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Abstract

We introduce a model of probabilistic verification in a mechanism design setting.

The principal verifies the agent’s claims with statistical tests. The agent’s probability

of passing each test depends on his type. In our framework, the revelation principle

holds. We characterize whether each type has an associated test that best screens out

all the other types. In that case, the testing technology can be represented in a tractable

reduced form. In a quasilinear environment, we solve for the revenue-maximizing mech-

anism by introducing a new expression for the virtual value that encodes the effect of

testing.
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1 Introduction

In the standard mechanism design paradigm, the principal can commit to an arbitrary

mechanism, which induces a game among the agents. There are no explicit constraints on

the mechanism, but there is an implicit assumption that the outcome of the induced game

does not depend directly on the agents’ types. Thus, each type can freely mimic every other

type. The principal learns an agent’s type only if the mechanism makes it optimal for that

agent to reveal it.

In practice, claims about private information are often verified. If an employee applies for

disability benefits, the provider performs a medical exam to assess the employee’s condition.

If a driver makes an insurance claim after a car accident, the insurer checks the claim

against a police report. If a consumer reports his income to a lender, the lender requests a

monthly pay stub for confirmation. In these examples, verification is noisy—medical tests

are imperfect, witnesses fallible, and pay stubs incomplete.

The seminal paper of Green and Laffont (1986) first incorporates partial verification

into mechanism design. In a principal–agent setting, they illustrate how verification relaxes

incentive compatibility and hence makes more social choice functions implementable. In

their model, mechanisms are direct and each type faces an exogenous restriction on which

reports he can send to the principal. The following interpretation is suggested. As a function

of the agent’s type, certain reports are always detected as false while other reports never

are. The punishment for detection is prohibitively costly, so the agent chooses among the

reports he can send without being detected.

Partial verification cannot capture the noisiness of real verification. Under partial ver-

ification, the agent knows with certainty which reports will be detected as false. But in

many applications, each report is detected with an associated probability. Thus, agents

trade off the benefits of successful misreporting against the risk of detection.

In this paper, we model probabilistic verification by endowing a principal with a stochas-

tic testing technology. We consider a principal–agent setting. The agent has a private type.

The principal has full commitment power and controls decisions (which may or may not

include transfers). To this standard setting, we add a family of pass–fail tests. The prin-

cipal elicits a message from the agent and then conducts a test. The agent sees the test

and privately chooses whether to exert effort, which is costless. If he exerts effort, then his

passage probability depends on his type and on the test; if he does not exert effort, then

he fails with certainty. The principal observes the result of the test—but not the agent’s

effort—and then takes a decision.

We analyze which social choice functions can be implemented with a given testing tech-

nology. We reduce the class of mechanisms in two steps.
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First, we simplify communication. Since testing does not intrude into the communication

stage, we get a version of the revelation principle (Theorem 1): There is no loss in restricting

attention to direct mechanisms that induce the agent to report truthfully and to exert effort

on every test. We contrast our result with the failure of the revelation principle in the setting

of Green and Laffont (1986).

Second, we simplify the choice of tests. In general, which test is best for verifying a

particular type report depends on which types the principal would like to screen away. We

introduce for each type θ an associated order over tests. One test is more θ-discerning than

another if it can better screen all other types away from type θ. This family of orders is

the appropriate analogue of Blackwell’s (1953) informativeness order for our testing setting.

These discernment orders provide a unified generalization of various conditions imposed in

the deterministic verification literature, such as nested range (Green and Laffont, 1986),

full reports (Lipman and Seppi, 1995), and normality (Bull and Watson, 2007).

A function assigning to each type θ a most θ-discerning test is a most-discerning test-

ing function. The sufficiency part of our main implementation result (Theorem 2) states:

If there exists a most-discerning testing function, then every implementable social choice

function can be implemented using that testing function. In this case, the testing technol-

ogy induces an authentication rate, which specifies the probabilities with which each type

can pass the test assigned to each other type. The principal’s problem reduces to an op-

timization over decision rules, subject to incentive constraints involving the authentication

probabilities.

The reduction from a testing technology to an authentication rate can be inverted. We

provide a necessary and sufficient condition for an authentication rate to be induced by a

most-discerning testing function. In applications, we can directly specify an authentication

rate that satisfies our condition—testing need not be modeled explicitly. If the authentica-

tion rate takes values 0 and 1 only, then our condition reduces to the nested range condition

that Green and Laffont (1986) use to recover the revelation principle.

We are the first to analyze verification with the first-order approach. Partial verification

is not amenable to this approach because the authentication probability jumps discontin-

uously from 0 to 1. Under probabilistic verification, the authentication rate can depend

continuously on the agent’s report, so each local constraint is loosened but not eliminated.

In a quasilinear environment, we aggregate these loosened local constraints to derive a

virtual value that encodes the testing technology.

We use this virtual value to solve for revenue-maximizing mechanisms in three classical

settings: nonlinear pricing, selling a single good, and auctions. With verification, the

revenue-maximizing allocations have their usual expressions, except that our virtual value

appears in place of the classical virtual value. The associated transfers are higher in the
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presence of verification. If the tests are completely uninformative, then our virtual value

equals the classical virtual value. As the tests become more precise, our virtual value

increases toward the agent’s true value, and the revenue-maximizing allocation becomes

more efficient. When selling a single good, a posted price is not optimal. Instead, the price

depends on the agent’s report. To study auction settings, we extend the model to allow for

competing agents who submit reports and are tested separately. A virtual value is defined

for each agent. The revenue-maximizing auction allocates the good to the agent whose

virtual value is highest.

Finally, we consider tests with more than two results. Our discernment orders naturally

extend. As in the baseline model, if there exists a most-discerning testing function, then

there is no loss in using that testing function only.

The rest of the paper is organized as follows. Section 2 presents our model of testing. Sec-

tion 3 establishes the revelation principle. Section 4 introduces the discernment orders and

states the most-discerning implementation result. Section 5 reduces the verification tech-

nology to an authentication rate. Section 6 considers applications to revenue-maximization.

We extend the model to allow for multiple agents in Section 7 and nonbinary tests in Sec-

tion 8. Section 9 connects our model to previous models of verification in economics and

computer science; other relevant literature is referenced throughout the text. Section 10

concludes. Measure-theoretic definitions are in Appendix A. Proofs are in Appendices B

and C.

2 Model

2.1 Setting

There are two players: a principal (she) and an agent (he). The agent draws a private

type θ ∈ Θ from a commonly known distribution. The principal takes a decision x ∈ X.1

Preferences depend on the decision x and on the agent’s type θ. The Bernoulli utility

functions for the agent and the principal are

u : X ×Θ → R and v : X ×Θ → R.

A social choice function, denoted

f : Θ → ∆(X),

assigns a decision lottery to each type.2

1Decisions are completely abstract; they may or may not include transfers.
2We make the following standing technical assumptions. Each set is a Polish space endowed with its

Borel σ-algebra. The space of Borel probability measures on a Polish space Z is denoted ∆(Z). All
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2.2 Verification technology

To the principal–agent setting we add a verification technology. There is a set T of tests,

with generic element τ . Each test generates a binary result—pass or fail, denoted 1 or 0.3

The distribution of test results is determined by the passage rate

π : T ×Θ → [0, 1],

which assigns to each pair (τ, θ) the probability with which type θ can pass test τ . The

passage rate π is common knowledge, as is the rest of the setting, except the agent’s private

type.

The principal can conduct one test from the set T . The procedure is as follows. First

the principal selects a test τ . Next the agent observes τ and chooses to exert effort or not,

denoted ē or
¯
e. Effort is costless. If the agent exerts effort, nature draws the test result 1

with probability π(τ |θ) and the test result 0 otherwise. If the agent does not exert effort,

the test result is 0 with certainty. The principal observes the test result, but not the agent’s

effort choice.4

Effort is an inalienable choice of the agent, as in models of evidence in which the agent

chooses whether to produce the evidence he possesses (Bull and Watson, 2007). Indeed, if

the passage rate takes values 0 and 1 only, then each test can be interpreted as a request

for a particular piece of hard evidence; see Example 2. In general, the passage rate takes

interior values, so the agent is unsure whether he will pass each test. The agent can,

however, intentionally fail each test by exerting no effort. The active role played by the

agent and the resulting asymmetry between passage and failure are what distinguish tests

from statistical experiments.

2.3 Mechanisms and strategies

The principal commits to a mechanism, which induces an extensive-form game that proceeds

as follows. The agent sends a message to the principal. Based on the message, the principal

selects a test. The agent observes the test and chooses whether to exert effort. Nature

draws the test result, as prescribed by the passage rate and the agent’s effort. The principal

observes this result and takes a decision.

In view of this timing, we define mechanisms and strategies.

primitive functions are measurable. Social choice functions and other measure-valued maps satisfy a weaker
measurability condition called universal measurability. The details are in Appendix A.

3We consider nonbinary tests in Section 8; our main results go through.
4The same procedure is used in Deb and Stewart (2018). They allow the principal to conduct tests

(termed tasks) sequentially before making a binary classification. In DeMarzo et al. (2019), a seller of an
asset can conduct a test of the asset’s quality. Each test has a null result, which the seller can always claim
to have received. If there is only one non-null result, then this technology is equivalent to ours.
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Figure 1. Social choice function induced by a profile

Definition 1 (Mechanism). A mechanism (M, t, g) consists of a message spaceM together

with a testing rule t : M → ∆(T ) and a decision rule

g : M × T × {0, 1} → ∆(X).

Once the principal commits to a mechanism, the agent faces a dynamic decision problem.

First he sends a message. Then, after observing the selected test, he chooses effort.

Definition 2 (Strategy). A strategy (r, e) for the agent consists of a reporting strategy

r : Θ → ∆(M) and an effort strategy

e : Θ×M × T → [0, 1],

specifying the probability of exerting effort.

A mechanism (M, t, g) and a strategy (r, e) together constitute a profile, which induces

a social choice function by composition, as indicated in Figure 1. The functions e, π, and

g are represented by dashed arrows as a reminder that these functions depend on histories,

not just their source sets in the diagram. Using the notation for composition from Markov

processes—think of a probability row vector right-multiplied by stochastic matrices—the

induced social choice function f is (r × t × (eπ))g. The map r × t × (eπ) from Θ to

∆(M × T × {0, 1}) is applied before the map g. For measure-theoretic definitions of these

operations, see Appendix A.1.

