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Abstract

Innovation depends on the incentives to create new ideas as well as access to existing
ones. Access, in turn, depends on an initial invention’s inherent visibility as well as the
inventor’s decision to disclose it, for example through patenting. Compared to product
innovations, process innovations tend to be less visible, making secrecy as an intellectual
property strategy relatively more attractive; and stronger trade secrets protection laws
could hamper their disclosure even further. Using exogenous variation in the level of
trade secrets protection from the Uniform Trade Secrets Act, we show that stronger
protection has a disproportionately negative effect on patenting of processes. We show
in simulations that these changes in disclosure can have large implications for follow-on
innovation and welfare.
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1 Introduction

When better protection of intellectual property improves the appropriability of R&D in-

vestment returns, firms have stronger incentives to invest and innovate. The fruits of such

innovation serve as the proverbial shoulders on which future innovators can stand, thus fos-

tering technological progress through more follow-on (or cumulative) innovation.1 However,

granting the inventor a temporary monopoly through a patent can have negative, “anticom-

mons” effects on follow-on innovation when exclusivity renders the shoulders less accessible

(Heller and Eisenberg, 1998). A negative effect on follow-on innovation also arises when

inventors decide to disclose fewer of their inventions through patents and instead keep them

secret. Nondisclosure is especially harmful to the diffusion of knowledge when the technolo-

gies are less visible per se, as might be the case with process innovations. In these cases,

diffusion and follow-on innovation would be hampered if inventors kept more secrets, and

even more so when legal trade secrets protection is strong. We study these effects of intel-

lectual property policy on patenting of inventions featuring varying levels of visibility, and

we highlight their implications for cumulative innovation.

Secrecy is an important tool in a firm’s intellectual property management toolbox. There

is ample survey-based evidence that secrecy is widely used and often more important as an

appropriability mechanism than patents (e.g., Levin et al., 1987; Cohen et al., 2000; Arundel,

2001). Mansfield (1986) reports survey results suggesting that one out of three patentable

inventions is kept secret when inventors have a choice between secrecy and patenting. Im-

portantly, choosing secrecy does not mean that the invention is without any protection. The

laws governing trade secrets offer protection against misappropriation of secrets—that is, the

acquisition of a trade secret by improper means or the disclosure of a trade secret without

consent.2 For example, in a well-publicized legal case, Waymo LLC (a self-driving car startup

1In 1675, Sir Issac Newton wrote in a letter to Robert Hooke: “If I have seen further, it is by standing
upon the shoulders of giants.” See Scotchmer (1991) for the economics of giants’ shoulders.

2Generally speaking, a trade secret is information (e.g., a customer list, a business plan, or a manufacturing
process) that has some commercial value the secret holder wants to conceal from others (Friedman et al.,
1991). We use the terms “secrecy” and “trade secrets” interchangeably.
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under Google’s Alphabet) accused Uber Technologies of violating both California state and

federal trade secret laws, alleging that a former employee secretly downloaded data around

a key piece of technology from its servers before resigning and launching a self-driving truck

startup.3 However, while trade secrets laws provide protection against such misappropria-

tion, unlike patents they do not grant general exclusivity: A trade secret is not protected

if it accidentally leaks or is uncovered through independent discovery or reverse engineering

(Friedman et al., 1991); and others’ ability to reverse engineer an invention depends on its

visibility.

Stronger protection of trade secrets renders them more attractive relative to patents.

In this paper, we ask how a change in the attractiveness of secrecy affects the diffusion of

knowledge through (1) the decision to invest in different types of innovation, (2) the disclosure

of these inventions, and (3) the ability to build on them. Our main empirical exercise studies

the disclosure decision. We use exogenous variation in trade secrets protection across states

and time brought about by the Uniform Trade Secrets Act (UTSA) of 1979/1985 to identify

the effects of trade secrets protection on patenting of product vs. process inventions. Using

an index of the strength of trade secrets protection (Png, 2017b) and data on the type of a

patented invention (Ganglmair et al., 2022), we show that stronger trade secrets protection

results in a disproportionate decrease of process patents (i.e., inventions that are less visible).

Our estimated effects are largest among individual inventors and small firms and are driven

by patents covering discrete rather than complex technologies. These results are robust

to different modeling choices as well as the inclusion of controls for other changes in IP

enforcement. Since patents provide insight into what is not kept secret, we interpret our

findings as a relative increase in the propensity to keep process inventions secret.4 This, by

itself, limits opportunities for follow-on innovation.

3The startup was later acquired by Uber. See Waymo LLC v. Uber Technologies, Inc; Ottomotto LLC;
Otto Trucking LLC. No. 3:17-cv-00939, N.D. Cal., San Francisco Division. The case settled in February
2018, five days into the trial.

4Our assumption of the choice between secrecy and patents, as opposed to joint use (Arora, 1997), comes
without loss of generality as long as there is some degree of substitutability.
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The welfare implications of such changes in intellectual property protection depend not

only on the facilitation of follow-on innovation from existing inventions but also on the ex-

ante incentives to innovate; and changes in initial innovation could in turn affect follow-on

innovation. Because we do not observe inventions that are kept secret, we cannot estimate

the effects of trade secrets protection on the total stock of innovations.5 Instead, we simulate

a simple framework of sequential innovation to make inferences about these broader effects.

While stronger trade secrets lower disclosure of inventions, thus hampering opportunities for

follow-on innovation, they can also raise incentives for initial innovation and thus provide

additional opportunities. Both the negative and the positive effects are amplified for less

visible technologies such as processes. If the incentives to innovate rise substantially, then

this rise could outweigh the negative disclosure effect, especially in industries that are char-

acterized by little sequential innovation. An ideal trade secrets policy therefore weighs the

decrease in disclosure that we document against possible increases in initial innovation.

Beyond studies based on survey data, there is limited empirical work in economics on

trade secrets, though a small literature presents indirect evidence on secrecy. Moser (2012)

documents a shift toward patenting (and away from secrecy) in the chemical industry as the

publication of the periodic table of elements has facilitated reverse engineering. Gross (2023)

finds that a policy during World War II to keep certain patent applications secret resulted in

slower dissemination of the patented technologies into product markets; de Rassenfosse et al.

(2024) confirm these findings. Hegde and Luo (2018) show that a reduction of the duration

of temporary secrecy of patent applications had a mitigating effect on licensing delays, and

Hegde et al. (2023) find an acceleration in diffusion of knowledge and ideas.

A related strand of literature studies the effect of changes in legal trade secrets protec-

tion on innovation and patenting behavior. Png (2017a,b) finds that stronger trade secrets

protection has a positive effect on firms’ investment in R&D and renders patenting relatively

less attractive. Related to this line of work, Contigiani et al. (2018) find that more employer-

5With the rare exception of Cunningham and Kapačinskaitė (2022), who provide empirical evidence of
actual secrecy use, papers in the literature resort to indirect tests of the effects of trade secrets.
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friendly trade secrets protection has a dampening effect on innovation, and Castellaneta et al.

(2017) show a positive effect on firm value in industries with high mobility of skilled labor.

Angenendt (2018) finds that patent applicants respond to stronger trade secrets protection

by reducing the number of patent claims.

We add to these bodies of literature by examining the role of an invention’s visibility in

patenting and innovation decisions; and we explicitly study how these decisions affect the

provision of opportunities for follow-on innovation, finding that optimal policies depend on

the types of innovation that prevail in an industry. We further highlight that insights gained

from the effects of patents on innovation do not necessarily apply to trade secrets.

The remainder of this paper is structured as follows: In Section 2, present a simple

theoretical framework for the interaction of trade secrets protection, the visibility of an

invention, and an inventor’s patenting decision. We also provide institutional background

on the Uniform Trade Secrets Act. In Section 3, we present our estimation sample that

we use for our empirical analysis in Section 4. In Section 5, we use simulations of a model

of sequential innovation to discuss the implications of trade secrets protection for follow-on

innovation building on processes and products. We conclude with policy recommendations

in Section 6.

2 Trade Secrets Protection and Innovation

Our empirical strategy leverages changes in the level of trade secret protection in the United

States following the adoption of the Uniform Trade Secrets Act. In this section, we introduce

a theoretical framework to lay out the effects of trade secrets protection on innovation, and

we then provide some background information on the Act.
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2.1 Theoretical Framework of Sequential Innovation

To guide our discussion of the effects of trade secrets protection on innovation, we consider

a simple theoretical framework that captures three stages of an invention’s life cycle: (1)

the decision to invest in initial R&D, (2) the decision whether to patent the invention or to

keep it secret, and (3) the resulting opportunities for follow-on innovation. All three stages

depend both on the strength of trade secrets protection and the visibility of the invention.

In Stage 1, inventors have stronger incentives to invest in R&D if they believe their in-

ventions will reap larger returns (including the value from the invention itself and licensing

revenues from potential follow-on innovation) than their investment costs. The use of se-

crecy as an appropriability mechanism suggests that stronger trade secrets protection should

weakly raise the expected returns to R&D. Png (2017b) provides evidence in line with this

appropriability effect, showing that stronger trade secrets protection results in higher overall

R&D investment. This effect should be driven by those inventions that benefit the most

from secrecy and for which patenting is no profitable alternative. Because secrecy is a par-

ticularly viable option for production processes and business methods that are inherently

difficult to observe, stronger trade secrets protection may raise incentives to invest in R&D

for such process innovation disproportionately. This would lead to a rise in the underlying

set of process inventions relative to product inventions.

In Stage 2, the inventor decides whether to patent and thus (partly) disclose the invention,

or to keep the invention as a trade secret.6 If the inventor patents the invention, they are

granted monopoly rights for a limited period; and they can benefit from additional licensing

fees.7 On the other hand, trade secrets have no term limits but provide weaker opportunities

for licensing and only limited protection against misappropriation. Still, stronger protection

raises the attractiveness of trade secrets relative to patenting. While previous work shows

6We provide notation and formal proofs of this disclosure decision in the Appendix.
7While monopoly rights allow for larger profits to the inventor, monopoly market structures are also

connected to inefficiencies in terms of total welfare. In Section 5, we account for this deadweight-loss effect
stemming from limited access to the technology for other market participants
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an overall decrease in patenting (e.g., Png, 2017a), these effects likely vary across invention

types, for two reasons: First, for low-visibility inventions (such as new production processes),

the information costs of disclosing the details in a patent are higher. Second, once disclosed,

the enforcement of such a patent is more difficult because of higher monitoring costs (e.g.,

Goldstein, 2013; Hall et al., 2014). We therefore predict that stronger trade secrets protection

disproportionately induces process innovators to choose secrecy over patenting, leading to a

drop in the share of newly filed process patents. Testing this is the main objective of the

empirical analysis below.

The investment and disclosure decisions affect follow-on innovation, which we describe

as Stage 3. With stronger trade secrets, the appropriability effect likely increases the stock

of initial inventions to build on (a positive cumulation effect, see Scotchmer, 1991), but the

decision to keep these—and some other—inventions secret could render them invisible (a

negative disclosure effect). Both effects on follow-on innovation are amplified for process

innovations, which are inherently less visible than product innovations.

In what follows, we first examine the relative effects of trade secrets protection on patent-

ing of processes, where we predict a disproportionately negative effect on the disclosure of

processes. We return to the issue of how stronger trade secrets protection affects the oppor-

tunities of follow-on innovation in Section 5.

