≡ Fk(Q−1(·)) is continuous in [0, q̄] and satis-

fies Fq(p) = F ′
q(p) (U(p)− p) is obtained requiring the buyer to be indifferent on offering

any price in [0, q̄] as in the proof of Proposition 3.2. Notice that, using equation (A.9), we

have

Fk(k)= exp
(

−

∫q̄

Q(k)

1

U(q̃)− q̃
dq̃

)

.

Since, by assumption, U(q)− q is bounded above, we have that Ek[k|Fk] = k̂ + o(1) as

k̂ → ∞. Therefore, for any k̄ there exists a unique k̂(k̄) such that the corresponding

distribution Fk is such that Ek[k|Fk]= k̄.

We now characterize Fp. Notice that W(k; k̄) is necessarily linear in k on [0, k̂]. Indeed,

as we argued before, the seller is indifferent on choosing any bi-valued distribution F
†

k

with support contained in [0, k̂] and mean k̄, that is, Ek[W(k; k̄)|F
†

k
]=W(k̄; k̄). This implies

that

W(k; k̄)=W0 +W1 k =Q(k)+

∫

(Q(k),q̄]
(p−Q(k)) dFp(p) , (B.5)
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for W0 = E[p] and some W1 ∈R. We can rewrite the previous equation in terms of q =Q(k)

(so k = K(q)) as

W0 +W1 K(q)= q+

∫

(q,q̄]
(p−q) Fp(dp) .

This equation is analogous to equation (A.8). Hence, we can proceed analogously to the

proof of Proposition 3.2 so we obtain that

W1 K ′(q)= 1− (1−Fp(q))= Fp(q) .

Since Fp(q̄)= 1, we have W1 = K ′(q̄)−1.

Step 4. Features of an optimal k̄. We now formalize the argument in the main text

to show that, when k̄ gives the seller her highest payoff, we have k̂(k̄) > q∗. Note, using

W(·; ·) defined in the main text, we have that the seller maximizes W(k̄; k̄)− k̄. Note also

that W(k̄; k̄) > Q(k̄) for all k̄ > 0, so the equilibrium payoff of the seller is strictly higher

than Q(k∗)−k∗.

Let k̂(k̄) denote the upper bound of the support of Fq(·; k̄) for each k̄ ∈R+ (which, from

the previous analysis, is unique). Notice that Fk(·; k̄) can be written using equation (A.9)

as

Fk(k; k̄)= Fq(Q(k); k̄)= exp
(

−

∫Q(k̂(k̄))

Q(k)

1

U(q̃)− q̃
dq̃

)

.

So, taking two values k̄, k̄′ ∈R we have

Fk(k; k̄)−Fk(k; k̄′)= exp
(

−

∫Q(k̂(k̄′))

Q(k̂(k̄))

1

U(q̃)−q̃
dq̃

)(

1−exp
(

−

∫Q(k̂(k̄′))

Q(k)

1

U(q̃)−q̃
dq̃

))

.

Hence, if for example k̄ < k̄′, it is necessarily the case that Q(k̂(k̄)) <Q(k̂(k̄′)), because in

this case Fk(k; k̄′) first-order stochastically dominates Fk(k; k̄), and the reverse is true in

the opposite case. As a result, since U is continuous and differentiable, k̂(·) is a continu-

ous, differentiable and strictly increasing function.

Since k̂(0) = 0 and k̂(k∗) > k∗, there exists a unique k̄no ∈ (0,k∗) such that k̂(k∗) = k∗.

For such value, the distributions Fq(·; k̄no) and Fp(·; k̄no) coincide with those obtained

when the total size of the capital stock of the firm is not observable (characterized in

Proposition 3.2), so the the payoff of the seller in this case is

W(k̄no; k̄no)− k̄no =Q(k̄∗)− k̄∗ .
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Using our previous result that W(·; k̄) is linear with slope equal to K ′(Q(k̂(k̄)))−1 (and

therefore the slope is equal to Q′(k̂(k̄))), we have that W(k̄; k̄) can be expressed as follows:

W(k̄; k̄)− k̄ =Q(k̂(k̄))− (k̂(k̄)−k̄) Q′(k̂(k̄))− k̄ .

Differentiating the previous equation we obtain

d

dk̄

(

W(k̄; k̄)− k̄
)

=Q′(k̂(k̄))−1−(k̂(k̄)−k̄) Q′′(k̂(k̄)) k̂′(k̄)
︸ ︷︷ ︸

>0

.

Notice that if k̂(k̄) < k∗ then the right hand side of the previous expression is positive

(since, in this case, Q′(k̂(k̄))> 1), and therefore W(k̄; k̄)− k̄ does not reach its maximum in

[0, k̄no]. Notice finally that, as we showed before, k̄ = k̂(k̄)+ o(1) when k̄ →∞, so

W(k̄; k̄)− k̄ <W(k̂(k̄); k̄)− k̄ =Q(k̂(k̄))− k̄ =Q(k̄)− k̄+ o(1)

as k̄ →∞. So, since limk̄→∞(Q(k̄)− k̄)=−∞, we have that a finite maximizer of W(k̄; k̄)− k̄

strictly higher than k̄no exists.
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