The players use expected utility to evaluate lotteries over decisions. A profile (M, t, g; r, e)

is incentive compatible if the strategy (r, e) is a best response to the mechanism (M, t, g),

i.e., the strategy (r, e) maximizes the agent’s utility over all strategies in the game induced

by the mechanism (M, t, g). A profile (M, t, g; r, e) implements a social choice function f

if (M, t, g; r, e) is incentive compatible and f = (r × t× (eπ))g. A social choice function is

implementable if there exists a profile that implements it.
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Figure 2. Feasible reports

3 Revelation principle

We now begin our analysis of which social choice functions can be implemented, given a

testing technology. The space of incentive-compatible profiles is large. We reduce this

space by establishing a version of the revelation principle. First we revisit the failure of the

revelation principle in Green and Laffont’s (1986) model of partial verification.

Example 1 (Partial verification, Green and Laffont, 1986). The agent has one of three

types, labeled θ1, θ2, and θ3. Type θ1 can report θ1 or θ2; type θ2 can report θ2 or θ3;

and type θ3 can report only θ3. This correspondence is represented as a directed graph in

Figure 2. Each type is a node, and edges connect each type to each of his feasible reports.

The principal chooses whether to allocate a single good to the agent, who prefers to

receive it, no matter his type. Consider the social choice function that allocates the good

if and only if the agent’s type is θ2 or θ3. To truthfully implement this allocation, the

principal must allocate the good if the agent reports θ2. But then type θ1 can report θ2 in

order to get the good. Therefore, this allocation cannot be implemented truthfully. It can,

however, be implemented untruthfully : The principal allocates the good if and only if the

agent reports θ3. Types θ2 and θ3 both report θ3, but type θ1 cannot.

What goes wrong in this example? In the partial verification model, reports are not

cheap-talk messages. Instead, each report serves as a test that certain types can pass.

Truthful implementation implicitly assigns to each type θ the test “report θ”, regardless

of which other types can pass that test. By contrast, our testing framework separates

communication from verification. Reports retain their usual meaning and thus the revelation

principle holds.

In the standard mechanism design setting, the revelation principle states that there is

no loss in restricting to direct and truthful profiles. In our testing framework, we demand

also that the agent exert effort on every test.

Definition 3 (Canonical). A profile (M, t, g; r, e) is canonical if (i) M = Θ, (ii) r = id, and

(iii) e(θ, θ, τ) = 1 for all θ ∈ Θ and τ ∈ T .

Here the identity, id, maps each type θ to the point mass δθ in ∆(Θ).5 Condition (i)

says that the mechanism is direct. Condition (ii) says that the agent reports truthfully.

5We sometimes identify a map y 7→ f(y) from Y to Z with the map y 7→ δf(y) from Y to ∆(Z).
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Condition (iii), which is specific to the verification setting, says that the agent exerts effort

on every test.6 A social choice function is canonically implementable if it can be implemented

by a canonical profile. Our revelation principle states that there is no loss in restricting to

canonical implementation.

Theorem 1 (Revelation principle)

Every implementable social choice function is canonically implementable.

The structure of the proof is similar to that of the standard revelation principle. Given

an arbitrary profile (M, t, g; r, e) that implements a social choice function f , we construct a

canonical profile that also implements f . Play proceeds as follows.7 The agent truthfully

reports his type θ. The principal feeds this report θ into the reporting strategy r to draw

a message m, which is then passed to the testing rule t to draw a test τ . The agent

exerts effort, so nature draws the test result 1 with probability π(τ |θ) and the test result 0

otherwise. If the test result is 0, the principal feeds 0 into the decision rule g. If the test

result is 1, the principal feeds into g the result 1 with probability e(θ,m, τ) and the result

0 otherwise. Therefore, the input to g is 1 with probability π(τ |θ)e(θ,m, τ).8

This canonical profile induces f . To check that this profile is incentive compatible, we

show that for any deviation in the canonical mechanism, there is a corresponding deviation

in the original mechanism that induces the same (stochastic) decision. The original profile

is incentive compatible, so this deviation cannot be profitable.

Suppose that the agent reports θ′ and then follows the strategy of exerting effort with

probability ẽ(τ) on each test τ . The agent can get the same decision in the original mecha-

nism by playing as follows. Feed θ′ into the strategy r to draw a message m to send to the

principal. If test τ is conducted, exert effort with probability ẽ(τ)e(θ′,m, τ).

By separating communication from testing, we recovered the revelation principle. Con-

ceptually, our testing framework elucidates the role of verification in eliciting private infor-

mation. Computationally, our progress is less clear. The complexity of untruthful reporting

has been replaced by the complexity of testing rules. Reducing this class of testing rules is

what we turn to next.

6The agent’s off-path behavior can be ignored because the best-response condition is in strategic form.
Alternatively, condition (iii) could be strengthened to require that e(θ, θ′, τ) = 1 for all θ, θ′ ∈ Θ and τ ∈ T .
The results would not change.

7In the proof, we use a more general procedure that works also for nonbinary tests.
8Technically, this is not a mechanism but a generalized mechanism (Mertens et al., 2015, Exercise 10,

p. 70) because the distribution of the randomization device—the message the principal draws—depends on
the agent’s type report. In the proof, we eliminate this device by applying the disintegration theorem.
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4 Ordering tests

In this section, we identify a smaller class of testing rules that suffices for implementation.

To define this class, we introduce a family of orders over tests.

4.1 Discernment orders

The basic question is whether one test can always be used in place of another. More

precisely, fix a type θ and tests τ and ψ. Suppose that the principal conducts test ψ on

type θ. Is it always possible to replace test ψ with test τ and then adjust the decision rule

so that (i) the decision for type θ is preserved, and (ii) no new deviations are introduced?

The key is to convert each score9 on test τ into an equivalent score on test ψ. The principal

feeds this converted score into the original decision rule.

A score conversion is a Markov transition k on {0, 1}, which associates to each score s

in {0, 1} a measure ks in ∆({0, 1}). A transition k on {0, 1} is monotone if k1 first-order

stochastically dominates k0, denoted k1 ≥SD k0. For each test τ and type θ, denote by πτ |θ

the measure on {0, 1} that puts probability π(τ |θ) on 1. When a test result is drawn from

the measure πτ |θ and a Markov transition k is applied, the resulting distribution is denoted

πτ |θk, which can be viewed as the product of a row vector and a stochastic matrix.

Definition 4 (Discernment order). Fix a type θ. A test τ is more θ-discerning than a test

ψ, denoted τ �θ ψ, if there exists a monotone Markov transition k on {0, 1} satisfying:

(i) πτ |θk = πψ|θ;

(ii) πτ |θ′k ≤SD πψ|θ′ for all types θ
′ with θ′ 6= θ.

Conditions (i) and (ii) correspond to parts (i) and (ii) of the motivating question above.

Each condition compares two testing procedures. On the left side, the agent exerts effort

on test τ and his score is converted by k into a score on test ψ. On the right side, the

agent exerts effort on test ψ and his score is drawn. Condition (i) says that for type θ these

two procedures give the same score distribution. Condition (ii) says that for all other types

the converted score distribution is first-order stochastically dominated by the unconverted

score distribution on test ψ. The conversion k is required to be monotone so that effort

weakly improves the distribution of the converted score. In short, the definition ensures

that the conversion k from τ -scores to ψ-scores is fair for type θ but (weakly) unfavorable

for all other types.

The relation �θ is reflexive and transitive. For reflexivity, take k to be the identity

transition. For transitivity, compose the score conversions and note that monotone tran-

sitions preserve first-order stochastic dominance and are closed under composition; see

9We use score synonymously with result. Tests are pass–fail, but the language of scoring is more intuitive
and our constructions immediately extend to the nonbinary case.
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Appendix A.2. Two tests can be incomparable under �θ. We use the notation ∼θ for

equivalence under �θ, and ≻θ for the strict part of �θ.

The θ-discernment order resembles Blackwell’s (1953) informativeness order between

experiments. Given a state space Ω and a signal space S, an experiment is a map from

Ω to ∆(S). In an experiment, the signal realizations are drawn exogenously by nature. A

garbling is a Markov transition on S. An experiment τ is more Blackwell informative than

an experiment ψ if there exists a garbling g such that

τg = ψ. (1)

To bring out the connection with the discernment orders, set Ω = Θ, and denote by πτ |θ′

the distribution of signals from experiment τ in state θ′. Then (1) can be expressed as

πτ |θ′g = πψ|θ′ for all θ′ ∈ Θ. (2)

The Blackwell order is concerned with information, not incentives. The garbled signal

from experiment τ must have the same distribution as the ungarbled signal from experiment

ψ, in every state of the world. No state is privileged, and no structure on the signal space

is required. In contrast, the discernment orders reflect the agent’s incentives to report

truthfully and to exert effort. There is a family of discernment orders, one associated with

each type θ. For the distinguished type θ, the converted score on test τ must have the

same distribution as the unconverted score on test ψ. For all other types—the potential

deviators—the converted score on test τ need only be stochastically dominated by the score

on test ψ. A conversion, unlike a garbling, is required to be monotone so that effort weakly

improves the distribution of the converted score. For dominance and monotonicity to make

sense, scores must be totally ordered.

4.2 Implementation with most-discerning testing functions

We are interested in maximum tests with respect to the discernment orders.

Definition 5 (Most discerning). A test τ is most θ-discerning if τ �θ ψ for all ψ ∈ T . A

function t : Θ → T is most discerning if, for each type θ, the test t(θ) is most θ-discerning.

To state the implementation result, we need a few definitions. Given a type space Θ, a

testing environment consists of a test set T and a passage rate π : T ×Θ → [0, 1]. A decision

environment consists of a decision set X and a utility function u : X×Θ → R for the agent.

Given a testing rule t̂ : Θ → ∆(T ), a social choice function f is canonically implementable

with t̂ if there exists a decision rule g such that the mechanism (t̂, g) canonically implements

f .
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Theorem 2 (Most-discerning implementation)

Fix a type space Θ and a testing environment (T, π). For a measurable testing function

t̂ : Θ → T , the following are equivalent.

1. t̂ is most discerning.

2. In every decision environment (X,u), every implementable social choice function is

canonically implementable with t̂.

The implication from condition 1 to condition 2 means that a single most-discerning

testing function suffices for implementation. The proof formalizes the test replacement that

motivated our definition of the discernment orders. By the revelation principle (Theorem 1),

there is no loss in considering only canonical profiles. Suppose that in a canonical profile,

some report θ is assigned a test ψ with ψ 6= t̂(θ). Since t̂(θ) �θ ψ, the principal can use a

score conversion to replace test ψ with test t̂(θ), without introducing any new deviations. We

perform this replacement simultaneously for every type to construct an incentive-compatible

canonical profile with testing rule t̂.