2.2 Uniform Trade Secrets Act (1979/1985)

The UTSA was published and recommended to the individual U.S. states for adoption in

1979 (revised in 1985) by the National Conference of Commissions on Uniform State Laws.

Between 1979 and 2018, all U.S. states except New York and North Carolina have adopted

the UTSA, with adoption dates ranging from 1981 (5 states) to 2018 (Massachusetts).8

The objective of the UTSA was to clarify and harmonize across U.S. states the legal

protection of trade secrets. Most prominently, it attempted to standardize the definition

8In New York, State Assembly and Senate bills were introduced in 2024.
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of a trade secret, the meaning of misappropriation, and remedies (including damages) for

trade secret holders in case of a violation. For example, with the adoption of the UTSA, the

Commonwealth of Virginia dropped the requirement of actual or intended use for something

to be considered a trade secret and increased the punitive damages multiplier from 0.5 to 2.

Png (2017b) constructs an annual index that quantifies the strength of legal trade secrets

protection at the state level on a scale from 0 to 1, for the years 1976 to 2008. For example, the

changes in Virginia represent increases in two of the six inputs into the index.9 On average,

the UTSA implied a rise in the index of 42 percentage points across states (median = 46.7).

In most states, the UTSA resulted in a strengthening of trade secrets protection, with the

exception of Arkansas and Pennsylvania, where pre-UTSA trade secrets protection (under

common law) was stronger, and Michigan, Nebraska, and Wyoming, where the protection

index remained unchanged. There is no obvious pattern in the size of these changes over

time and across states, and Png (2017b) cites anecdotal evidence that suggests that passing

of the bills by state legislatures often happened for “whimsical” reasons.

2.3 Trade Secrets and the Disclosure Function of Patents

By using the UTSA to examine the effects of trade secrets protection on access to knowledge

and follow-on innovation, we make two implicit assumptions. First, changes in the level

of trade secrets protection affect firms’ use and defense of trade secrets. Second, patents

provide some disclosure of inventions.

The first premise, that the changes in trade secrets protection through the UTSA were

sufficient to induce changes in behavior, is supported by empirical evidence (e.g., Png,

2017a,b; Castellaneta et al., 2017; Leblebicioglu and Savaser, forthcoming). Moreover, Almel-

ing (2012) attributes part of the rise of trade secrets litigation over recent decades to the

individual states’ adoption of the UTSA, mostly because it raised awareness of the option

9In addition to these two factors, the index is higher (i) without a requirement that the trade secret
holder exert reasonable effort to protect the secret, (ii) without a requirement that the information be used
or disclosed, (iii) without a statute of limitation, and (iv) with unlimited length of injunction.
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to keep trade secrets.

The second premise is that patents provide some disclosure of inventions. Some legal

scholars have called the disclosure function of patents into question. For example, Ouellette

(2012) argues that patents have lowered the level of openness in science. While acknowledging

that “patents disclose useful, nonduplicative technical information” (p. 533), she notes they

“could be even more informative.” Others share these concerns (e.g., Roin, 2005; Fromer,

2009). In addition, Lemley (2008a) suggests that scientists and engineers might not pay

attention to patents for strategic reasons, a phenomenon observed more often in complex

than in discrete technologies (Bessen and Meurer, 2009).

Nevertheless, both legal and economics scholars seem to agree that patents provide some

information. Exploiting variation across fields, Merges (1988) finds that many inventors rely

on published patents for technical information. Recent work by economists also finds that

innovators use existing patents for inspiration and information (e.g., Furman et al., 2021;

Gross, 2023; Hegde et al., 2023). Importantly, our results hold as long as patents provide

some disclosure.

3 Patent Data

In our empirical analysis, we examine how stronger trade secrets protection (measured by way

of the state-level trade secrets protection index) affects patenting decisions. Our underlying

data include patents with priority dates between 1976 and 2008—the years for which we have

index data. We (a) match these patents to the relevant level of trade secrets protection by

approximating the timing and location of the patenting decision, and we (b) determine each

patent’s type (process or product) based on the language used in its claims. Our analysis

requires that we make decisions on both dimensions. Here we describe our choices for the

main analysis, noting that our results are robust to these decisions. We supplement these

data with additional patent characteristics.
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3.1 Timing of the Disclosure Decision and Patent Location

To determine the timing of the disclosure (patenting) decision, we use the earliest priority

date of the respective granted patent. This date reflects the application date of the first

patent in a patent family—that is, the parent application, which applies to all its subsequent

continuation and divisional applications.10 The relevant disclosure decision was likely made

at the time of the parent application, so that we use that application’s priority date as the

disclosure date for all related patents.

For the patent’s location, we consider only patents for which all U.S. inventors and

U.S. assignees are from the same state, and we use that state as the patent’s location.

Our approach ensures that the patent applicant’s decision was driven by only that state’s

level of trade secrets protection, and not contaminated by laws in other states.11 With our

assumption of single-state patents, we limit our overall sample to 1,451,311 patents (out of

2,433,317 patents by U.S. applicants, and 4,370,594 total), granted between 1976 and 2014

and with priority dates between 1976 and 2008.12

3.2 Indicators for Process and Product Patents

We construct our indicators of process and product patents using information at the level

of the patent’s independent claims from Ganglmair et al. (2022).13 A claim can be of one

of three distinct types: (1) process (or method) claims describe the sequence of steps which

10For a continuation application, the applicant may not add new disclosures but may use claims from the
parent application that have not been issued (or abandanced). Divisional applications involve splitting a
parent application into two or more.

11An identifying assumption, which is supported by Paolino v. Channel Home Centers, 668 F.2d 721 724
n.2 (3d Cir. 1982), is that trade secrets protection is determined by the state where the secret was developed
and not where it was misappropriated: “The law of the state of residence of the person who initially developed
and protected the secret appears to be the obvious starting point for its protection.”

12Our estimation sample slightly over-represents individual applicants and under-represents large firms.
We document this selection in Section A.2.

13A patent claim describes what the applicant claims to be the invention for which the patent grants
exclusive legal rights. Each patent can hold multiple claims of different types. An independent claim stands
on its own whereas a dependent claim is in reference to an independent claim. Ganglmair et al. (2022) use
information from both the preamble of the claim (that names what the invention is about) and the body of
the claim (that lists steps of a process or the elements of a product) for their text-based categorization of
patent claims.
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Table 1: Summary Statistics

N Mean Median SD Min Max

Process patent 1,451,311 0.473 0 0.499 0 1
Number of process claims 1,451,311 0.871 0 1.407 0 60
Number of product claims 1,451,311 1.920 2 1.885 0 104
Product-by-process claims 1,451,311 0.042 0 0.288 0 30

Independent claims 1,451,311 2.883 2 2.286 1 116
Length of first claim (words) 1,451,311 169.194 148 106.034 1 7078
Length of description (chars.) 1,451,311 25992.144 15658 39439.832 4 3,608,036
Generality 1,096,154 0.638 0.719 0.244 0 1
Originality 1,276,719 0.626 0.694 0.244 0 1
4th year renewal 1,358,663 0.826 1 0.380 0 1

Observations 1,451,311

Notes: This table provides summary statistics for all granted utility patents (between 1976 and 2014) with priority dates
between 1976 and 2008 for which all U.S. inventors and assignees are from the same state.

together complete a task such as making an article; (2) product-by-process claims define a

product through the process employed in the making of a product; and (3) product claims

describe an invention in the form of a physical apparatus, a system, or a device.

We classify a patent as a process patent if at least one of its independent claims is either

a process claim or a product-by-process claim, and as a product patent otherwise. We choose

this rather aggressive definition because we are interested in whether any process-related

aspects of an invention are disclosed at all, regardless of the disclosure of its product-related

aspects.14

The top portion of Table 1 provides summary statistics for our patent-type indicators

for all granted USPTO utility patents in our sample.15 Almost half of all patents include a

process claim, although that number increased steadily over the time period of our study,

from just under 30% in the 1970s to almost 60% in the 2000s. This trend is universal across

patent classes. In our empirical analysis, we examine whether the UTSA caused these trends

to differ across states.

14We treat product-by-process claims as process claims because what they disclose is a process more than
a product. Dropping patents with such claims leaves our results unchanged.

15For our final sample, we follow Strandburg (2004), who argues that business methods are highly visible
“self-disclosing processes,” and drop all business method patents (Lerner, 2006).
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3.3 Additional Variables

We collect and construct additional patent characteristics to capture the complexity and

value of the patented technology. The bottom of Table 1 summarizes these variables across

all patents in our main sample. We proxy for a patent’s breadth and complexity using the

number of independent claims (see Lerner, 1994; Lanjouw and Schankerman, 2004) and the

length (in words) of the first claim where shorter claims are likely broader (see Kuhn and

Thompson, 2019). As an additional measure of a patent’s complexity, we include the length

of the patent’s description text.

To capture the external value (or technological impact) of a patent, we construct measures

of patent generality and patent originality as proposed by Trajtenberg et al. (1997). Patent

generality captures the diversity of patents—measured by their respective patent classes—in

which a given patent is (forward)-cited. A higher generality score implies more widespread

impacts (Hall et al., 2001). Patent originality, on the other hand, captures the diversity of

technologies from which a given patent (backward)-cites. A higher originality score means

that the patented invention is combining ideas from different areas to create something new

(or “original”). We construct these measures for each patent using the first USPC main

class listed on the patent.16 As a measure of a patent’s internal or private value, we use

information on whether the patent holder paid the patent maintenance fee during the 4th

year of the patent term (see, e.g., Pakes, 1986; Schankerman and Pakes, 1986).

4 Empirical Estimation and Results

Following the discussion of our theoretical framework in Section 2, we expect stronger trade

secrets protection to lower inventors’ incentives to patent, especially for process innovations.

In this section, we empirically test two predictions. First, we test at aggregated levels whether

rises in trade secrets protection lead to larger decreases in the patenting of processes than in

16There are about 450 main classes in the United States Patent Classification (USPC) system.
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product innovations. Second, we examine at the patent level whether the relative decreases

in patenting of process innovations are driven by certain types of applicants and technologies.

In both sets of analyses, we take advantage of the staggered adoption of the UTSA across

U.S. states to estimate the number of process and product patents.

4.1 The Number of Patents

We begin our empirical analysis with regressions at the state-year level. Our first set of

regression equations are of the following form:

yst = β1 protectionst + γs + µt + ǫst.

Here, yst denotes the number of patents of a type in state s in year t, where types can be all,

process, or product patents. Our explanatory variable of interest, protectionst, is the trade

secrets protection index ranging from zero to one described above, and γs and µt denote state

and priority-year fixed effects, respectively. While these regressions capture overall patenting

across states, they cannot capture changes in innovation and patenting across technologies.

To account for this, our main focus is on regressions at the USPC class-state-year level. At

this level, our regressions take on the form

ycst = β1protectionst + γcs + µct + ǫcst, (1)

where the dependent variable ycst describes functions of the number of patents of each type

in USPC class c in state s and year t. The interacted fixed effects γcs for each USPC class

and state, and µct for each USPC main class and year, control for trends within a USPC

class that are common to all states as well as for any USPC class-state-specific characteristics

that do not vary over time.17 Equation (1) thus ensures that the coefficient of interest β1

17The fixed effects including the priority year control for nationwide policy changes such as the Uruguay

Round Agreements Act of 1995 (extending the maximum validity of a patent to 20 years from filing) and
the American Inventors Protection Act of 1999 (introducing pre-grant publication of patent applications).
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captures within-technology class changes in patenting.

Columns 1 through 3 of Table 2 show coefficients from regressions at the state-year level.

We estimate statistically and economically large decreases in patenting overall (column 1)

as well as across both patent types (columns 2 and 3). The drop in process patenting

outsizes the decrease in product patenting: a change in the trade secrets protection index

from zero to one is associated with an almost 600-unit decrease in the number of process

patents, compared to only 180 fewer product patents. At mean rises in the trade secrets

protection index of 42 percent from UTSA adoption across states, this implies the UTSA led

to about 250 fewer process patents and 75 fewer product patents for an average state. Note,

however, that these results could be driven by corresponding shifts in invention technologies.

Columns 4 through 6 report results from the USPC class-state-year level regressions from our

preferred specification in Equation (1), which is designed to capture the effects of trade secrets

protection on patenting within technology classes. Again, we find statistically significant

decreases in patenting of both invention types, and the decrease is about three times as large

for process patents as for product patents.18

4.1.1 Patenting within Technology Classes

The results above suggest large differences in the effects of trade secrets protection on patent-

ing of processes vs. products, but they do not take into account initial patenting levels of

each type; and these levels can vary across both states and technology classes. To facili-

tate interpretation, we estimate models with different functional forms in Table 3. The first

three columns present results from log-OLS specifications, where the dependent variables

are the zero-inflated natural logs of the numbers of patents in each USPC class, state and

year. Column 1 shows that the total number of patents would decrease significantly, by 5.5

We cannot add state-year fixed effects because they are perfectly collinear with our explanatory variable of
interest.

18Columns 1 and 4 confirm the results in Png (2017a). The point estimates are different because our
analysis is at the state and technology class level rather than the firm level.
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Table 2: Impact of Trade Secrets Protection on Patent Counts

state-year level USPC-state-year level

(1) (2) (3) (4) (5) (6)
total process product total process product

Trade secrets index -778.186∗∗ -597.642∗∗ -180.544∗ -2.463∗∗∗ -1.822∗∗∗ -0.641∗∗∗

(376.952) (282.577) (103.813) (0.328) (0.230) (0.113)

R2 0.76 0.62 0.90 0.59 0.52 0.68
N 1,683 1,683 1,683 408,718 408,718 408,718

Notes: OLS regressions at the state-year level (columns 1 through 3) or USPC class-state-year level (columns 4 through 6).
The dependent variable is the number of patents of the respective type (process, product, or all). The specifications in columns
1 through 3 include state and year fixed effects. Columns 4–6 include USPC class-state and USPC class-year fixed effects.
Robust standard errors, clustered at the state level (Columns 1 through 3) and at the state-year level (Columns 4 through 6)
in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

percent, with a full-point rise in the trade secrets protection index,19 or about 2.3 percent

at the mean UTSA-induced rise in trade secrets protection. Columns 2 and 3 show that this

decrease is largely driven by process patents, which decrease by 11.9 percent, compared to

only a 1.4 percent decrease among product patents.20 Column 4 uses the share of all patents

with a process claim as the dependent variable. It confirms the results from the first three

columns, showing a decrease in the share of process patents of about one percentage point,

or three percent of the pre-UTSA average process share of 32.7 percent.

Columns 5 through 7 of Table 3 report results from Poisson estimations to address poten-

tial issues stemming from the low patent counts in some technology classes and states. The

results are in line with previous results: following strengthening of trade secrets protection,

patent counts decrease across the board, and especially so for process patents.

4.1.2 Timing and Threats to Identification

The fixed effects regressions presented above could capture differences in trends leading up to

a state’s adoption of the UTSA. We address this concern by estimating the effects of UTSA

19This comes from (e−0.057 − 1)× 100 percent = 5.5 percent.
20While we use the zero-inflated log patent counts to hold the number of observations fixed, we note that

the results are qualitatively identical and quantitatively even more pronounced.
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Table 3: Effects of Trade Secrets Protection within Technology Classes

OLS Poisson

(1) (2) (3) (4) (5) (6) (7)
ln(total) ln(process) ln(product) Pr(process) ln(total) ln(process) ln(product)

Trade secrets index -0.057∗∗∗ -0.127∗∗∗ -0.014 -0.010∗ -0.200∗∗∗ -0.265∗∗∗ -0.078∗∗

(0.019) (0.017) (0.015) (0.005) (0.044) (0.080) (0.038)

R2 0.73 0.69 0.68 0.45
N 408,718 408,718 408,718 246,745 408,875 374,159 397,191

Notes: Regressions at the USPC class-state-year level. Columns 1–4 present OLS regression results. In columns 1–3, the
dependent variable is the zero-inflated natural log of the number of patents of the respective type (process, product, or all).
In column 4, it is the share among all patents that includes a process innovation. Columns 5–7 show estimates from Poisson
estimations of the the counts of process, product, and total patents, respectively. All estimations include USPC class-state
fixed effects. The OLS regressions also include USPC class-year fixed effects; the Poisson regressions include year fixed effects.
Robust standard errors in parentheses, in Columns 1 through 4, standard errors are clustered at the state-year level. * p < 0.1,
** p < 0.05, *** p < 0.01.

adoption in an event study setting. We allow for a flexible time structure by estimating

annual changes in patenting in a USPC class-state pair relative to the year in which the

state adopted the UTSA. Specifically, we estimate

ycst =
∑

z

βz(UTSA)s × 1{z}+ γcs + µct + εcst, (2)

where the fixed effects γcs and µct are defined as above; (UTSA)s equals one for states

which adopted the UTSA and for which adoption implied an increase in trade secrets pro-

tection; and z represents the number of years since the state’s UTSA adoption. To control

for potential issues arising from heterogeneous treatment effects across cohorts (see, e.g.,

Goodman-Bacon, 2021), we estimate this regression using the estimator developed by Sun

and Abraham (2021).

Figure 1 plots the coefficients of interest for two dependent variables, using the year before

UTSA adoption as the omitted category. Panel (a) plots the overall effects of UTSA adoption

on the zero-inflated log number of total patents, thus emulating column 1 of Table 3. It

indicates, first, that patenting did not change systematically in states shortly before UTSA

adoption, and second, that patenting decreased steadily and significantly after adoption,
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Figure 1: Event Study Plots
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Notes: Point estimates and 90 percent confidence intervals from event study regressions for 15 years around a state’s UTSA
adoption, adjusting for the possibility of heterogeneous treatment effects (Sun and Abraham, 2021). The dependent variable is
the natural log of patents (panel (a)) and the share of process patents (panel (b)). The omitted category is the year before a
state’s UTSA adoption, and the estimations are done at the USPC class-state-year level.

relative to patenting in other states. Panel (b) highlights the differences in effects between

process and product patenting. Similar to column 4 of Table 3, it plots differences in the

share of process patents in a state and USPC class before and after UTSA adoption. While

the coefficients vary more from year to year, the overall trends support the main findings

as well: with the exception of low process shares two years before UTSA adoption, there is

no significant difference in the process patent share leading up to UTSA adoption, and the

share decreases slightly after adoption.

4.2 Patent-level Analysis

To examine whether the relative decreases in process patents are driven by certain firms or

technologies, we move to analyses at the patent level. We ask whether patents become more

or less likely to cover a process invention when trade secrets protection changes. A benefit of

this analysis is that we can easily examine the roles of additional patent characteristics such

as their complexity and value, as well as technology and applicant characteristics. Formally,

the regressions in this section are of the form:

processj,cst = β1 protectionst + β2Xj + γcs + µct + ǫj, (3)
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where the dependent variable is an indicator that is 1 if patent j belonging to USPC main

class c and filed in state s and year t is a process patent; protectionst and the interacted fixed

effects γcs and µct are defined as above. Our specification at the patent level is equivalent

to an analysis at the state level where the states are weighted by the number of patents,

but it also allows us to directly control for patent-specific measures of complexity and value,

Xj. We estimate Equation (3) as a linear probability model, noting that logit estimations

provide qualitatively identical results.

4.2.1 Overall Effects

Table 4 shows the coefficients from this specification, including different sets of control vari-

ables. Consistent with the aggregated analyses above, all specifications show a statistically

significant, negative effect of a UTSA-related strengthening of trade secrets protection on the

probability that a patent is a process patent. We are most interested in the specifications

that include control variables on both patent complexity and value measures (Columns 4

and 5). Column 4, which includes separate fixed effects for USPC main class, state, and

year, suggests that patents are 2.6 percentage points less likely to include a process innova-

tion if the trade secrets protection index rises by a full point. Column 5 interacts the USPC

main class dummies with the state and year dummies and, therefore, controls for state- and

time-specific variation across technologies. It reports a 1.8 percentage point decrease. At a

baseline process patent share across patents of 42.3 percent before UTSA adoption, and with

a mean increase in the trade secrets protection index across patents of 0.36 points across all

patents, our results correspond to respective mean decreases of 2.2 percent and 1.5 percent

in the probability that a patent is a process patent when a state adopts the UTSA.

4.2.2 Effects Across Applicant and Invention Types

We examine the roles of firm sizes and technology complexities in Table 5. In the first

two columns, we repeat the estimation from Columns 4 and 5 of Table 4, interacting the
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Table 4: Patent-Level Impact of Trade Secrets Protection

(1) (2) (3) (4) (5)

Trade secrets protection -0.018∗∗∗ -0.021∗∗∗ -0.026∗∗∗ -0.026∗∗∗ -0.018∗∗∗

(0.006) (0.006) (0.007) (0.007) (0.006)

Log(indep. claims) 0.233∗∗∗ 0.231∗∗∗ 0.228∗∗∗

(0.002) (0.002) (0.002)

Log(length of first claim) -0.044∗∗∗ -0.052∗∗∗ -0.045∗∗∗

(0.001) (0.001) (0.001)

Log(length of description) -0.002∗∗ 0.001 0.004∗∗∗

(0.001) (0.001) (0.001)

Originality 0.027∗∗∗ 0.011∗∗∗ 0.013∗∗∗

(0.003) (0.003) (0.003)

Generality 0.062∗∗∗ 0.039∗∗∗ 0.031∗∗∗

(0.003) (0.003) (0.003)

4th year renewal 0.045∗∗∗ 0.025∗∗∗ 0.022∗∗∗

(0.002) (0.001) (0.001)

R2 0.297 0.342 0.288 0.335 0.357
N 1,451,307 1,451,307 894,956 894,956 892,296

Notes: Linear probability models at the patent level with 1[process patent] as the dependent variable, and the index of trade
secrets protection as the independent variable of interest. Additional controls in columns (1)–(4) include indicator variables for
the patent’s location state, priority year, and USPC main class. Column (5) interacts USPC main class dummies with both
state and year indicators. Robust standard errors, clustered by state and year, in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01.

trade secrets index with indicators for small applicants (individuals and small firms) as

well as large applicants (large firms). The estimated decrease in the probability that a

patent is a process patent is largest for small applicants. In our preferred specification with

interacted fixed effects (Column 2), the estimated coefficient (-0.022, se=0.006) corresponds

to an average decrease in the probability of a process patent of 2.4 percent, which exceeds

the estimated average effect of 1.5 percent. The negative coefficient is smaller and less

statistically significant for large applicants.