The implication from condition 2 to condition 1 means that the most-discerning property

is necessary. If a testing function t̂ is not most discerning, then in some decision environment

there is an implementable social choice function that cannot be canonically implemented

with testing rule t̂. The construction is as follows. Since t̂ is not most-discerning, there

exists some type θ and some test τ such that t̂(θ) 6�θ τ . We start with a social choice

function that can be implemented by assigning test τ to type θ. To replace test τ with

test t̂(θ), we would need a score conversion from τ to t̂(θ) that preserves the decision for

type θ. But any such conversion is either nonmonotone or violates the dominance condition

(ii). If the conversion is nonmonotone, then type θ can improve his passage probability

by not exerting effort. If (ii) is violated, then there is some other type θ′ whose score

distribution after reporting θ is improved by the conversion. In the proof, we construct a

decision environment in which these deviations are profitable.

The most-discerning property takes a simple form when tests are deterministic.

Example 2 (Deterministic tests and evidence). If the passage rate π is {0, 1}-valued,

then our testing framework reduces to Bull and Watson’s (2007) model of hard evidence.

Each test can be interpreted as a request for a piece of evidence. Define a correspondence

E : Θ ։ T by

E(θ) = {τ ∈ T : π(τ |θ) = 1}.

Type θ can provide the evidence requested by test τ if and only if τ is in E(θ). It can be
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shown that10 a test τ in E(θ) is most θ-discerning if and only if, for every test ψ in E(θ),

E−1(τ) ⊆ E−1(ψ).

That is, test τ is the hardest test that type θ can pass. The existence of a most-discerning

testing function is equivalent to Bull and Watson’s (2007) evidentiary normality condition,

which in turn is equivalent to Lipman and Seppi’s (1995) full reports condition.

If a most-discerning testing function does not exist, we can still reduce the class of

testing rules that we need to consider.

Definition 6 (Most-discerning correspondence). A subset T0 of T is most θ-discerning if

for each test ψ ∈ T there exists a test τ ∈ T0 such that τ �θ ψ. A correspondence T̂ : Θ ։ T

is most discerning if for each type θ the set T̂ (θ) is most θ-discerning.

A testing function t̂ : Θ → T is a selection from a correspondence T̂ : Θ ։ T if t̂(θ) ∈

T̂ (θ) for each θ ∈ Θ. We extend this notion to stochastic testing rules. A testing rule

t̂ : Θ → ∆(T ) is supported on a correspondence T̂ : Θ ։ T if supp t̂θ ⊂ T̂ (θ) for each θ ∈ Θ.

The next result says that if a correspondence is most discerning, then we can restrict

attention to the testing rules supported on that correspondence. To avoid measurability

problems, we impose additional regularity conditions.

Theorem 3 (Implementation with a most-discerning correspondence)

Suppose that the passage rate π is continuous. Let T̂ be a correspondence from Θ to T with

closed values and a measurable graph. If T̂ is most discerning, then for every implementable

social choice function f , there exists a testing rule t̂ supported on T̂ such that f is canonically

implementable with t̂.

If T̂ is singleton-valued, then exactly one testing rule is supported on T̂ , and Theorem 3

reduces to the sufficiency part of Theorem 2.11 In general, Theorem 3 allow us to restrict

attention to testing rules supported on a fixed correspondence T̂ . For example, suppose

each type θ in some subset Θ0 of Θ has a most θ-discerning test t̂(θ). Take T̂ (θ) = {t̂(θ)}

for θ ∈ Θ0 and T̂ (θ) = T for θ 6∈ Θ0.

We apply Theorem 3 to the the Green–Laffont example, which we reformulate with

tests.

10Argue directly from the definition using deterministic score conversions. Alternatively, apply Proposi-
tion 2, stated below.

11In this case, the continuity assumption on π is unnecessary. We use the regularity assumptions only
to apply a measurable selection theorem, which ensures that there is a measurable way to assign each pair
(θ, ψ) a test τ in T̂ (θ) satisfying τ �θ ψ. If it can be shown independently that such an assignment exists,
then the conclusion of Theorem 3 follows without any assumptions on π or T̂ . When T̂ is singleton-valued,
there is at most one such assignment.
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θ1 θ2 θ3

τ1 τ2 τ3

Figure 3. Passage correspondence

Example 3 (Green–Laffont with tests). Set Θ = {θ1, θ2, θ3} and T = {τ1, τ2, τ3}. Type

θi can pass test τj if and only if, in Example 1, type θi can report θj . This {0, 1}-valued

passage rate is represented in Figure 3 as a directed graph on Θ∪ T .12 Edges connect each

type to each of the tests he can pass. The discernment relations are given by

τ1 ≻θ1 τ2 ≻θ1 τ3, τ2, τ3 ≻θ2 τ1, τ3 ≻θ3 τ2 ∼θ3 τ1.

Tests τ2 and τ3 are incomparable under �θ2 because τ2 screens away type θ3 (but not θ1)

and τ3 screens away θ1 (but not θ3). The following correspondence T̂ is most-discerning:

T̂ (θ1) = {τ1}, T̂ (θ2) = {τ2, τ3}, T̂ (θ3) = {τ3}.

By Theorem 3, there is no loss in restricting to testing rules supported on T̂ . But we cannot

assume that type θ2 is assigned test τ2—this is the crux of the original counterexample.

4.3 Characterizing the discernment orders

We provide a more practical characterization of each discernment order. Fix a type θ and

tests τ and ψ. To determine whether τ is more θ-discerning than ψ, we first characterize the

monotone Markov transitions k satisfying πτ |θk = πψ|θ. We parameterize these transitions

as convex combinations of two extreme points.

The first extreme point is obtained by matching quantiles, much like scores are converted

between the SAT and the ACT. Figure 4 shows this Markov transition, separated into two

cases. In the left panel, π(τ |θ) ≥ π(ψ|θ), so a score of 0 on τ is never converted to a 1 on

ψ. In the right panel, π(τ |θ) < π(ψ|θ), so a score of 1 on τ is never converted to a 0 on ψ.

To formally define this transition, we construct Markov transitions that are analogues of

distribution and quantile functions. Given a type θ and a test τ , the associated cumulative

distribution transition

F̃τ |θ : {0, 1} → ∆([0, 1])

maps 0 and 1 to the uniform distributions over [0, 1−π(τ |θ)] and [1−π(τ |θ), 1], respectively.

12Compare this graph on Θ ∪ T with the graph on Θ in Figure 2.
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Figure 4. Conversion from test τ to test ψ for type θ

The associated quantile transition

Q̃τ |θ : [0, 1] → ∆({0, 1})

maps points in [0, 1−π(τ |θ)] to δ0 and points in (1−π(τ |θ), 1] to δ1.
13 The quantile-matching

transition is the composition F̃τ |θQ̃ψ|θ.

The second extreme point is the constant transition that maps both scores 0 and 1 to

the measure πψ|θ. This transition is denoted πψ|θ as well.

Proposition 1 (Score conversion characterization)

Fix a type θ and tests τ and ψ. For a Markov transition k on {0, 1}, the following are

equivalent.

1. k is monotone and πτ |θk = πψ|θ.

2. k = λF̃τ |θQ̃ψ|θ + (1− λ)πψ|θ for some λ ∈ [0, 1].

We characterize the discernment order in terms of this parameter λ ∈ [0, 1]. For any

passage rate π, define the associated failure rate π̄ by π̄ = 1− π.

Proposition 2 (Discernment order characterization)

Fix a type θ and tests τ and ψ.

1. Suppose π(τ |θ) ≥ π(ψ|θ). We have τ �θ ψ if and only if there exists λ ∈ [0, 1] such

that, for all types θ′,

[λπ(τ |θ′) + (1− λ)π(τ |θ)]π(ψ|θ) ≤ π(ψ|θ′)π(τ |θ). (3)

2. Suppose π(τ |θ) < π(ψ|θ). We have τ �θ ψ if and only if there exists λ ∈ [0, 1] such

that, for all types θ′,

[λπ̄(τ |θ′) + (1− λ)π̄(τ |θ)]π̄(ψ|θ) ≥ π̄(ψ|θ′)π̄(τ |θ). (4)

13To handle an edge case in Proposition 1, we redefine Q̃τ |θ to map 1 to δ1 even if π(τ |θ) = 0. For more
general definitions of these transitions and for some of their properties, see Appendix A.2.
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Figure 5. More θ-discerning with λ 6= 1

Remark. If π(τ |θ) ≥ π(τ |θ′) for all θ′, then (3) and (4) are each weakest when λ = 1, so

we can equivalently require λ = 1 in the statement of Proposition 2. If, in addition, the

passage rates are interior, then (3) and (4) can be expressed as

π(τ |θ)

π(τ |θ′)
≥
π(ψ|θ)

π(ψ|θ′)
and

π̄(τ |θ)

π̄(τ |θ′)
≤
π̄(ψ|θ)

π̄(ψ|θ′)
.

For the relation τ �θ ψ, the passage (failure) rate ratio is what matters if type θ is more

likely to pass (fail) test τ than test ψ.

Example 4 (More θ-discerning with λ 6= 1). For simplicity, we consider a type θ and two

tests τ and ψ such that π(τ |θ) and π(ψ|θ) are equal and nonzero. In this case, test τ is

more θ-discerning than test ψ if and only if there exists λ ∈ [0, 1] such that

λπ(τ |θ′) + (1− λ)π(τ |θ) ≤ π(ψ|θ′) for all θ′ ∈ Θ. (5)

The passage rates for these tests are plotted in Figure 5.14 The type space is an interval,

plotted on the horizontal axis. For test τ , the passage rate is an increasing affine function;

for test ψ, the passage rate is increasing and convex. The dotted line takes the constant

value π(τ |θ), and the dashed line is the average of the passage rate π(τ |·) and the constant

π(τ |θ). From the graph we see that (5) is satisfied with λ = 1/2, so τ �θ ψ. Moreover, the

tangency at the point (θ, π(τ |θ)) shows that 1/2 is the only value of λ for which (5) holds.

Example 5 (Relative performance and scaling tests). Consider a type θ and tests τ , ψ1,

14Algebraically, Θ = [1/4, 3/4] and θ = 1/2. The passage rates are π(τ |θ′) = 1/2 + (3/4)(θ′ − 1/2) and
π(ψ|θ′) = θ′(θ′ − 1/4) + 3/8.
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Figure 6. Relative performance and scaling

and ψ2 whose passage rates are plotted in Figure 6.15 Test τ is the test that type θ is least

likely to pass, but τ is more θ-discerning than ψ1 and ψ2. This is possible because test τ is

difficult for every type. The performance of type θ relative to the other types is better on

test τ than on tests ψ1 and ψ2.

This example illustrates also the subtle effect of scaling the passage rate. The passage

rate on ψ2 is a scaling of the passage rate on ψ1: π(ψ2|·) = 0.75π(ψ1|·). Since π(ψ1|θ) >

π(ψ2|θ), the relation ψ1 �θ ψ2 depends on the relative passage rates; it is satisfied. The

reverse relation depends on the relative failure rates; it is not satisfied. Thus, ψ1 ≻θ ψ2.

Lastly, we study equivalence with respect to each discernment order. Two tests are

θ-equivalent if they are equivalent with respect to �θ. Two tests are equal if their passage

rates are equal. A type θ is minimal on a test τ if π(τ |θ) ≤ π(τ |θ′) for all θ′ ∈ Θ.

Proposition 3 (θ-discernment equivalence)

Fix a type θ. Tests τ1 and τ2 are θ-equivalent if and only if (i) τ1 and τ2 are equal, or (ii) θ

is minimal on τ1 and τ2.

If two unequal tests are θ-equivalent, then these tests have no power to screen other

types away from type θ. Whichever of the two tests is used, every decision that is feasible

for type θ is also feasible for all other types. Proposition 3 considers θ-equivalence for a

fixed type θ. If two tests are θ-equivalent for every type θ, then their passage rates are

constant, but the constants are not necessarily equal.

15Again, Θ = [1/4, 3/4] and θ = 1/2. The passage rates are π(ψ1|θ
′) = 0.75 − 4(θ′ − 0.5)2; π(ψ2|θ

′) =
0.75

(

0.75− 4(θ′ − 0.5)2
)

; and π(τ |θ′) = 0.375− 5(θ′ − 0.5)2.
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5 Testing in reduced form

If there exists a most-discerning testing function, then our framework takes a reduced form

in which tests do not appear explicitly.

5.1 Induced authentication rates

When the agent makes a type report, his passage probability depends on the test that the

principal conducts after that report. If there is a most-discerning testing function t̂, then

by Theorem 2 we can restrict attention to mechanisms in which each report θ′ is assigned

test t̂(θ′). In this case, the passage probabilities for each report are pinned down for each

type.

Definition 7 (Induced authentication rate). Given a most-discerning testing function

t̂ : Θ → T , the authentication rate induced by t̂ is the function α : Θ × Θ → [0, 1] given

by

α(θ′|θ) = π(t̂(θ′)|θ).

There can be multiple most-discerning testing functions. Each induces a different au-

thentication rate. But Theorem 2 guarantees that every most-discerning testing function

can be used to implement the same set of social choice functions. There is a corresponding

equivalence between the authentication rates induced by different most-discerning testing

functions. We need a few definitions. A testing environment is most discerning if it admits

a most-discerning testing function. A type θ is minimal for an authentication rate α if

α(θ|θ) ≤ α(θ|θ′) for all θ′ ∈ Θ. Authentication rates α1 and α2 are essentially equal if (i) α1

and α2 have the same minimal types, and (ii) α1(θ|·) = α2(θ|·) for all types θ that are not

minimal for α1 and α2. Essential equality is an equivalence relation.

Proposition 4 (Essential uniqueness)

In a most-discerning testing environment, the authentication rates induced by most-discerning

testing functions are all essentially equal.

Hereafter, we identify authentication rates that are essentially equal, so we speak of the

authentication rate induced by a most-discerning testing environment.

5.2 Incentive compatibility

Given a most-discerning testing environment (T, π), we reformulate the principal’s problem

in terms of the authentication rate α induced by (T, π). When the agent reports θ′, he is

authenticated if he passes the associated most θ′-discerning test. A reduced-form mechanism

consists of functions g0 and g1 from Θ to ∆(X). When the agent reports θ′, the principal
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takes the decision g1(θ
′) if the agent is authenticated and the decision g0(θ

′) otherwise. If

type θ reports θ′ and exerts effort on the associated test, his interim utility u(θ′|θ) is given

by

u(θ′|θ) = α(θ′|θ)u(g1(θ
′), θ) + (1− α(θ′|θ))u(g0(θ

′), θ).

On the right side, the function u is extended linearly from X to ∆(X). Even in this

reduced form, the cost of lying is determined endogenously by the mechanism g, in contrast

to models of lying costs.16

The incentive-compatibility constraint becomes

u(θ|θ) ≥ u(θ′|θ) ∨ u(g0(θ
′), θ) for all θ, θ′ ∈ Θ. (IC)

The right side is the interim utility for type θ if he reports θ′ and then chooses effort to

maximize his utility. The principal selects a reduced-form mechanism to solve

maximize E[α(θ|θ)v(g1(θ), θ) + (1− α(θ|θ))v(g0(θ), θ)]

subject to (IC).

In the applications below, we also impose participation constraints.

5.3 Primitive authentication rates

We showed that a most-discerning testing environment has a simpler representation as an

authentication rate. Can we start with the authentication rate as a primitive? To retain the

testing interpretation, a primitive authentication rate must be induced by a most-discerning

testing environment. We characterize when this is the case.

An authentication rate α implicitly associates to each report θ′ a test t̂(θ′) with passage

rate π(t̂(θ′)|·) = α(θ′|·). To check whether this testing function t̂ is most discerning, we

must specify which other tests are in the test set. We claim that there is no less in choosing

the minimal test set t̂(Θ) = {t̂(θ′) : θ′ ∈ Θ}. If t̂ is not most-discerning with this test

set, then it cannot be most-discerning with any larger test set because adding tests adds

constraints to Definition 4. We translate this condition—that the testing function t̂ is most

discerning with the test set t̂(Θ)—into a condition on the authentication rate α. For an

authentication rate α, let ᾱ = 1− α.

16In models of lying costs, the agent’s utility is the difference between his consumption utility and an
exogenous lying cost, which depends on the agent’s true type and the agent’s report. Lying costs relax the
incentive constraints. See, for example, Lacker and Weinberg (1989), Maggi and Rodriguéz-Clare (1995),
Crocker and Morgan (1998), Kartik et al. (2007), Kartik (2009), and Deneckere and Severinov (2017). In
computer science, Kephart and Conitzer (2016) show that, with lying costs, the revelation principle holds if
the lying cost function satisfies the triangle inequality.
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Definition 8 (Most-discerning authentication). An authentication rate α ismost discerning

if the following hold for all types θ2 and θ3.

1. If α(θ2|θ2) ≥ α(θ2|θ3), then there exists λ ∈ [0, 1] such that, for all types θ1,

[λα(θ2|θ1) + (1− λ)α(θ2|θ2)]α(θ3|θ2) ≤ α(θ3|θ1)α(θ2|θ2).

2. If α(θ2|θ2) < α(θ2|θ3), then there exists λ ∈ [0, 1] such that, for all types θ1,

[λᾱ(θ2|θ1) + (1− λ)ᾱ(θ2|θ2)]ᾱ(θ3|θ2) ≥ ᾱ(θ3|θ1)ᾱ(θ2|θ2).

From our characterization of the discernment order (Proposition 2), we get the following

characterization for authentication rates.

Theorem 4 (Authentication rate characterization)

An authentication rate α is induced by some most-discerning testing environment if and

only if α is most discerning.

Remark. If α(θ|θ) ≥ α(θ|θ′) for all types θ and θ′, then α is most discerning if and only if

α(θ3|θ2)α(θ2|θ1) ≤ α(θ3|θ1)α(θ2|θ2), (6)

for all θ1, θ2, θ3 ∈ Θ.

If α is {0, 1}-valued and α(θ|θ) = 1 for all θ, then α induces a message correspondence

M : Θ ։ Θ defined by

M(θ) = {θ′ : α(θ′|θ) = 1}.

This correspondence M satisfies θ ∈ M(θ) for each θ, as in Green and Laffont (1986). In

terms of M , (6) becomes

θ3 ∈M(θ2) & θ2 ∈M(θ1) =⇒ θ3 ∈M(θ1),

which is exactly Green and Laffont’s (1986) nested range condition.

6 Applications to revenue-maximization

We solve for revenue-maximizing mechanisms with the local first-order approach. The

solutions use a new expression for the virtual value.
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6.1 Quasilinear setting with verification

Consider the nonlinear pricing setting from Mussa and Rosen (1978). The agent’s type

θ ∈ Θ = [
¯
θ, θ̄] is drawn from a distribution function F with strictly positive density f . The

principal allocates a quantity q ∈ R+ and receives a transfer t ∈ R.17 Utilities for the agent

and the principal are

u(q, t, θ) = θq − t and v(q, t) = t− c(q).

Here, c is the cost of production. Assume that c(0) = c′(0) = 0 and that the marginal cost

c′ is strictly increasing and unbounded.

The verification technology is represented by a measurable most-discerning authentica-

tion rate α : Θ×Θ → [0, 1] that satisfies the following conditions.

(i) α(θ|θ) = 1 for all types θ.

(ii) For each θ′ ∈ Θ, the function θ 7→ α(θ′|θ) is absolutely continuous.

(iii) For each θ ∈ Θ, the right and left partial derivatives D2+α(θ|θ) and D2−α(θ|θ) exist,

and the functions θ 7→ D2+α(θ|θ) and θ 7→ D2−α(θ|θ) are integrable.18

Condition (i) ensures that the agent is authenticated if he reports truthfully. The regularity

conditions (ii) and (iii) allow us to apply the envelope theorem. Since α is most discerning,

(i) implies that α(θ3|θ2)α(θ2|θ1) ≤ α(θ3|θ1) for all θ1, θ2, θ3 ∈ Θ. Figure 7 plots an authenti-

cation rate that satisfies our assumptions. The agent’s type is on the horizontal axis. Each

curve corresponds to a fixed report. In this example, the authentication probability decays

exponentially in the absolute difference between the agent’s type and the agent’s report.

We assume that the agent is free to walk away at any time, so we impose an ex post

participation constraint. Whether or not the agent is authenticated, his utility must be

nonnegative.19 Without these constraints, the principal could apply severe punishments

to effectively prohibit the agent from making any report that is not authenticated with

certainty. In that case, the model reduces to partial verification, as in Caragiannis et al.

(2012).

We work with reduced-form mechanisms. Since the agent is always authenticated on-

path, there is no loss in holding him to his outside option if he is not authenticated. We

take g0(θ) = (0, 0) for all θ, and we optimize over the decision rule g1. Without loss, we

17The pair (q, t) is the decision x in the general model. In applications, t always denotes transfers, not
testing. Since we work directly with authentication rates, we make no reference to tests.