Our findings confirm our expectations for three reasons. First, trade secrets are more

important as a means to protect intellectual property for small firms than large firms (Hall

et al., 2014). Second, individual states are only a small part of a large firm’s overall market,

and the adoption of the UTSA in just one of these states may not have a strong impact
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Table 5: Impact of Trade Secrets Protection by Applicant Size and Technology Type

Applicant size Technology type

(1) (2) (3) (4)

Trade secrets protection

. . .× Small applicant -0.036∗∗∗ -0.022∗∗∗

(0.007) (0.006)

. . .× Large applicant -0.014∗ -0.013∗

(0.008) (0.007)

. . .× Discrete -0.064∗∗∗ -0.038∗∗∗

(0.010) (0.008)

. . .× Complex -0.008 -0.007
(0.008) (0.006)

R2 0.336 0.358 0.334 0.356
N 892,620 889,933 855,654 852,923

Notes: Linear probability models at the patent level with 1[process patent] as the dependent variable, and interactions of
the trade secrets protection index with applicant size (columns 1 and 2) and with technology type (columns 3 and 4) as the
independent variables of interest. All specifications include our sets of complexity and value controls. Columns 1 and 3 include
state, year and USPC class fixed effects. Columns 2 and 4 include fixed effects for interactions of USPC class with states and
with years, respectively. Robust standard errors, clustered by state and year, in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01.

on patenting decisions. Third, findings by Crass et al. (2019) suggest a stronger degree of

substitutability between secrecy and patents for small applicants.

In the next two columns of Table 5, we allow the effects to vary between “complex” and

“discrete” technologies to explore the issue of substitutability between patenting and trade

secrets more directly. Complex technologies (such as in electrical engineering, telecommu-

nications, semiconductors, or machine tools) are more likely protected by a combination of

patents and trade secrets, whereas discrete technologies (such as in chemicals, pharmaceuti-

cals, or materials) are more likely to rely on just one IP strategy. Thus, the effect of stronger

trade secrets protection should be most pronounced among discrete technologies. To test

this, we assign a complexity indicator to each patent based on Graevenitz et al. (2013).21

Interacting this indicator with the trade secrets index in our main specification (Column 4 of

Table 5), we find that the probability of a process patent decreases by 2.7% at the baseline

21In our data, 73% of patents represent complex technologies.
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(coef=0.038, se=0.008) among discrete technologies, whereas the effect is very small and

statistically insignificant among complex technologies (coef=-0.007, se=0.006).

4.2.3 Robustness Analyses

Our data construction and empirical approach are based on a number of assumptions. We

examine the robustness of our empirical results to these assumptions in additional regressions,

replicating the specification from Column 5 of Table 4. Table 6 summarizes the results. In

short, all specifications show a robust negative impact of trade secrets protection on the

share of process patents.

In Panel (a), we vary our choices of the decision date as well as the invention location. The

first two columns examine the timing of the decision. In Column 1, we use each individual

patent’s application date rather than the priority date. Column 2 circumvents the timing

issue altogether by considering only the patent family head—the first patent within its family.

The next three columns explore different choices for identifying the location of the decision

maker. In a less conservative approach, in Column 3, we use all patents and assign the

first assignee’s state as the location of the disclosure decision, or the location of the first

inventor if no U.S. assignee is listed. In a more conservative approach, in Column 4, we drop

all patents with non-U.S. contributors. Finally, Column 5 uses only patents with a single

decision maker. All approaches provide almost identical results to the main specification.

In Panel (b) of Table 6, we show that our results are also robust to process patent defini-

tions and additional control variables. Columns 1 and 2 consider two alternative definitions

of process patents, based on the first claim and on the weak majority of claims, respectively.22

In Column 3, we drop software patents because these tend to be categorized as processes

even though they do not inherently include process innovation.23 Our results across these

specifications are similar in magnitude to our preferred specification, although Column 1

22Kuhn and Thompson (2019) argue that under U.S. law the broadest claim is listed first.
23We follow Graham and Vishnubhakat (2013) in identifying patents as software patents. In our data,

66% of all software patents include a process claim, as opposed to 40% of non-software patents.
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Table 6: Robustness Checks

Panel (a): Disclosure Date and Invention Location

(1) (2) (3) (4) (5)
Appl. Date Family Head Assignee Loc U.S. Only 1 Assignee

Trade secrets protection -0.020∗∗∗ -0.020∗∗∗ -0.020∗∗∗ -0.018∗∗ -0.017∗∗∗

(0.006) (0.005) (0.005) (0.007) (0.006)

Observations 878512 796373 1435763 616992 849881

R2 0.357 0.364 0.356 0.344 0.358

Panel (b): Process Patent Definition and Control Variables

(1) (2) (3) (4) (5)
Process: 1st Process: Most No Software IDD Pre-Trends

Trade secrets protection -0.008∗ -0.015∗∗∗ -0.017∗∗∗ -0.017∗∗∗ -0.029∗∗

(0.005) (0.005) (0.006) (0.005) (0.013)

Observations 886436 892296 652023 892296 892296

R2 0.331 0.279 0.335 0.357 0.357

Notes: Linear probability model with 1[process patent] as the dependent variable. In Panel (a): Column 1 sets the date of the
disclosure decision as the patent’s application date; Column 2 uses only the first patent in a patent family (the family head);
Column 3 uses the location of the first assignee (or the first inventor if no assignee is listed); Column 4 is limited to patents for
which all contributors are American and from the same state; and Column 5 drops patents with more than one assignee. In
Panel (b), Columns 1–3 examine the definition of process patents. Column 1 uses the status of the patent’s first claim; Column
2 considers a patent a process patent if at least half of its claims describe a process; Column 3 drops all software patents;
Column 4 adds state-year specific control variables for changes (strengthening and weakening) in the court enforcement of the
Inevitable Disclosure Doctrine (IDD); Column 5 adds state-specific linear pre-trends. Robust standard errors, clustered at the
state and year, in parentheses. All specifications include the same control variables as the full specification in the main text.

shows a smaller and less statistically significant effect.

In the last two columns, we add additional state-level controls. First, we control for

changes in the enforcement of the inevitable disclosure doctrine (IDD). The IDD is a common

law doctrine that allows employers to seek protection against the disclosure of trade secrets

by a former employee when working for a competitor.24 Column 4 adds IDD enforcement

changes from the case coding in Castellaneta et al. (2016:Table B1) as a control variable.

Column 5 instead includes state-specific linear time trends before UTSA adoption to account

24For instance, in 1998 the Utah District Court found (in favor of the IDD) it “inevitable that defendants
will traffic upon Novell’s trade secrets and confidential technical information unless they are restrained from
being in the same business Novell is in.” Novell, Inc. v. Timpanogos Research Group, Inc., 46 U.S.P.Q.2d
1197 (Utah Dist. Ct. 1998).
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for possible time-varying differences across states. The results from these specifications are

unchanged or even larger.

4.3 Discussion of Identification

Our identification strategies rely on two assumptions. First, stronger trade secrets protection

did not change the relative pool of process and product inventions that were at risk of being

patented. Second, the adoption of the UTSA is not affected by an expectation that certain

types of inventions will be more prevalent in the future. The first assumption is sensible: if

stronger trade secrets protection incentivizes innovation, then this innovation is likely kept

as a trade secret.25 The second assumption requires additional analysis.

Although Png (2017b) provides evidence of the exogeneity of the UTSA with regard

to firms’ decisions to invest in R&D, one might be concerned that each state’s decision to

adopt the UTSA was motivated by changes in innovation and patenting behavior, rather

than the other way around. With the caveat that patents are the results of investments

made in the past, this would imply a change in the likelihood that a patent covers a process

invention before a state adopts the UTSA.26 We provide evidence in Figure 1 suggesting

little pre-trends; and our results at the patent level are robust to the addition of linear time

state-level trends as well. Still, we further examine the possibility of endogenous UTSA

adoption in a set of placebo tests. Instead of the true UTSA adoption date for each state,

we set an earlier date, dropping all patents with priority dates after the true UTSA adoption

to avoid confounding our placebo effects with true ones.27

We then estimate the effect of placebo UTSA adoption—one, two, three and four years

before the true adoption—on the probability that a patent is a process patent, in regressions

that mirror Column 5 of Table 4. For all four placebo adoption dates, the coefficient of

25The pool could also change if firms and inventors move to states with stronger trade secrets protection.
As shown by Png (2012), however, the adoption of the UTSA had no significant effect on inventors’ mobility.

26Png (2017a) suggests an instrumental variables approach, which we adopt in an additional check; and
we find even stronger results in that specification.

27We also drop all patents whose application date lies more than ten years before the state’s true UTSA
adoption to improve balance between treated and control groups.
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interest is small and statistically insignificant, ranging from -0.002 (se=0.004) for placebo

adoption two years earlier to +0.003 (se=0.004), four years earlier. These results suggest

that states adopted the UTSA exogenously with respect to changes in the distribution of

product and process patents.

5 Effects on Cumulative Innovation

While previous research has shown that stronger trade secrets protection raises overall R&D

investment (Png, 2017b) but lowers technology spillovers (Wang, 2023) and overall patenting

(Png, 2017a), the separate effects on product and process innovations are less well under-

stood. In Section 4, we show that stronger trade secrets lead to a disproportionate decrease

in process patents. As we highlight in Section 2, this could have profound implications on

follow-on innovation. Here, we examine these implications more closely.

5.1 A Framework of Cumulative Innovation

To examine the trade-off between initial R&D and follow-on innovation and to illustrate

how the tradeoff depends on the visibility of the initial invention, we use our framework of

sequential innovation introduced in Section 2. We simulate the consequences of changes in

trade secrets protection with simple assumptions on the inventions’ visibilities, their access,

and R&D costs.

In Stage 1 (initial R&D), we let an inventor observe a potential invention of a given

type (process or product), its visibility, value, and the costs of development. The visibility

follows an invention type-specific distribution with a higher average visibility for products

than processes. The inventor undertakes the R&D project if the expected payoffs from the

invention (as a function of the level of trade secrets protection) outweigh its cost. At Stage 2

(disclosure), the inventor decides whether to patent and thus disclose the realized invention

(subject to patent protection) or keep it a secret (subject to trade secrets protection). At
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Stage 3, follow-on innovation is a representative invention with random commercial value

and R&D costs.28

For follow-on innovation to materialize, the value of the follow-on invention must exceed

its costs (the invention must be profitable), and the initial invention must be accessible. The

probability that the initial invention is accessible—and hence the probability that follow-

on innovation is successful—depends on its inherent visibility and the disclosure decision.

If the initial invention is not patented, then the access probability is determined solely by

its visibility (from distributions that are bounded between 0 and 1). If it is patented, we

mechanically set the access probability to 2/3, reflecting a combination of disclosure (making

the invention highly visible) and potential anticommons effects (restricting access).

As discussed in Section 2, the level of trade secrets protection has three distinct effects

on innovation in this model. First, trade secrets protection positively affects initial R&D

by increasing the expected value of realized R&D projects (positive appropriability effect).

Second, because more initial inventions are kept secret at Stage 2 when trade secrets protec-

tion is stronger, effective disclosure decreases, reducing the success probability of follow-on

innovation (negative disclosure effect). Third, the increase in ex-ante R&D activity (from

the appropriability effect) implies there is more initial innovation that can generate follow-on

innovation, even if it is kept secret (positive cumulation effect).

5.2 Harm to Lower-Visibility Follow-On Innovation

Our goal is to simulate both the effects of stronger trade secrets protection on innovation

of products and processes as well as their welfare implications. To do so, we need to make

several assumptions. We describe both the details of the simulations and the underlying

assumptions in Appendix Section A.1. The main takeaway from the simulation supports the

results in Section 4: more realized initial inventions through stronger trade secrets protection

28The value of this representative invention can be interpreted as capturing the present discounted value
of a stream of follow-on innovation (akin to quality-ladder models in Grossman and Helpman (1991),
O’Donoghue et al. (1998), or Hopenhayn and Mitchell (2001), or the outcome of applied research build-
ing on basic research (Scotchmer, 2004:135ff) triggered by the initial invention.
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(i.e., the appropriability effect) may come at the cost of harming follow-on innovation (via

the disclosure effect), and this tradeoff is amplified for process innovations.

Figure 2 presents the results of our simulations. In panel (a), we plot the shares of inno-

vations that are ultimately patented (Stage 2 decisions) for products (orange) and processes

(blue). We distinguish between the share of all inventions that are patented (dash-dotted

lines), and the patenting share of those inventions that are realized without trade secrets

protection (baseline as solid lines). Because the newly incentivized inventions are always

kept secret, the patenting propensity of the combined set of inventions is lower. The larger

difference between the solid and dash-dotted lines for processes is a consequence of a stronger

initial R&D effect for processes than products resulting from the relative attractiveness of

trade secrets for low-visibility inventions. Finally, because stronger trade secrets protection

disproportionately dampens the filing of process patents, but does not change the overall

number of inventions that are at risk of being patented, the share of patents that include

process innovations decreases when trade secrets protection increases, as the green graph in

panel (a) shows, confirming our results in Section 4.

Our empirical results in Section 4 highlight the potential of the negative disclosure ef-

fect on follow-on innovation, but they cannot capture the positive cumulation effect from

increased (undisclosed but nonetheless visible) initial R&D. In panel (b) of Figure 2, we

disentangle the two effects using our simulated data. We plot the percentage change in

follow-on innovation for products (orange) and processes (blue) in response to an increase

in trade secrets protection. Consistent with panel (a), the solid lines depict the change in

follow-on innovation for those initial inventions that are realized regardless of trade secrets

protection changes (baseline). The decrease in follow-on innovation as protection increases is

the negative disclosure effect. The dash-dotted lines depict follow-on innovation that builds

on newly incentivized inventions, capturing the cumulation effect. Like in panel (a), both

effects are stronger for processes.

In these simulations, trade secrets protection is more detrimental to follow-on innova-
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Figure 2: Initial R&D and Follow-On Innovation
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Notes: This figure illustrates the results from our simulations of the three-stage cumulative innovation model (with equal
proportions of processes and products for the unrealized ideas). Panel (a) plots the patent propensities (i.e., the share of
patented Stage-1 inventions) for products (orange) and processes (blue) as well as the share of process patents (green); panel
(b) plots percentage changes in follow-on innovation (relative to τ = 0); panel (c) plots the percentage change in value generated
from initial and follow-on innovation (in % of the value when τ = 0). In panels (a) and (b), we assume low average R&D costs
(30% of the expected R&D project value); in panel (c), the solid lines depict values for low R&D costs, whereas the dash-dotted
line depicts values for higher R&D costs (45% of the expected R&D project value). Visibilities are uniformly distributed with
support [0, 0.75] for processes and [0.25, 1] for products.

tion from processes than from products (see the dotted lines in panel (b)). Trade secrets

protection can encourage development of processes (appropriability effect), but too strong

a protection can retard follow-on innovation if it leads to excessive nondisclosure unless

the rise in initial innovation far outweighs the disclosure effect. Our empirical estimates in

Section 4 suggest UTSA-related decreases in process patenting of about 5.0 percent and in

product patenting of about 0.6 percent. Whether rises in initial innovation exceed these

levels remains an open question.

5.3 Total Welfare Effects of Trade Secrets Protection

Finally, we examine how the three different channels add up and determine overall welfare

through the value of initial R&D and follow-on innovation. We calculate “welfare” as the

expected social surplus derived from the use of the invention, accounting for the inventions’

values (and costs) and potential welfare losses from barriers to access to new technologies.
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For each invention at Stage 1, the potential surplus is the value of the gains from trade

without any barriers to access; and the realized surplus is the potential surplus net of the

disclosure-state specific deadweight loss. For patented inventions, barriers to access (and

thus the deadweight loss) increase in visibility as patents (and the ensuing exclusivity) are

easier to enforce. For inventions kept as trade secrets, the barriers to access decrease in

visibility (implying more exclusivity) and increase in trade secrets protection. For follow-on

innovation, we assume free access and zero deadweight loss in both disclosure states.29

We begin with a baseline feature of our framework (not depicted): For no R&D costs,

stronger trade secrets protection has an unambiguously negative effect on total welfare.

Because of zero R&D costs, all initial inventions are realized for any value of trade secrets

protection. Stronger trade secrets protection, however, introduces additional barriers to

access to a technology, which increases the deadweight loss from monopoly power. The

latter results in a decrease in the value associated with initial innovation as trade secrets

protection increases. In addition, stronger trade secrets protection reinforces the disclosure

effect, thus lowering follow-on innovation.

Panel (c) of Figure 2 illustrates the effects of trade secrets protection for non-zero R&D

costs. The positive appropriability effect increases the social value associated with the initial

R&D (albeit partially offset by the deadweight-loss effect). The negative disclosure effect

lowers social value associated with follow-on innovation but is (partially) offset by the positive

cumulation effect when more initial R&D is available to build on. The solid graph depicts

the overall welfare effects (for low R&D costs): the percentage change in the value associated

with both initial R&D and follow-on innovation. We observe positive effects for lower levels

of trade secrets protection and negative welfare effects for higher levels.

We also plot the values separately for processes (blue) and products (orange) and show

that processes benefit more from trade secrets protection than products when protection

levels are low; but trade secrets protection becomes more detrimental to processes when it

29We provide more details on our welfare measure in Appendix Section A.1.
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is too strong.

The dash-dotted graph in panel (c) depicts overall welfare for high R&D costs. Observe

from the locations of the maxima of the graphs for low and high R&D costs that the optimal

level of trade secrets protection increases in costs. This finding rationalizes existing law

and practice, providing stronger protection for higher-cost projects. For example, in the

State of New York (which has not adopted the UTSA but follows common law principles),

one factor in determining whether something is a trade secret explicitly lists the costs of

developing the information.30 Moreover, under the UTSA, trade secrets holders must also

show significant costs of duplication of the secret information to establish the validity of their

case, for example, by referring to their own costs of R&D (Sandeen and Rowe, 2013:34).

6 Conclusion

The effects of intellectual property rights (IPR) on incentives to innovate are relatively well-

studied (Williams, 2017). Still, we know less about the differences between the effects of

IPR on initial and follow-on innovation or about the role of an invention’s visibility. We add

to this ongoing debate by arguing that the effects of IPR on follow-on innovation depend on

both the details of the enforcement of IPR and the visibility of the original idea. For highly

visible inventions, patents limit the ability of others to build on and develop further; for

inventions whose technology is less visible, however, trade secrets limit access entirely. For

such low-visibility inventions, patents incentivize inventors to disclose information, boosting

the potential for follow-on innovation. Therefore, an intellectual property policy that par-

ticularly encourages the patenting of less visible inventions to lift the veil of secrecy could

increase innovative activity as a whole.

We show that while stronger trade secrets protection is expected to increase incentives

to invest in (initial) R&D (Png, 2017b), it lowers the incentives to patent (and disclose) the

30Restatement (First) of Torts, §757 cmt. b (1939). Despite the adoption of the UTSA and the publication
of the Restatement (Third) of Unfair Competition (also governing aspects of trade secrets protection), courts
and commentators in many states continue to cite this Restatement of Torts.
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outcome of that R&D process and thus hampers the opportunities for follow-on innovation,

especially for low-visibility inventions. The welfare implications of a policy of stronger pro-

tection are, therefore, far from clear. Because we do not observe inventions that are kept

secret, we cannot estimate the effects of trade secrets protection on the total stock of innova-

tions. Instead, we simulate a simple framework of sequential innovation to make inferences

about these broader effects. Both the negative and the positive effects are amplified for less

visible technologies such as processes. If the incentives to invest in R&D rise substantially

from an increase in trade secrets protection, then this rise could outweigh the negative dis-

closure effect, especially in industries that are characterized by little sequential innovation.

An ideal trade secrets policy weighs the decrease in disclosure that we document against

possible increases in initial innovation.

Our results support arguments in favor of an optimal policy that accounts for different

types of inventions and industries. We show that IP policy reforms (such as stronger trade

secrets), intended to boost firms’ incentives to invest in R&D, can dampen the diffusion

of process knowledge that is not easily accessible to third parties without its disclosure in

patents. Moreover, our simulations indicate that industries with high R&D costs (e.g., phar-

maceuticals and chemicals) are most likely to benefit from increased trade secrets protection.

By contrast, industries with relatively low R&D costs are likely to experience a welfare loss

from stronger trade secrets protection.

Note that we specifically study the choice of secrecy for patentable inventions. A dif-

ferent, and broader, approach to trade secrets relates to contractual solutions (such as in

non-disclosure agreements) and the design of the employment relationship (e.g., in the form

of covenants-not-to-compete or noncompete agreements/NCA). Recent efforts by the Federal

Trade Commission to ban covenants-not-to-compete and the ongoing debate on the differ-

ential effect of such a ban on innovation (Conti, 2014; Johnson et al., 2023) highlight the

need for additional evidence. Given the mechanisms in our paper, we view our results as

complementary to that literature.
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A Appendix

A.1 Theory Framework

A.1.1 A Model of Trade Secrets and Disclosure

We present a simple model of an inventor’s decision whether to disclose a (patentable)

invention through a patent or to keep the invention a secret. For this theoretical framework,

we abstract away from factors that would ordinarily affect the patenting-secrecy tradeoff and

instead examine the role of the invention’s visibility.

An Inventor’s Decision to Disclose: An invention i can be described by a tuple

(φ,Θ, v). It is characterized by its visibility φ ∈ [0, 1], its type Θ, and its private com-

mercial value v ≥ 0 (from exclusive use). An inventor is given the choice to disclose an

invention through a patent (d̃ = D) or keep the invention secret (d̃ = S).31 We set the

inventor’s private returns Vd̃ equal to the exclusivity-weighted commercial value v, where we

interpret v as the rents the inventor is able to appropriate from exclusive use of the invention.

In both disclosure states d̃ = D,S, the probability of exclusive use depends on the

visibility of the invention. Visibility is a two-way street. We refer to disclosure-visibility,

denoted by φD, as the ease with which an inventor A can observe a firm B using A’s

(disclosed) invention. We refer to secrecy-visibility, denoted by φS, as the ease with which

a firm B can observe inventor A using A’s own (secret) invention. We will assume that, for

a given invention, disclosure-visibility is higher than secrecy-visibility, φD ≥ φS.
32 We set

φD = φ and φS = ξφ with ξ ∈ (0, 1].

A patent for a more disclosure-visible invention is easier to enforce, and exclusivity pre-

vails.33 We can write the expected commercial value the inventor is able to materialize as

31This assumption of mutually exclusive states d̃ is for convenience and does not pose significant restric-
tions. Instead of a singleton invention, we can think of an invention that comprises both product and process
elements, and for which the decision to patent or keep secret is made for each individual component.

32A simple argument for this assumption is that the inventor herself knows what to look for, whereas firm
B has little prior guidance.