18These derivatives are defined by

D2+α(θ
′|θ) = lim

h↓0

α(θ′|θ + h)− α(θ′|θ)

h
, D2−α(θ

′|θ) = lim
h↓0

α(θ′|θ)− α(θ′|θ − h)

h
.

19In particular, we rule out upfront payments like those used in Border and Sobel (1987).
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Figure 7. Exponential authentication rate

restrict g1 to be deterministic. The component functions of g1 are denoted q and t.

The principal selects a quantity function q : Θ → R+ and a transfer function t : Θ → R

to solve

maximize

∫ θ̄

¯
θ

[t(θ)− c(q(θ))]f(θ) dθ

subject to θq(θ)− t(θ) ≥ α(θ′|θ)[θq(θ′)− t(θ′)], θ, θ′ ∈ Θ

θq(θ)− t(θ) ≥ 0, θ ∈ Θ.

(7)

The first constraint is incentive compatibility. The second is ex post participation, condi-

tional upon being authenticated. The utility u(θ′|θ) takes a simple form because the agent

gets zero utility if he is not authenticated. The maximum operation from (IC) is dropped

because it is subsumed by the participation constraint.

6.2 Virtual value

To motivate our new expression for the virtual value, we use the envelope theorem to

compute the agent’s equilibrium utility function U , defined by

U(θ) = u(θ|θ) = max
θ′∈Θ

u(θ′|θ).

In the classical setting without verification, u(θ′|θ) = θq(θ′)−t(θ′). By the envelope theorem,

U ′(θ) = D2u(θ|θ) = q(θ). Integrating gives

U(θ) =

∫ θ

¯
θ

q(z) dz. (8)
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With verification, the equilibrium utility U takes a different form. We sketch the deriva-

tion here. From (7), the interim utility is given by

u(θ′|θ) = α(θ′|θ)[θq(θ′)− t(θ)].

The envelope theorem gives the bounds

q(θ) +D2+α(θ|θ)U(θ) ≤ U ′(θ) ≤ q(θ) +D2−α(θ|θ)U(θ).

Since α(θ|θ) = 1, we have D2+α(θ|θ) ≤ 0 ≤ D2−α(θ|θ). If α has a cusp, as in the example

in Figure 7, these inequalities are strict and the derivative of U is not pinned down. To

maximize the principal’s revenue, we set U ′(θ) equal to the lower bound. Define the precision

function λ : Θ → R+ by

λ(θ) = −D2+α(θ|θ).

The larger is λ(θ), the steeper is the function α(θ|·) to the right of θ. For θ′ ≤ θ, let

Λ(θ′|θ) = exp

(
∫ θ

θ′
−λ(w) dw

)

.

The minimum equilibrium utility U is given by

U(θ) =

∫ θ

¯
θ

Λ(z|θ)q(z) dz. (9)

With this expression for equilibrium utility, we define the virtual value. Recall Myerson’s

(1981) virtual value

ϕM (θ) = θ −
1− F (θ)

f(θ)
= θ −

1

f(θ)

∫ θ̄

θ

f(z) dz. (10)

The virtual value of type θ is the marginal expected revenue with respect to the quantity

q(θ). There are two parts. First, the principal can extract the additional consumption

utility from type θ, so the marginal revenue from type θ equals θ. Second, the quantity q(θ)

pushes up the equilibrium utility according to (8), so the marginal revenue from each type

z above θ is −1; this effect is integrated against the relative density f(z)/f(θ). Verification

does not change the marginal revenue from type θ, but the marginal revenue from each

higher type z becomes −Λ(θ|z), by (9). We define the virtual value by

ϕ(θ) = θ −
1

f(θ)

∫ θ̄

θ

Λ(θ|z)f(z) dz. (11)
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Figure 8. Virtual value for different precision functions λ

Comparing (10) and (11) gives the inequality

ϕM (θ) ≤ ϕ(θ) ≤ θ.

The virtual value ϕ(θ) tends towards these bounds in limiting cases.

Proposition 5 (Testing precision)

As λ converges to 0 pointwise, ϕ(θ) converges to ϕM (θ) for each type θ. As λ converges to

∞ pointwise, ϕ(θ) converges to θ for each type θ.

Figure 8 illustrates these limits in a simple example, where the agent’s type is uniformly

distributed on the unit interval and the precision function λ is constant.

Remark. If λ(θ) = 0 for all θ, then Λ(θ|z) = 1 for θ ≤ z. Therefore, our virtual value

coincides with the classical virtual value, and by the results below, the revenue-maximizing

mechanism is unaffected by verification. This holds in particular if α has no kink on the

diagonal, e.g., if α(θ′|θ) = 1− |θ′ − θ|σ with σ > 1.

6.3 Nonlinear pricing

The virtual value is derived from the envelope representation of the equilibrium utility,

which uses only local incentive constraints. We assume that the virtual value is increasing.

But because the interim utility is not linear in the agent’s type (due to the authentication

rate α), we need further assumptions to ensure that the local incentive constraints imply

the global incentive constraints. This implication holds in particular for the exponential
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authentication rates, given by

α(θ′|θ) = exp

(

−

∫ θ

θ′
λ(z) dz

)

,

for integrable functions λ : Θ → R+. We permit a larger class of authentication rates.

We impose a global condition on the relative values of α and Λ. The function Λ is

determined by the behavior of α in a neighborhood of the diagonal in Θ×Θ. Because α is

most discerning, it follows that Λ is a global lower bound for α.

Proposition 6 (Lower bound)

For all types θ′ and θ with θ′ ≤ θ, we have α(θ′|θ) ≥ Λ(θ′|θ).

For the exponential authentication rates, this inequality holds with equality. We require

that α not be much greater than Λ. The precise condition depends on the optimal quantity

function q⋆, which will be defined in the theorem statement. The global upper bound states

that, for all types θ′ and θ with θ′ ≤ θ,

α(θ′|θ) ≤ Λ(θ′|θ)A(θ′|θ),

where

A(θ′|θ) =

∫ θ

¯
θ

Λ(z|θ̄)q⋆(z) dz

/
∫ θ

¯
θ

Λ(z ∧ θ′|θ̄)q⋆(z ∧ θ′) dz.

For the quantity function q⋆ in the theorem statement, A(θ′|θ) ≥ 1 for θ′ ≤ θ.

Proposition 7 (Optimal nonlinear pricing)

Suppose that the virtual value ϕ is increasing. The optimal quantity function q⋆ and transfer

function t⋆ are unique and given by

c′(q⋆(θ)) = ϕ(θ)+, t⋆(θ) = θq⋆(θ)−

∫ θ

¯
θ

Λ(z|θ)q⋆(z) dz,

provided that the global upper bound is satisfied.

In the optimal mechanism, type θ receives the quantity that is efficient for type ϕ(θ)+,

just as in Mussa and Rosen (1978), except that ϕ is our new virtual value. Transfers are

pinned down by the equilibrium utility U from (9). The faster the virtual value ϕ increases,

the faster the optimal quantity function q⋆ increases and the more permissive is the global

upper bound.
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6.4 Selling a single good

Suppose that the principal is selling a single indivisible good, which she does not value. The

agent’s type is his valuation for the good. The principal allocates the good with probability

q ∈ [0, 1] and receives a transfer t ∈ R. Utilities are

u(q, t, θ) = θq − t and v(q, t) = t.

Without verification, the revenue-maximizing mechanisms is a posted price (Riley and Zeck-

hauser, 1983). With verification, the price my depend on the agent’s report.

Proposition 8 (Optimal sale of a single good)

Suppose that the virtual value ϕ is increasing. The optimal quantity and transfer functions

are unique and given as follows, provided that the global upper bound is satisfied. Let θ⋆ =

inf{θ : ϕ(θ) ≥ 0}. Each type below θ⋆ receives nothing and pays nothing. Each type θ above

θ⋆ receives the good and pays

t⋆(θ) = θ −

∫ θ

θ⋆
Λ(z|θ) dz.

As in the no-verification solution, there is a cutoff type θ⋆ who receives the good and

pays his valuation. Each type below the cutoff is excluded; each type above the cutoff

receives the good and pays less than his valuation. The allocation probability takes values

0 and 1 only—there is no randomization. Verification increases the virtual value relative

to the classical virtual value, so the cutoff type is lower and more types receive the good.

The price is (weakly) increasing in the agent’s report, and strictly increasing if λ is strictly

positive. Nevertheless, types above the cutoff cannot profit by misreporting downward—the

benefit of a lower price is outweighed by the risk of not being authenticated.

7 Testing multiple agents

7.1 Testing and implementation

We extend our model to allow for n agents, labeled i = 1, . . . , n. Each agent i independently

draws his type θi ∈ Θi from a commonly known distribution µi ∈ ∆(Θi). Set Θ =
∏n
i=1Θi.

The decision set is denoted byX, as before. Each agent i has utility function ui : X×Θ → R;

the principal has utility function v : X ×Θ → R.

For each agent i, there is a set Ti of tests and a passage rate

πi : Ti ×Θi → [0, 1],
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where πi(τi|θi) is the probability with which type θi can pass test τi. Set T =
∏n
i=1 Ti. Each

agent sees his own test—but not the tests of the other agents—and then chooses whether

to exert effort. Nature draws the test result for each agent independently. A mechanism

specifies a message set Mi for each agent i. Set M =
∏n
i=1Mi. The rest of the mechanism

consists of a testing rule t : M → ∆(T ) and a decision rule g : M×T×{0, 1}n → ∆(X). The

test conducted on each agent can depend on the messages sent by other agents. For each

agent i, a strategy consists of a reporting strategy ri : Θi → ∆(Mi) and an effort strategy

ei : Θi ×Mi × Ti → [0, 1]. The equilibrium concept is Bayes–Nash equilibrium.

In this multi-agent setting, the revelation principle (Theorem 1) holds. The discernment

orders extend. For each agent i and each type θi in Θi, the θi-discernment order �θi

over Ti is defined as in the baseline model with πi in place of π. Given testing functions

ti : Θi → Ti for each i, define the product testing function ⊗iti : Θ → T by t(θ1, . . . , θn) =

(t1(θ1), . . . , tn(θn)). If for each agent i there is a most-discerning testing function, then the

product of these testing functions suffices for implementation. In particular, the test for

agent i depends only on agent i’s report.

Theorem 5 (Most-discerning implementation with multiple players)

Fix a type space Θ and a testing environment (T, π). For a testing function t̂ = ⊗it̂i, the

following are equivalent.

1. t̂i is most discerning for all i.

2. In every decision environment (X,u), every implementable social choice function is

canonically implementable with t̂.