33Active monitoring of infringement is said to be a major source of the costs of patent enforcement (Hall
et al., 2014).
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φDv = φv. In addition, the inventor receives a patent premium λ.34 It captures the benefits

from patenting over trade secrets and may even include licensing revenues from follow-on

innovation. Collecting terms, we can summarize the inventor’s private value of disclosing

the invention (i.e., the value from patenting) as VD(φ) = φ (1 + λ) v.

The value from secrecy is determined by secrecy-visibility, φS = ξφ; and the value of

secrecy increases with the level of trade secrets protection. We denote the exogenous proba-

bility that a trade secret is protected by τ ∈ [0, 1]. Even with perfect trade secrets protection

(τ = 1), keeping the invention secret is of little value to the inventor if it is secrecy-visible.

Conversely, weaker trade secrets protection reduces deterrence and results in more (unsanc-

tioned) misappropriation of trade secrets (Friedman et al., 1991). We therefore assume that,

without any trade secrets protection, the value of trade secrecy is zero even for non-visible

inventions.35 For tractability, we set the probability of detection of trade secret misappropri-

ation equal to one, so that the only variation in the enforcement of trade secrets is through

τ .36 Collecting terms, we define the private value from secrecy as VS(φ, τ) = τ (1− ξφ) v.

The inventor chooses disclosure if, and only if, VD(φ) ≥ VS(φ, τ), or

φ ≥
τ

1 + λ+ ξτ
=: φ̄(τ). (A.1)

For a given φ, we can write the decision to disclose as d̃ = D if φ ≥ φ̄(τ) and d̃ = S if

otherwise. From the disclosure decision d̃ and the expression for φ̄(τ), we can conclude that

an inventor is more likely to file for a patent as the degree of visibility φ increases, and she

is less likely to patent as the degree of trade secrets protection τ increases.

34Patents are of additional value because, for instance, they signal the quality of the invention (Hsu and
Ziedonis, 2013), convey reputation (Graham et al., 2009), or improve an inventor’s bargaining position in
license negotiations (Hall and Ziedonis, 2001). Webster and Jensen (2011) further provide evidence for a
premium from commercialization.

35While the lack of legal sanctions is likely to encourage misappropriation, firms are expected to erect
safeguards when trade secrets protection is weak (Friedman et al., 1991; Lemley, 2008b). These safeguards
are often inefficient and their costs increase in v and decrease in τ . Without trade secrets protection, the
effective commercial value may thus in fact fully dissipate.

36An alternative interpretation of τ is the product of the detectability of misappropriation and the strength
of legal trade secrets protection.

36



Value of Trade Secrecy by Invention Type: We assume that an invention’s visibility

φ is unobservable but distributed on the unit support with cdf GΘ. What is observable is

an invention’s type Θ that is correlated with its visibility. An invention is either a process

(or method), Θ =M , or a product, Θ = P . The probability that the realized invention is a

process is θ = Pr(Θ =M).

We assume that processes are on average less visible than products.37 The (expected)

values of secrecy EVS|Θ(τ) and disclosure EVD|Θ(τ) of an invention of type Θ are

EVS|Θ(τ)=

1∫

0

τ (1− ξφ) vdGΘ and EVD|Θ(τ)=

1∫

0

φ (1 + λ) vdGΘ. (A.2)

Proposition 1. For a given level of trade secrets protection τ , the value of secrecy is higher

for processes than for products. Conversely, the value of disclosure is lower for processes

than for products.

Proof. For the proof of this claim, we utilize the stochastic dominance property of our

visibility distributions. As stated in the text, our assumption of hazard rate dominance

implies first-order stochastic dominance (Krishna, 2010:276). It will be useful to first state the

definition and general property of first-order stochastic dominance. We follow the treatment

in Mas-Colell et al. (1995:195). Let u(x) be a non-decreasing function in x ∈ [0, 1]. Then

∫

u(x)dGP (x) ≥

∫

u(x)dGM(x) ⇐⇒ GP (x)
FOSD
≻ GM(x). (A.3)

Integrating by parts, we obtain

∫

u(x)dGΘ(x) = [u(x)GΘ(x)]
1
0 −

∫

u′(x)GΘ(x)dx

37We formally capture this by assuming hazard-rate dominance. The distribution GP hazard-rate domi-

nates GM if
gp(φ)

1−GP (φ) ≤
gM (φ)

1−GM (φ) for all φ. Moreover, this implies that GP first-order stochastically dominates

GM so that GP ≤ GM for all φ (Krishna, 2010:276).
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Because GΘ(0) = 0 and GΘ(1) = 1 for Θ =M,P , we can rewrite the condition in the claim

as

∫

u(x)dGP (x)−

∫

u(x)dGM(x) =

∫

u′(x) [GM(x)−GP (x)] dx ≥ 0.

Because GP (x) ≤ GM(x) by first-order stochastic dominance, the condition holds for any

non-decreasing function so that u′(x) ≥ 0. Note that if u(x) is strictly increasing and

GP (x) < GM(x) for some x, then the inequality is strict.

For the first claim in the proposition, EVS|M(τ) > EVS|P (τ), τ (1− ξφ) v is a strictly de-

creasing function in φ (because ξ > 0). We can simply rewrite the inequality as −EVS|P (τ) >

−EVS|M(τ) or

∫ 1

0

−τ (1− ξφ) v
︸ ︷︷ ︸

u(φ)

dGP (φ) >

∫ 1

0

−τ (1− ξφ) v
︸ ︷︷ ︸

u(φ)

dGM(φ) (A.4)

with u(φ) increasing in φ so that the general property above applies. We obtain a strict

inequality by the implicit assumption that GM(φ) and GP (φ) are not identical so that

GP (φ) < GM(φ) for some φ. For the second claim, EVD|M(τ) < EVD|P (τ), note that

φ (1 + λ) v is strictly increasing in φ, and the above general property applies.

Evidence from survey data, finding that the propensity to patent is higher for products

than processes and thus suggesting a higher value of secrecy for processes, comports with

this theoretical finding (e.g., Levin et al., 1987; Cohen et al., 2000; Hall et al., 2013).

Probability of Disclosure for Invention Types: We derive the probability ρ that a

given patent covers a process invention. We first establish two auxiliary results (for visual-

izations, see panel (a) in Figure 2). In Lemma 1, we show that the probability that a process

is patented is weakly smaller than the probability that a product is patented. For this, let

d(φ, τ) = 1 if d̃ = D and d(φ, τ) = 0 if d̃ = S. The probability that an invention of type Θ
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is patented is

dΘ(τ) =

∫ 1

0

d(φ, τ)dGΘ(φ) =

∫ 1

φ̄(τ)

1 · dGΘ(φ) = 1−GΘ(φ̄(τ)). (A.5)

Lemma 1. For a given level of trade secrets protection τ , dM(τ) ≤ dP (τ).

Proof. For any given τ , dM(τ) ≤ dP (τ) if, and only if, GP (φ̄(τ)) ≤ GM(φ̄(τ)). The latter

holds by first-order stochastic dominance of GP over GM .

In Lemma 2, we establish the relationship between patenting probabilities and trade

secrets protection.

Lemma 2. The patenting probabilities for products dP (τ) and processes dM(τ) decrease in

trade secrets protection τ .

Proof. Patenting probabilities (weakly) decrease in τ if dΘ(τ) is (weakly) decreasing in τ .

We have ∂φ̄(τ)
∂τ

= 1+λ

(1+λ+ξτ)2
> 0 so that GΘ(φ̄(τ)) increases in τ and dΘ(τ) = 1 − GΘ(φ̄(τ))

decreases in τ .

Given the underlying distribution of invention types with θ = Pr(Θ = M), Bayes’ rule

gives us the probability that a given patent covers a process:

ρ(τ) =
θdM(τ)

θdM(τ) + (1− θ) dP (τ)
. (A.6)

Proposition 2. Given the pool of inventions, the probability that a given patent covers a

process is decreasing as trade secrets protection increases.

Proof. Using dM(τ) = 1−GM(φ̄(τ)) and dP (τ) = 1−GP (φ̄(τ)), the first derivative of ρ(τ)

with respect to trade secrets protection τ is

∂ρ(τ)

∂τ
=

− (1− θ) θ [(1−GP ) gM − (1−GM) gP ] φ̄
′

(θ (1−GM) + (1− θ) (1−GP ))
2
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where φ̄′ > 0 is the partial derivative of φ̄(τ) with respect to τ and GΘ and gΘ are evaluated

at φ̄(τ). The probability ρ(τ) decreases in τ if the term in brackets in the numerator is

non-negative so that (1−GP ) gM ≥ (1−GM) gP or gM
1−GM

≥ gP
1−GP

. The latter inequality

holds by the assumption of GP hazard-rate dominating GM .

The expression in Equation (A.6) can also be interpreted as the share of process patents

in a sample of patents. Proposition 2 predicts that the probability that a given patent is a

process patent decreases in response to an (exogenous) increase in trade secrets protection.

A.1.2 Simulation

We make the following assumptions for the simulations of the three-stage cumulative inno-

vation model in Section 5 with 100,000 initial ideas i.

Stage 1 (Initial R&D): An inventor observes a potential invention (idea) i with character-

istics (φ,Θ). The invention’s visibility φ is drawn from an invention-type specific distribution

with cdf FΘ: the visibilities are uniformly distributed between with support [0, 0.75] for pro-

cesses and [0.25, 1] for products. We assume that disclosure-visibility and secrecy-visibility

are the same (so that ξ = 1 from Section A.1). Invention types Θ (product or process)

are binary, and the probability that a potential invention is a process is θF = Pr(Θ = M).

Before any investment is made, the inventor observes R&D costs Ci drawn from a logistic

distribution with variance 0.5. We choose two location parameters for the cost distributions

to describe industries with varying R&D costs: low average costs (30% of the expected value

of the R&D investment) and high average costs (60%). The inventor always observes the

invention’s commercial value vi that is exponentially distributed with rate parameter 1/10

with an expected value of 10. She undertakes the R&D project if the expected payoffs from

the invention (including the value and licensing revenues from both the invention, i.e., the

patent premium λ equaling 0.1—in line with Schankerman, 1998, and potential follow-on

innovation) outweigh its cost.
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Stage 2 (Patent or Trade Secret): The second stage of our augmented model is the

disclosure model in Section A.1. Conditional on a positive R&D decision, the disclosure

decision depends on the strength of trade secrets protection τ and the invention’s realized

visibility φi.

Stage 3 (Follow-on Innovation): For any realized initial invention i, we model follow-

on innovation as one representative invention iF with random value viF (exponentially dis-

tributed with rate parameter 1/35 with an expected value of 35 that is 3.5 times the expected

value of the initial invention) and cost CiF (logistically distributed with variance 0.5). Follow-

on innovation can only happen if it is profitable (i.e., viF ≥ CiF ). If it is, then the realization

depends on how much of the initial invention i is visible after the inventor’s disclosure deci-

sion. We refer to this measure as effective visibility of initial invention i and denote it by φ̃i.