For applications, we make the same assumptions as in the single-agent case. Each agent

is free to walk away, so we impose ex post participation constraints. For each agent i,

the testing environment is represented by a measurable most-discerning authentication rate

αi : Θi × Θi → [0, 1] that satisfies assumptions (i)–(iii). For each i, define λi and Λi by

putting αi in place of α in the definitions of λ and Λ.

7.2 Auctions

Consider an auction for a single indivisible good. Each agent i independently draws his type

θi ∈ Θi = [
¯
θi, θ̄i] from a distribution function Fi with positive density fi. The principal

allocates the good to each agent i with probability qi ∈ [0, 1], where q1 + · · · + qn ≤ 1; the

principal receives transfers t1, . . . , tn ∈ R. Set q = (q1, . . . , qn) and t = (t1, . . . , tn). For

simplicity, we assume that the principal does not value the good. Utilities are given by

ui(q, t, θ) = θiqi − ti and v(q, t) =

n
∑

i=1

ti.
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Let f−i(θ−i) denote
∏

j 6=i fj(θj). For quantity functions qi : Θ → R, interim expectations

are denoted with capital letters:

Qi(θi) =

∫

Θ−i

qi(θi, θ−i)f−i(θ−i) dθ−i.

As in the single-agent case, we impose a condition that depends on the optimal quantity

function q⋆, which is defined in Proposition 9. For each agent i, the global upper bound

states that, for all θi, θ
′
i ∈ Θi with θ

′
i ≤ θi, we have

αi(θ
′
i|θi) ≤ Ai(θ

′
i|θi)Λi(θ

′
i|θi),

where

Ai(θ
′
i|θi) =

∫ θ

¯
θi

Λi(zi|θ̄i)Q
⋆
i (zi) dzi

/
∫ θ

¯
θi

Λi(zi ∧ θ
′
i|θ̄i)Q

⋆
i (zi ∧ θ

′
i) dzi.

For each i and all types θi, θ
′
i ∈ Θi with θ

′
i ≤ θi, we have Ai(θ

′
i|θi) ≥ 1.

Proposition 9 (Optimal auctions)

Suppose that each virtual value ϕi is increasing. The seller’s maximum revenue is achieved

by the allocation function q⋆ and transfer function t⋆ given by

q⋆i (θ) =







1 if ϕi(θi) > 0 ∨maxj 6=i ϕj(θj),

0 otherwise,

and

t⋆i (θ) = q⋆i (θ)

[

θi −

∫ θi

¯
θi

Λi(zi|θi)
Q⋆i (zi)

Q⋆i (θi)
dzi

]

,

provided that the global upper bound is satisfied for each agent i.

The transfers are chosen so that each agent pays only if he receives the good, thus

ensuring that the the ex post participation constraints are satisfied. The allocation coincides

with Myerson’s (1981) solution, except ϕ is our new virtual value. In Myerson’s (1981)

solution, the allocation rule disadvantages bidders whose valuation distributions are greater

in the sense of hazard rate dominance. In our solution, the allocation rule also advantages

bidders who can be verified more precisely in the sense that their local precision functions

are pointwise greater.
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8 Nonbinary tests

In the main model, we consider pass–fail tests because of their natural connection with

partial verification and evidence. Here we extend the baseline principal–agent model to

allow for tests with more than two results. There is a family T of tests. Each test generates

scores in a finite subset S of R. The passage rate

π : T ×Θ → ∆(S)

assigns to each pair (τ, θ) the score distribution πτ |θ in ∆(S) for type θ on test τ .

We generalize the agent’s effort choice. On a pass–fail test τ , when type θ exerts effort

with probability e, he passes with probability e · π(τ |θ). Thus, there is a correspondence

between effort probabilities in [0, 1] and passage probabilities in [0, π(τ |θ)]. We can equiva-

lently model the agent as choosing the passage probability directly, subject to a stochastic

dominance constraint. This alternative definition of a strategy extends immediately to

nonbinary tests. A performance strategy is a map

p : Θ×M × T → ∆(S),

satisfying pθ,m,τ ≤SD πτ |θ for all (θ,m, τ) ∈ Θ×M × T . The other components of a profile

are defined as before with S in place of {0, 1}.

The revelation principle (Theorem 1) is proved with performance strategies, so it applies

to nonbinary tests. To define the discernment orders, say that a Markov transition k on S

is monotone if kr ≥SD ks whenever r > s. Put S in place of {0, 1} in the definition of most-

discerning. As before, a single most-discerning testing function suffices for implementation.

Theorem 6 (Most-discerning implementation with nonbinary tests)

If a testing function t̂ : Θ → T is most discerning, then every implementable social choice

function is canonically implementable with t̂.

9 Review of verification models

Verification has been modeled in many ways, in both economics and computer science. We

organize our discussion around the taxonomy in Table 1, which focuses on the primitives in

each model.

Green and Laffont (1986) introduce partial verification. They restrict their analysis

to direct mechanisms. Verification is represented as a correspondenceM : Θ ։ Θ satisfying

θ ∈ M(θ) for all θ ∈ Θ. Each type θ can report any type θ′ in M(θ). In particular, each
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Reduced form Microfoundation

partial message correspondence
M : Θ ։ Θ
Green and Laffont (1986)

evidence correspondence
E : Θ ։ E
Bull and Watson (2007)

probabilistic authentication rate
α : Θ×Θ → [0, 1]
Caragiannis et al. (2012)

passage rate
π : T ×Θ → [0, 1]
our paper

Table 1. Taxonomy of verification models

type can report truthfully. In this framework the revelation principle does not hold,20 as

Green and Laffont (1986) illustrate with a three-type counterexample, which we adapt in

Example 1. The revelation principle does hold, however, if the correspondence M satisfies

the nested range condition, which requires that the relation associated to M is transitive.

Without the revelation principle, it is generally difficult to determine whether a particular

social choice function is implementable (Nisan and Ronen, 2001; Singh and Wittman, 2001;

Fotakis and Zampetakis, 2015; Auletta et al., 2011; Yu, 2011; Rochet, 1987; Vohra, 2011).

Bull and Watson (2004, 2007) and Lipman and Seppi (1995) model verification with

hard evidence.21 They introduce an evidence set E and an evidence correspondence

E : Θ ։ E . Type θ possesses the evidence in E(θ); he can present one piece of evidence

from E(θ) to the principal. The evidence environment is normal if each type θ has a piece

of evidence e(θ) in E(θ) that is maximal in the following sense: Every other type θ′ who

has e(θ) also has every other piece of evidence in E(θ). Therefore, type θ′ can mimic type

θ if and only if E(θ′) contains e(θ). A normal evidence environment induces an abstract

mimicking correspondence that satisfies the nested range condition. Normality is a special

case of our most-discerning condition; see Example 2.

In computer science, Caragiannis et al. (2012) and Ferraioli and Ventre (2018) study

a reduced-form model of probabilistic verification in mechanism design. They restrict

their analysis to direct mechanisms, and they specify the probabilities with which each

type can successfully mimic each other type. Dziuda and Salas (2018) and Balbuzanov

(2019) study a setting without commitment in which these probabilities are constant.22

Our testing framework microfounds these models of partial verification, provided that the

primitive authentication rate is most discerning. If the primitive authentication rate is not

20Strausz (2016) recovers the revelation principle by modeling verification as a component of the outcome.
21Evidence was introduced in games (without commitment) by Milgrom (1981) and Grossman (1981);

for recent work on evidence games, see Hart et al. (2017), Ben-Porath et al. (2017), and Koessler and
Perez-Richet (2017).

22For some fixed p ∈ (0, 1), the authentication probability α(θ′|θ) equals p if θ′ 6= θ and 1 if θ′ = θ. This
authentication satisfies (6) and hence is most discerning.
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most-discerning, then it cannot be microfounded by our testing framework.

The computer science literature on probabilistic verification has a different focus than

us. Caragiannis et al. (2012) allow the principal to use arbitrarily severe punishments to

deter the agent from misreporting.23 If one type cannot mimic another type perfectly, then

he risks being detected and facing a prohibitive fine. Therefore, this setting reduces to

partial verification. In our model, the agent can walk away at any time, so punishment is

limited.

If the environment is most discerning, tests can also be interpreted as stochastic ev-

idence. Each test τ in T corresponds to a request for a particular piece of evidence. The

agent is asked to send a cheap talk message to the principal after he learns his payoff type

but before he learns which evidence is available to him. With probability π(τ |θ), type θ will

have the evidence requested by test τ . Deneckere and Severinov (2008) study a different

kind of stochastic evidence. In their model the agent simultaneously learns his payoff type

and his set of feasible evidence messages.

In economics, “verification” traditionally means that the principal can learn the agent’s

type perfectly by taking some action, e.g., paying a fee or allocating a good. This lit-

erature began with Townsend (1979) who studied costly verification in debt contracts.

Ben-Porath et al. (2019) connect costly verification and evidence. When monetary trans-

fers are infeasible, costly verification is often used as a substitute; see Ben-Porath et al.

(2014); Erlanson and Kleiner (2015); Halac and Yared (2017); Li (2017); Mylovanov and

Zapechelnyuk (2017).

10 Conclusion

We model probabilistic verification as a family of stochastic tests available to the principal.

Our testing framework provides a unified generalization of previous verification models.

Because verification is noisy, our framework is amenable to the local first-order approach.

We illustrate this approach in a few classical revenue-maximization problems. We believe

this local approach will make verification tractable in other settings as well.

As the precision of the verification technology varies, our setting continuously interpo-

lates between private information and complete information. Thus we can quantify the

value to the principal of a particular verification technology. This is the first step toward

analyzing a richer setting in which the principal decides how much to invest in verification.

23Another difference is that Caragiannis et al. (2012) investigate which allocation rules can be supported
by some transfer rule. We view transfers as part of the outcome and we study revenue-maximization.
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A Measure theory

A.1 Markov transitions

This section introduces Markov transitions, which are continuous generalizations of stochas-
tic matrices. For further details, see Kallenberg (2017, Chapter 1).

Definition 9 (Markov transition). Let (X,X ) and (Y,Y) be measurable spaces. A Markov
transition24 from (X,X ) to (Y,Y) is a function k : X × Y → [0, 1] satisfying:
(i) for each x ∈ X, the map B 7→ k(x,B) is a probability measure on (Y,Y);
(ii) for each B ∈ Y, the map x 7→ k(x,B) is a measurable function on (X,X ).

A Markov transition k from (X,X ) to (Y,Y) is sometimes written as k : X → ∆(Y ).
Each measure k(x, ·) on Y is denoted kx, and we write kx(B) for k(x,B). A Markov
transition from (X,X ) to (X,X ) is called a Markov transition on (X,X ). When the σ-
algebras are clear, we will speak of Markov transitions betweens sets.

We introduce three operations between Markov transitions—composition, products, and
outer products.

(µk)(B) =

∫

X

µ(dx)k(x,B),

for all B ∈ Z.
First we define composition. Let k be a Markov transition from (X,X ) to (Y,Y) and ℓ

a Markov transition from (Y,Y) to (Z,Z). The composition of k and ℓ, denoted kℓ, is the
Markov transition from (X,X ) to (Z,Z) defined by

(kℓ)(x,C) =

∫

Y

k(x, dy) ℓ(y, C),

for all x ∈ X and C ∈ Z. Here the function y 7→ ℓ(y, C) is integrated over Y with respect to
the measure kx. Inside the integral, it is standard to place the measure before the integrand
so that the sequencing of the variables mirrors the timing of the process.

Next we define products. Let k be a Markov transition from (X,X ) to (Y,Y) as before,
and let m be a Markov transition from (X×Y,X ⊗Y) to (Z,Z). Here X ⊗Y is the product
σ-algebra generated by the measurable rectangles A×B for A ∈ X and B ∈ Y. The product
of k and m, denoted k×m, is the unique Markov transition from (X,X ) to (Y ×Z,Y ⊗Z)
satisfying

(k ⊗m)(x,B × C) =

∫

B

k(x, dy)m((x, y), C),

for all x ∈ X, B ∈ Y, and C ∈ Z. Here the function y 7→ m((x, y), C) is integrated over the
set B with respect to the measure kx. If m is a Markov transition from (Y,Y) to (Z,Z), we
use the same notation, with the understanding that the integrand is m(y, C) rather than
m((x, y), C).

Finally, we define outer products. Let k1 be a Markov transition from (X1,X1) to
(Y,Y1) and k2 a Markov transition from (X2,X2) to (Y2,Y2). The outer product of k1

24Markov transitions are also called kernels or Markov/stochastic/probability/transition kernels.
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and k2, denoted k1 ⊗ k2, is the unique Markov transition from (X1 × X2,X1 ⊗ X2) to
(Y1 × Y2,Y1 ⊗ Y2) satisfying

(k1 ⊗ k2)((x1, x2), B1 ×B2) = k1(x1, B1) · k2(x2, B2),

for all x1 ∈ X1, x2 ∈ X2, B1 ∈ Y1, and B2 ∈ Y2. All three operations are associative.
This holds trivially for outer products; for composition and products, see Kallenberg (2017,
Lemma 1.17, p. 33). We drop parentheses when there is no ambiguity.

A.2 Markov transitions on the real line

The real line R is endowed with its usual Borel σ-algebra.
First, we define Markov transitions that are analogues of the cumulative distribution and

quantile functions. Let µ be a measure on R, and let Fµ : R → [0, 1] be the associated right-
continuous cumulative distribution function. Suppose µ has compact support S. Define the
left-continuous quantile function Qµ : [0, 1] → S by

Qµ(p) = inf{s ∈ S : Fµ(s) ≥ p}.

The cumulative distribution transition associated to µ, denoted F̃µ, is the Markov
transition from R to [0, 1] that assigns to each point s in R the uniform measure on
[Fµ(s−), Fµ(s)], where Fµ(s−) is the left-limit of Fµ at s. In particular, if Fµ is contin-
uous at s, then Fµ(s−) = Fµ(s) and this uniform measure is the Dirac measure δFµ(s).

The quantile transition associated to µ, denoted Q̃µ, is the Markov transition from [0, 1]
to R that assigns to each number p in [0, 1] the Dirac measure δQµ(p).

These Markov transitions extend the usual properties of distribution and quantile func-
tions to nonatomic distributions. Let U[0,1] denote the uniform measure on [0, 1].

Lemma 1 (Distribution and quantile transitions). For measures µ and ν onR with compact
support, the following hold:
(i) µF̃µ = U[0,1];

(ii) U[0,1]Q̃ν = ν;

(iii) µF̃µQ̃ν = ν.

For measures µ and ν on the real line, µ first-order stochastically dominates ν, denoted
µ ≥SD ν, if Fµ(x) ≤ Fν(x) for all real x. In particular, first-order stochastic dominance is
reflexive.

To state the next results, we make the standing assumption that S is a compact subset
of R, endowed with the restriction of the Borel σ-algebra. A Markov transition d on S is
downward if d(s, (−∞, s] ∩ S) = 1 for all s ∈ S.

Lemma 2 (Downward transitions). For measures µ and ν on S, the following are equivalent:
(i) µ ≥SD ν;
(ii) F̃µQ̃ν is downward;
(iii) µd = ν for some downward transition d.

A Markov transition m on S is monotone if s > t implies ms ≥SD mt, for all s, t ∈ S.
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Lemma 3 (Monotone transitions).
(i) A Markov transition m on S is monotone if and only if µm ≥SD νm for all measures

µ and ν on S satisfying µ ≥SD ν.
(ii) The composition of monotone Markov transitions is monotone.

A.3 Measurability and universal completions

Our definition of θ-discernment includes an inequality for every type. To ensure that we can
select score conversions in a measurable way, we enlarge the Borel σ-algebra to its universal
completion, which we introduce here.

Let (X,X ) and (Y,Y) be measurable spaces. A function f from X to Y is X/Y-
measurable if f−1(B) is in X for all B in Y. This condition is written more compactly
as f−1(Y) ⊂ X . If the σ-algebra Y is understood, we say f is X -measurable, and if both
σ-algebras are understood, we say that f is measurable.

Let (X,X , µ) be a probability space. A set A in X is a µ-null set if µ(A) = 0. The
µ-completion of σ-algebra X , denoted X µ, is the smallest σ-algebra that contains every set
in X and every subset of every µ-null set. It is straightforward to check that a subset A of
X is a member of X µ if and only if there are sets A1 and A2 in X such that A1 ⊂ A ⊂ A2

and µ(A2 \A1) = 0. The universal completion X of X is the σ-algebra on X defined by

X = ∩µX µ,

where the intersection is taken over all probability measures on (X,X ).
It is convenient to work with the universal completion because of the following measur-

able projection theorem (Cohn, 2013, Proposition 8.4.4, p. 264).

Theorem 7 (Measurable projection)
Let (X,X ) be a measurable space, Y a Polish space, and C a set in the product σ-algebra
X ⊗ B(Y ). Then the projection of C on X belongs to X .

By taking universal completions, we do not lose any Markov transitions.

Lemma 4 (Completing transitions). A Markov transition k from (X,X ) to (Y,Y) can be
uniquely extended to a Markov transition k̄ from (X,X ) to (Y,Y).

Next we consider the universal completion of a product σ-algebra.

Lemma 5 (Product spaces). For measurable spaces (X,X ) and (Y,Y),

X ⊗ Y ⊂ X ⊗ Y = X ⊗ Y.

We adopt the convention that when a Markov transition is defined between Polish
spaces, both the domain and codomain are endowed with the universal completions of their
Borel σ-algebras. In particular, when we take a product of Markov transitions, we extend
this transition. By Lemma 5, it does not matter whether the component transitions are
extended first.

We conclude with one note of caution about universal completions. Let k be a Markov
transition k from (X × Y,X ⊗ Y to (Z,Z). Since X ⊗ Y is generally larger than X ⊗ Y,
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the section kx may not be a Markov transition. For fixed x ∈ X and B ∈ Z, the map
y 7→ k(x, y,B) is defined, but may not be Y-measurable. But if Y is countable, and
Y = 2Y , then measurability is automatic.

A.4 Defining mechanisms and strategies

In the model, we make the following technical assumptions. The sets Θ, T , and X are all
Polish spaces. The finite signal space S is endowed with the discrete topology. The Markov
transition π is from (Θ × T,B(Θ × T )) to (S,B(S)). Recall that for Polish spaces Y and
Z, we have B(Y × Z) = B(Y ) ⊗ B(Z). In a mechanism, the message space M is Polish.
Testing rules, decision rules, reporting strategies, and passage strategies are all Markov
transitions, with the domain and codomain endowed with the universal completions of their
Borel (product) σ-algebras.

B Proofs

B.1 Proof of Theorem 1

We begin with new notation. To avoid confusion in the commutative diagrams below, we
denote the message set in a direct mechanism by Θ′. This set is a copy of Θ, but it is helpful
to keep the sets Θ and Θ′ distinct.

We work with performance strategies, as defined in Section 8. Let f be an implementable
social choice function. Select a profile (M, t, g; r, p) that implements f . We construct a direct
mechanism (t̂, ĝ) that canonically implements f .

Let t̂ be the composition rt, which is a Markov transition from Θ′ to T . By disintegration
of Markov transitions (Kallenberg, 2017, Theorem 1.25, p. 39), there is a Markov transition
h from Θ′ × T to M such that r × t = t̂⊗ h.25

Define a Markov transition d from Θ′×M ×T ×S to S as follows. For each (θ′,m, τ) ∈
Θ′ ×M × T , set

dθ′,m,τ = F̃τ |θ′Q̃θ′,m,τ ,

where F̃τ |θ′ is the distribution Markov transition corresponding to πτ |θ′ and Q̃θ′,m,τ is the
quantile Markov transition corresponding to pθ′,m,τ ; see Appendix A.2 for the definitions.
By Lemma 2,

πτ |θ′dθ′,m,τ = pθ′,m,τ , (12)

and dθ′,m,τ is downward because pθ′,m,τ ≤SD πτ |θ′ .
Define the direct decision rule ĝ as the composition shown in the following commutative

diagram, where j denotes the identity transition from Θ to Θ′.26

25We cannot directly apply the result to the universal completions of the Borel σ-algebras. Argue as
follows. First, restrict r × t to a Markov transition from (Θ,B(Θ′)) to (M × T,B(M) ⊗ B(T )) and t̂ to a
Markov transition from (Θ′,B(Θ′)) to (T,B(T )). By Kallenberg (2017, Theorem 1.25, p. 39), there exists
a Markov transition h from (Θ′ × T,B(Θ′)⊗ B(T )) to (M,B(M)) that satisfies the desired equality for the
restricted transitions from (Θ′,B(Θ′)) to (M×T,B(M)⊗B(T )). By Lemma 4, we can extend h to a Markov
transition from (Θ× T,B(Θ)⊗ B(T )) to (M,B(M)).