It is equal to

φ̃i =







φi if R&D in Stage 1 and trade secret in Stage 2;

1 if R&D in Stage 1 and patent in Stage 2.
(A.7)

Effective visibility is equal to the invention’s visibility φi if the invention is realized but kept

as a trade secret. We assume, without loss of generality, that the invention is fully disclosed

through patenting so that effective visibility of a patented invention is equal to 1.38

In addition to the effective visibility, the probability that follow-on innovation is successful

also depends on barriers to access to the initial invention. We capture how much patents—

and their potential anticommons effect—lower the success probability of follow-on innovation

by a scale parameter ψD < 1. For secrets, we normalize this parameter to ψS = 1. The

success probability of follow-on innovation is then ψ̃iF ,d̃ = ψd̃φ̃i following a realized initial

invention with disclosure state d̃ ∈ {S,D}. The baseline success probabilities for follow-on

innovation are φS = 1 for secret Stage 1 inventions (so that ψ̃S = φ) and φD = 2/3 for

38The assumption of perfect disclosure through patenting is to simplify the analysis. Our results hold as
long as patents provide more disclosure than secrecy.
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patented inventions (so that ψ̃D = 2/3).

This model for follow-on innovation at Stage 3 is simple but nonetheless consistent with

stylized facts and other models proposed in the literature. We make three main assumptions.

First, follow-on innovation as captured by viF is by other firms rather than the inventor of

the initial innovation. For instance, Sampat and Williams (2018) document that, for their

sample of genome patents, most of follow-on research is done by firms other than the patent

assignee. Follow-on innovation by the initial inventor does not explicitly enter our model but

could be captured by vi and is not dependent on the effective visibility of any part of the

initial invention. Second, disclosure has a positive effect on follow-on innovation. Williams

(2013) documents that a restriction of access to human genome data leads to a 20–40%

reduction in follow-on research. Similarly, Gross (2023) and de Rassenfosse et al. (2024) find

that compulsory secrecy of patent applications resulted in fewer citations.

Third, conditional on the effective visibility, the baseline probability of follow-on inno-

vation to a trade secret is higher than that following a patent. This assumption reflects

the anticommons effect (e.g., Heller and Eisenberg, 1998) where technologies are underused

because patents on early ideas raise the costs of creating future ideas by introducing friction

in the bargaining process over licenses.

Welfare Measure: We use the expected total value added of a given idea, denoted by

W (τ), as our welfare measure. It is calculated as the weighted sum of the aggregate surplus

from the realized initial invention, Wi (which depends on its disclosure state, d̃i), and the

aggregate surplus from realized follow-on innovation, WiF . The expected total value added

of a potential idea i is equal to

W (τ) = E(Θi,φi,d̃i,vi,viF )

[

Ri(τ)
(

Wi + ψ̃iF ,d̃i
RiFWiF

)]

, (A.8)

where expectations E(·) are over the invention type Θ, visibility φ, disclosure state d̃, and

commercial values vi for initial and viF for follow-on innovation. Further, Ri (RiF ) is an
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indicator that is equal to 1 if the initial (follow-on) R&D project is undertaken, and Wi and

WiF are measures of aggregate surplus from initial and follow-on innovation.

We determine Ri and RiF as follows. Denote by EVi the expected gross value of the

invention to the inventor: the maximum between the expected value of secrecy (EVS|Θ(τ))

and disclosure through patenting (EVD|Θ(τ)). The inventor decides to undertake the initial

R&D project (Ri = 1) if EVi ≥ Ci. Similarly, the follow-on invention is realized (RiF = 1)

if it is profitable and successful. It is profitable if the commercial value covers the costs,

viF ≥ CiF and successful with probability ψ̃iF ,d̃.

For the measures of aggregate surplus Wi, we assume that 2vi is the potential aggregate

surplus that materializes when there are no barriers to access to the invention. Because the

barriers to access depend on the inventor’s disclosure decision, the realized aggregate surplus

is the potential aggregate surplus net of the disclosure-state specific deadweight loss. For

instance, in the textbook case of linear demand with unit market size (and zero marginal

cost), non-price discriminating monopoly profits (=vi) are one-half of the aggregate surplus

(=2vi), and consumer surplus and deadweight loss are one quarter each (=vi/2). This value

represents the maximum deadweight loss (from a scenario with full barriers to access). We

provide a concrete example below.

For patented inventions, barriers to access increase in visibility φ, and the aggregate

surplus, WD, as a function of visibility is equal to

WD(φ) = 2vi −
φvi
2

− Ci, (A.9)

where Ci is the cost of R&D of the potential idea. For inventions kept as trade secrets,

barriers to access decrease in φ and increase in trade secrets protection τ . As discussed in

Section A.1, the probability that the inventor has exclusive access, implying full monopolistic

deadweight loss, is equal to τ (1− φ). Aggregate surplus, WS for an invention that is kept

43



secret is therefore equal to

WS(φ, τ) = 2vi −
τ (1− φ) vi

2
− Ci. (A.10)

To summarize, using the disclosure condition in Equation (A.1), the aggregate surplus of the

initial invention is Wi = WD(φ) if φ ≥ φ̄(τ) and Wi = WS(φ, τ) otherwise. For the aggregate

surplus of any realized follow-on innovation, we assume free access, so thatWiF = 2viF −CiF .

A.2 Representativeness of the Sample

Because our main regression sample is limited to patents whose U.S. assignees and inventors

are all from the same state, we introduce the possibility of sample selection. We examine this

possibility by comparing our variables of interest across three samples: (1) all utility patents

with priority dates between 1976 and 2008 and granted between 1976 and 2014 for which

we observe the relevant information (4,287,180 patents); (2) the subset of patents with any

U.S. assignee or inventor (2,391,486 patents); and (3) the subset of patents for which all U.S.

assignees and inventors are located in the same state (our main estimation sample, 1,451,311

patents). Table A.1 shows summary statistics for our process patent indicator as well as

the control variables. The regression sample (rightmost column) has a slightly higher share

of process patents than the total population of patents, but smaller than the population of

U.S. patents. They also seem to have slightly higher degrees of originality and generality.

We control for these variables in the main estimation.

Figure A.1 illustrates the distributions of the sizes of the applicants. It shows that our

regression sample over-represents individual applicants and under-represents large firms. Be-

cause small applicants (individuals and small firms) see the largest effect (see Section 4.2.2),

our average treatment effects may be slightly over-estimated.
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Table A.1: Summary Statistics for Different Subsamples

All All US Single-State

Mean SD Mean SD Mean SD

Process patent 0.459 0.498 0.507 0.500 0.473 0.499
Number of process claims 0.799 1.294 0.919 1.400 0.871 1.407
Number of product claims 1.781 1.798 1.875 1.872 1.920 1.885
Log(indep. claims) 1.185 0.450 1.246 0.452 1.242 0.453
Log(length of first claim) 4.989 0.582 4.953 0.594 4.976 0.584
Log(length of description) 9.716 0.965 9.759 0.959 9.699 0.951
Originality 0.602 0.253 0.632 0.240 0.626 0.244
Generality 0.606 0.263 0.634 0.249 0.638 0.244
4th year renewal 0.838 0.368 0.840 0.367 0.826 0.380

Observations 4287180 2391486 1451311

Notes: This table provides summary statistics for all granted utility patents (between 1976 and 2014) with priority dates
between 1976 and 2008. Column (1) shows statistics for all patents; Column (2) shows statistics for patents with at least one
U.S. assignee or inventor; Column (3) uses single-state patents.

Figure A.1: Applicant Size Distributions for Different Subsamples
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Notes: This figure presents shares of applicant sizes of different subsamples of all granted utility patents (between 1976 and
2014) with priority dates between 1976 and 2008. The darkest (leftmost) column shows statistics for all patents; the lightest
(middle) column shows statistics for patents with at least one U.S. assignee or inventor; the rightmost column uses single-state
patents.
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C Data Appendix

We construct our data sample using a number of sources. We obtain basic bibliographic infor-

mation from PatentsView at https://www.patentsview.org/download for bulk download

and http://www.patentsview.org/api/doc.html for API queries. We also use data from

Ganglmair et al. (2022) for process patent indicators, the USPTO’s Patent Maintenance Fee

Events database at https://bulkdata.uspto.gov/data/patent/maintenancefee to cal-

culate proxies for patent value as well as applicant size, the USPTO’s Patent and Patent Ap-

plication Claims Research Dataset at https://bulkdata.uspto.gov/data/patent/claims/

economics/2014/ for proxies of patent scope and complexity, and the Google Patents Re-

search Data (https://console.cloud.google.com/marketplace/partners/patents-public-data)

to construct data on the timing of disclosure. In Table C.1, we provide an overview of the

steps of our sample construction. For further details, see the descriptions that follow.

Table C.1: Sample Construction and Sample Size

Sample/Variable Source

Patents, granted January 1976 – December 2014 PatentsView
Priority dates: January 1976 – December 2008 Google Patents
U.S. only location constructed

Exclude business method patents PatentsView
Process patent indicator Ganglmair et al. (2022)

Main Estimation Sample: 1,451,311

Number of independent claims USPTO Claims
Length of first claim USPTO Claims
Length of detailed patent description PatentsView (API)
Originality constructed

Generality constructed

4th year maintenance USPTO Maintenance

USPC main classes PatentsView
Applicant size constructed

Complex vs. discrete technology von Graevenitz et al. (2013)
NBER technology categories PatentsView

Notes: Data sources are PatentsView (bulk data download page and API), Google Patents (Google Patents
Research Data), USPTO Claims (USPTO’s Patent and Patent Application Claims Research Dataset),
USPTO Maintenance (USPTO’s Patent Maintenance Fee Events database), and Ganglmair et al. (2022).
Constructed means that variables are constructed/calculated by authors. For more details, see the descrip-
tions below.
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C.1 Main Sample

For our data sample, we start with the census of U.S. utility patents granted between 1976

and 2014. In order to obtain a clean assignment of the level of trade secrets protection to

which the patent applicant was exposed at the time of the disclosure decision, we limit our

sample to patents with disclosure timing between 1976 and 2008 and a location within the

United States.

Timing: Priority Dates To identify the timing of the disclosure decision, we use the pri-

ority date of the head of a simple patent family (i.e., all patents that share the same

priority claims). We implement this by using the earliest priority date for all patents

from a given simple patent family. Information on simple patent family assignment

and priority dates we obtain from the Google Patents Research Data.

Location To identify the location (i.e., U.S. state) of the disclosure decision, we use in-

formation on the locations of patent assignees and inventors. PatentsView provides

data on disambiguated location, assignee, and inventor names. For each patent, we

consider only assignees and inventors within the United States. Out of this subsample

of names, we further consider only those patents for which all U.S. assignees and all

U.S. inventors are located in the same state. We use this state as the respective state

of the disclosure decision (and, by assumption, the relevant U.S. state for the UTSA

adoption and trade secrets protection).

For a set of robustness results in the Appendix, we use a more aggressive location

definition. First, we define the location of a patent by the location of the first assignee

listed on the granted patent. If no assignee is listed, we use the location of the first

inventor listed on the granted patent. Second, we limit our attention to U.S.-only

patents, dropping all patents with an international contributor.

C.2 Patent Classification

For basic information on patent classification, we use the current United States Patent

Classification (USPC) main classes (applied to all patents retrospectively) obtained from

PatentsView. Where multiple main classes are listed on a patent, we use the first (by

sequence).

For our main estimation sample, we exclude all business methods patents. We follow

Lerner (2006) and define such patents as those with USPC main class 705 (i.e., the first

main class listed on the patent). For a set of robustness results, we also rerun our analysis
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for a subsample that excludes software patents. For the classification of software patents,

we follow Graham and Vishnubhakat (2013:fn 7).

Note that for our structural estimates, we use an extended sample that includes all

granted patent through 2016. We discuss the reasons for this extension below.

C.3 Construction of Additional Variables

We further collect and construct three sets of variables to proxy a patent’s “patent scope and

complexity,” its “external impact,” and its “internal value.” For our heterogeneity results,

we also collect and construct a variable capturing the size of the patent applicant and an

indicator variable of complex vs. discrete technologies.

C.3.1 Patent Scope and Complexity

We follow Lerner (1994) and Lanjouw and Schankerman (2004) and measure patent breadth

and scope using the number of independent claims in a patent. Kuhn and Thompson (2019),

however, argue that a simple count of (independent) claims may be a poor measure for patent

scope.1 They propose the length of the first patent claim as an alternative measure for patent

scope, where shorter claims are broader. They use the first claim for their measure because

under U.S. law the broadest claim should be listed first. We adopt their measure (length of

the first claim in number of words) alongside the number of independent claims.

We collect the number of independent claims of a paper and the length of the first claim

from the USPTO’s Patent and Patent Application Claims Research Dataset at https://

bulkdata.uspto.gov/data/patent/claims/economics/2014. This research dataset pro-

vides information on claims from patents granted between January 1976 and December 2014.

For more details on the data, see Marco et al. (2016).

We further collect the length (in characters) of the detailed description of each patent

from PatentsView through API queries (the data are not available for bulk data download

at http://www.patentsview.org/download).

C.3.2 External Impact

We construct measures of patent generality and patent originality as proposed by Trajtenberg

et al. (1997). See also Hall et al. (2001).

1Because each claim beyond 20 claims comes at an additional cost, patents with many claims may cover
more valuable technologies, but need not be broader than patents with fewer claims.
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Patent Originality: Patent originality of a patent j is defined as

1−
n

∑

k=1

(

backward citationsjk
∑n

m=1
backward citationsjm

)2

(C.1)

where sjk =
backward citationsjk∑n

m=1
backward citationsjm

is the share of backward citations that patent j

makes to patents in patent class k = 1, . . . , n over all backward citations made by

patent j. A higher originality score means patent j draws on prior knowledge from a

greater variety of fields. We construct this measure using the first listed USPC main

class on a patent j. We have classification information for patents granted in and after

1976. This means that for patents granted early in our sample period that cite patents

granted before 1976, we have little information about the classes of their cited patents.

Because of this truncation issue, the originality measure is therefore noisier and coarser

for earlier patents than for patents granted later in our sample period.

Patent Generality: Patent generality of a patent j is defined as

1−
n

∑

k=1

(

forward citationsjk
∑n

m=1
forward citationsjm

)2

(C.2)

where sjk =
forward citationsjk∑n

m=1
forward citationsjm

is the share of forward citations that patent j receives

from patents in patent class k = 1, . . . , n over all forward citations received by patent j.

A higher generality score implies a higher widespread impact, influencing subsequent

innovation in a broader variety of fields. A large number of patents never receive a

patent citation, and our patent generality score is not defined for any patents without

forward citations.

C.3.3 Internal Value

We use information on the applicant’s renewal behavior as a measure of internal (or private)

value of a patent (Pakes, 1986; Schankerman and Pakes, 1986). To this end, we construct

a dummy variable equal to 1 if the applicant has paid the 4th-year maintenance fees (to be

paid in the fourth year after patent grant).

We use information from the USPTO’s Patent Maintenance Fee Events database at

https://bulkdata.uspto.gov/data/patent/maintenancefee (Jan. 28, 2019). The data-

base contains all recorded events related to the payment of maintenance fees for patents

granted from September 1, 1981 and forward. A patent is said to have been maintained if

one of the codes listed in Table C.2 is recorded.

5

https://bulkdata.uspto.gov/data/patent/maintenancefee


Table C.2: Codes for Maintenance Fee Events

Code Description

F170 Payment of Maintenance Fee, 4th Year
F173 Payment of Maintenance Fee, 4th Year, Undiscounted Entity
F273 Payment of Maintenance Fee, 4th Year, Small Entity
M1551 Payment of Maintenance Fee, 4th Year, Large Entity
M170 Payment of Maintenance Fee, 4th Year, PL 96-517
M173 Payment of Maintenance Fee, 4th Year, PL 97-247
M183 Payment of Maintenance Fee, 4th Year, Large Entity
M2551 Payment of Maintenance Fee, 4th Yr, Small Entity
M273 Payment of Maintenance Fee, 4th Yr, Small Entity, PL 97-247
M283 Payment of Maintenance Fee, 4th Yr, Small Entity
M3551 Payment of Maintenance Fee, 4th Year, Micro Entity

Source: Documentation file for Patent Maintenance Fee Events database at https://bulkdata.uspto.gov/
data/patent/maintenancefee.

Because we have information on maintenance events through the end of 2018, covering

the full four years after our main sample ends, we do not face any truncation issues for

an applicant’s 4th year maintenance decision. Note, however, that because maintenance

information is available only for patents granted on or after September 1, 1981, we have

94,323 missing observations for patents granted between January 1976 and August 1981.

Further note that we are not restricted by this truncation issue for our structural estimations

and therefore use an extended sample with patents granted through December 2016.

C.3.4 Applicant Size

For our variable of applicant size (or entity size), we combine information from the USPTO’s

Patent Maintenance Fee Events database and bibliographic information on patents from

PatentsView. Applicant size takes two values. It is equal to 1 if the applicant is an individual

or a small firm (i.e., small entity but not an individual), and equal to 2 if the applicant is a

large firm (i.e., large entity but not an individual).

The USPTO’s Patent Maintenance Fee Events database provides information on the size

of the entity for any recorded maintenance fee event. Entities are either micro or small

(“small”) or “large.” This means, if an applicant’s maintenance event for a patent j is

recorded in the database, then we know the size of that patent j’s applicant. Using assignee

information (from PatentsView), we construct an applicant’s size history (by year), based

on recorded maintenance events. We hold the size of an applicant constant at the value

of t until the next recorded event at t′ > t where it may or may not change. In addition,
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we use the size of the first entry for all previous years. With this size history, we can now

assign an applicant size for all patents j of an assignee for which no maintenance event

is recorded. This gives us size information for all patents by assignees that have at least

one recorded maintenance event; patents by assignees without any maintenance events are

without applicant size.

An applicant of a given patent j is an individual (= 1) if the first assignee listed on the

patent is of type “individual” or if no assignee is listed on the patent. If the applicant is not

an individual, then its size is equal to 2 if it is a small entity and equal to 3 if it is a large

entity (as defined above). For the distribution of applicant size (for different definitions of

patent location) see Figure B.2 in the Online Appendix.

C.3.5 Complex vs. Discrete Technologies

We classify technologies as either complex or discrete following the classification in von

Graevenitz et al. (2013:Table VIII). Their classification builds on the 30 technology areas

according to OST-INPI/FhG-ISI (see Schmoch, 2008:Table 1).

C.4 Process Patent Indicator

C.4.1 Summary of Indicator Construction

Ganglmair et al. (2022) employ text-analytical methods to identify the invention type of all

independent claims in a given patent. We aggregate their claim-level data to obtain data

at the patent level. In the sequel, we summarize their approach. Some of the material is

also borrowed from Rosenberg (2012). An additional useful source of further background

information is WIPO (2007).

The unit of analysis in Ganglmair et al. (2022) is an independent patent claim. A patent

claim defines the scope of legal protection provided by a patent. It describes what the

applicant claims to be its invention for which the patent grants exclusive rights. Each patent

can hold multiple claims of different types. An independent claim stands on its own whereas

a dependent claim is in reference to an independent claim, further limiting its scope.

Claims typically consist of two parts: a preamble and body. The preamble is an intro-

ductory phrase or paragraph that identifies the category of the invention of the claim. For

example, an invention may be an apparatus or device (as in an apparatus or device claim,

here referred to as product claim) or a method or process (as in a method claim or process

claim). The body of a patent claim recites the elements of the claim. In many cases, these

elements are steps (as in the steps of a process) or items (as in the items that define a

product).
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The approach in Ganglmair et al. (2022) uses information from both the preamble and

the body. Both parts of the claim are classified as describing a process or a product. For

the preamble, this classification is conducted via a simple keyword search (e.g., “process” or

“method” for process-claim preambles; “apparatus” or “device” for product-claim pream-

bles). For the body, the authors take a syntax-analysis approach, analyzing the linguistic

structure of each line (or “bullet point”) in the body. The steps of a process are listed using

the gerund form of a verb, whereas the items of a product (an apparatus, a device) are

listed as components. The authors’ algorithm accounts for these drafting conventions when

classifying a body as process-claim body or product-claim body. In the end, combining the

classifications of the preamble and the body, a classification for the entire claim is obtained:

Process claim or method claim: A process claim (also called a method claim) describes

the sequence of steps which together complete a task such as making an article of some

sort. The preamble of a method claim often uses the terms “process” or “method.”

The body of a method claim typically consists of a listing of the “steps” of the process.

Product claim: A product claim (also called a “device claim” or “apparatus claim”) de-

scribes an invention in the form of a physical apparatus, system, or device. For instance,

a claim that covers a tripod for a camera or a window crank is an apparatus claim. In

the preamble of a product claim, the patent applicant often recites what the product

is and what it does. Then, in the body of the claim, the applicant lists the essential

elements (i.e., “items”) of the invention.

In addition to process claims and product claims, the special case of product-by-process

claim is classified.

Product-by-process claim: A product-by-process claim is a claim that defines a product

by the process of making it. The product-by-process claim defines a product by several

process steps. Though, ultimately, the scope of the claim’s coverage is directed toward

a physical article (i.e., the “product”) rather than the method, the claim includes

elements of both product claiming (i.e., elements in the body that describe the items

that comprise an article or product) and the sort of steps found in a process claim.

The authors’ algorithm deals at great length with a number of issues: badly formatted

claims, claims not following the usual drafting conventions, and two-part claims (also called

improvement claims or Jepson claims). They have also compiled a dataset of close to 10,000

manually classified claims to test their algorithm and verify the results.

In Figure C.1, we plot the fraction of missing observations for each of our patent-level

indicator. For both our main indicator and the process patent indicator with a majority of
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Figure C.1: Share of Missing Observations

process claims, at least one patent claim must be classified - the graphs in the figure are

therefore the same. The requirement for the indicator of the first process claim is stricter,

and the number of missing observations is higher throughout. Notice, however, that the

reliability of the approach increases over time as the percentage of missing observations

(over all patents in our main sample) drops below 1% around 1985 (with higher numbers for

patents with earlier priority dates).

C.4.2 Descriptive Figures

In Figure C.2, we plot the share of process patents by priority year. We show graphs for each

of our three process patent indicators. The solid line depicts the share of process patents for

our main indicator (at least one patent claim is a process claim, ‘Any’). The dotted graph

depicts the share of patents with the first patent claim a process claim (‘First’); the dashed

graph depicts the share of patents with a majority of process claims (‘Most’). As we we have

discussed in the main text, our main indicator is the most aggressive in terms of identifying

patents as process patents. The overall time trends, however, are very similar. We also plot

the average share of process claims in a patent (dash-dotted line). The graph follows similar

trends.

In Figure C.3, we depict the share of process patents by applicant size. The share of

process patents is higher in larger firms than in smaller firms, and lowest for individuals.
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Figure C.2: Share of Process Patents (Multiple Indicators)

Figure C.3: Share of Process Patents by Applicant Size
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