26To keep the diagrams uncluttered, we adopt the following conventions. The labeled Markov transition
maps a subproduct of the source space into a subproduct of the target space. The other sets in the target
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Θ

Θ×Θ′ Θ×M

Θ×Θ′ × T Θ×M × T

Θ′ × T × S Θ′ ×M × T × S M × T × S

X

j
r

t̂ t

π
p

j×π

h

ĝ

d

g

By construction, this diagram commutes, so the direct mechanism (t̂, ĝ) induces f . To prove
incentive compatibility, we show that for any strategy (ẑ, q̂) in the direct mechanism, there
is a strategy (z, q) in the original mechanism that induces the same social choice function.
Given (ẑ, q̂), define (z, q) by the following commutative diagrams.

Θ

Θ′ M

ẑ
z

r

Θ×Θ′ ×M × T Θ×M × T

Θ′ ×M × T × S S

q̂

ẑ

q

d

(13)

Since each Markov transition dθ′,m,τ is downward, it follows that q is feasible. These devi-
ations induce the same social choice function because the following diagram commutes.

Θ

Θ×Θ′ Θ×M

Θ×Θ′ × T Θ×M × T

Θ′ × T × S Θ′ ×M × T × S M × T × S

X

ẑ
z

r

t̂ t

q̂
q

ẑ

h

ĝ

d

g

space are carried along by the identity. Mechanisms act on the report set Θ′ not the type space Θ; π acts
on Θ.
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Extension to multiple agents Following the notation in Section 7, let Θ =
∏

iΘi,
T =

∏

i Ti, and S =
∏

i Si. Set π = ⊗iπ. With this notation, π is a Markov transition
from T × Θ to S, as in the single-agent case. After setting M =

∏

iMi, a mechanism in
the multi-agent setting maps between the same sets. Similarly for the agent’s strategies,
set r = ⊗iri and p = ⊗ipi. With these new definitions, construct h as before. Define di
separately for each agent i and then set d = ⊗idi. The proof is exactly as before. To
consider a deviation by a fixed player j, take ẑ = ẑj ⊗ r−j and q̂ = q̂j ⊗ p−j . Then the
deviation (z, q) constructed in (13) will have the form z = zj ⊗ r−j and q = qj ⊗ p−j .

B.2 Proof of Theorem 2

We begin with some notation. As in the proof of Theorem 1, denote by Θ′ the message set
in a direct mechanism. Thus, Θ′ is a copy of Θ. Similarly, denote by T ′ a copy of T that
will be the codomain of a most-discerning testing function. Keeping these copies separate
will be helpeful for the commutative diagrams below.

The proof is organized as follows. First, we select score conversions in a measurable
way. Next, we prove sufficiency and then necessity.

Selecting score conversions Let K denote the space ∆(S)S of Markov transitions on
S, viewed as a subset of RS×S , with the usual Euclidean topology and inner product 〈·, ·〉.
For k ∈ K, denote by k(s, s′) the transition probability from s to s′.

Define the domain

D = {(θ, τ, ψ) ∈ Θ′ × T ′ × T : τ �θ ψ}.

Define the correspondence K : D ։ K by putting K(θ, τ, ψ) equal to the set of monotone
Markov transitions k in K satisfying (i) πτ |θk = πψ|θ, and (ii) πτ |θ′k ≤SD πψ|θ′ for all types
θ′. By the choice of domain D, the correspondence K is nonempty-valued.

Endow D with the restriction of the σ-algebra B(Θ′ × T ′ × T ). To prove that there
exists a measurable selection k̂ from K, we apply the Kuratowski–Ryll-Nardzewski selection
theorem (Aliprantis and Border, 2006, 18.13, p. 600). The correspondence K has compact
convex values, so it suffices to check that associated support functions for K are measurable
(Aliprantis and Border, 2006, 18.31, p. 611).

Fix ℓ ∈ RS×S . Define the map C : D → R by

C(θ, τ, ψ) = max
k∈K(θ,τ,ψ)

〈k, ℓ〉.

It suffices to show that C is B(Θ′ × T ′ × T )-measurable. Define a sequence of auxiliary
functions Cm : D × (Θ′)m → R as follows. Let Cm(θ, τ, ψ, θ

′
1, . . . , θ

′
m) be the value of the
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program
maximize 〈k, ℓ〉

subject to k ∈ K

k is monotone

πτ |θk = πψ|θ

πτ |θ′jk ≤SD πψ|θ′j , j = 1, . . . ,m.

This is a standard linear programming problem with a compact feasible set. By Berge’s
theorem (Aliprantis and Border, 2006, 17.30, p. 569), the value of the linear program is
upper semicontinuous (and hence Borel) as a function of the coefficients appearing in the
constraints. Since π is Borel, so is each function Cm. By the measurable projection theorem
(Theorem 7), each map

(θ, τ, ψ) 7→ inf
θ′∈(Θ′)m

Cm(θ, τ, ψ,θ
′)

is B(Θ′ × T ′ × T )-measurable. A compactness argument shows that27

C(θ, τ, ψ) = inf
m

inf
θ′∈(Θ′)m

Cm(θ, τ, ψ,θ
′),

so C is also B(Θ′ × T ′ × T )-measurable.

Sufficiency Fix a decision environment (X,u) and let f be an implementable social choice
function. By the revelation principle (Theorem 1), there is a direct mechanism (t, g) that
canonically implements f . We now construct a decision rule ĝ such that the direct mech-
anism (t̂, ĝ) canonically implements f . Define ĝ by the following commutative diagram,

27We claim that for each positive ε there exists a natural number m and a vector θ
′ ∈ (Θ′)m such that

Cm(θ, τ, ψ,θ′) < C(θ, τ, ψ) + ε. Suppose not. For each θ′ ∈ Θ′, let Kθ′ be the compact set of monotone
Markov transitions k ∈ K satisfying (i) πτ |θk = ψψ|θ, (ii) πτ |θ′k ≤SD πψ|θ′ , and (iii) 〈k, ℓ〉 ≥ C(θ, τ, ψ) + ε.
This family has the finite intersection property, but the intersection over all θ′ ∈ Θ′ is empty, which is a
contradiction.
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where j denotes the identity transition from Θ to Θ′.

Θ

Θ×Θ′

Θ×Θ′ × T ′ Θ×Θ′ × T

Θ′ × T ′ × S Θ′ × T ′ × T × S Θ′ × T × S

X

id

t
t̂

π
π

t̂

t

ĝ

k̂

g

(14)

Since the diagram commutes, the direct mechanism (t̂, ĝ) induces f . For incentive compat-
ibility, we show that for any strategy (ẑ, q̂) in the new mechanism, there is a strategy (z, q)
in the old mechanism inducing the same social choice function. Given (ẑ, q̂), set z = ẑ and
define q by the following commutative diagram.

Θ×Θ′ × T ′ × T Θ×Θ′ × T

Θ′ × T ′ × T × S S

q̂

t̂

q

k̂

(15)

Since each transition k̂θ,τ,ψ is downward, it follows that q is feasible. These deviations
induce the same social choice function because the following diagram commutes.

Θ

Θ×Θ′

Θ×Θ′ × T ′ Θ×Θ′ × T

Θ′ × T ′ × S Θ′ × T ′ × T × S Θ′ × T × S

X

ẑ

t
t̂

q̂
q

t̂

t

ĝ

k̂

g

(16)
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Necessity If t̂ is not most-discerning, then there exists a fixed type θ such that t̂(θ) is
not most θ-discerning. Set τ = t̂(θ). Select a test ψ such that τ 6�θ ψ.

Define the decision set
X = {xθ′ : θ

′ ∈ Θ} ∪ {
¯
x},

where
¯
x, xθ′ , and xθ′′ are distinct for all distinct types θ′ and θ′′.

Define utilities as follows. Type θ gets utility 1 from xθ and utility 0 from every other
decision in X. For θ′ 6= θ, type θ′ gets utility 1 from decision xθ, utility π(ψ|θ

′) from xθ′ ,
and utility 0 from all other decisions.

Let f be the social choice function that assigns to each type θ′ with θ′ 6= θ the decision
xθ′ with certainty, and assigns to type θ decision xθ with probability π(ψ|θ) and decision

¯
x with probability 1 − π(ψ|θ). Then f can be canonically implemented by the mechanism
(t, ĝ), where t is any function satisfying t(θ) = ψ and ĝ is the decision rule specified as
follows. If the agent reports θ′ 6= θ, assign xθ′ no matter the test result; if the agent reports
θ, select xθ if the agent passes test ψ and

¯
x if the agent fails test ψ.

We claim that f cannot be canonically implemented with the testing function t̂. Suppose
for a contradiction that there is a decision rule ĝ such that f is canonically implemented by
the mechanism (t̂, ĝ). We separate into two cases.

First suppose π(τ |θ) = 0. Then every type can get the good with probability π(ψ|θ).
Since τ 6�θ ψ, there is some type θ′ 6= θ such that π(ψ|θ′) < π(ψ|θ), so type θ′ has a
profitable deivation.

Next suppose π(τ |θ) > 0. Define a Markov transition k on S, represented by a vector in
[0, 1]2 by letting k(s) be the probability that the measure gθ,τ,s places on decision xθ. Then
πτ |θk = πψ|θ. Since τ 6�θ ψ, either k is not monotone, in which case type θ can profitably
deviate by reporting type θ and failing the test, or there is some type θ′ 6= θ such that
πτ |θ′k >SD πψ|θ′ . In this case, type θ′ can profitably deviate by reporting θ′ and exerting
effort.

B.3 Proof of Theorem 3

First we use the regularity assumptions to prove that there exists a measurable test selection.
Then we follow the proof of the sufficiency part of Theorem 2.

Measurable test selection We prove that there exists a measurable function t̄ from
(Θ′×T,B(Θ′ × T )) to (T ′,B(T ′)) such that the test t̄(θ, ψ) is in T̂ (θ) and satisfies t̄(θ, ψ) �θ

ψ, for each θ ∈ Θ and ψ ∈ T . Define a correspondence H : Θ′ × T ։ T ′ by

H(θ, ψ) = {τ ∈ T : τ �θ ψ}.
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Since π is continuous, the graph of H is closed in Θ′ × T × T ′.28 Since the graph of T̂ is
Borel, so is the set {(θ, ψ, τ) : τ ∈ T̂ (θ)} and also the intersection

{(θ, ψ, τ) : τ �θ ψ and τ ∈ T̂ (θ)}.

By the measurable projection theorem (Theorem 7), the associated correspondence from
(Θ′ × T,B(Θ′ × T )) to T ′ is measurable. Moreover, this correspondence has closed values,
so we can apply the Kuratowski–Ryll-Nardzewksi selection theorem (Aliprantis and Border,
2006, 18.13, p. 600) to obtain the desired function t̄.

Sufficiency With t̄ in hand, the proof is almost the same as the proof of Theorem 2 in
Appendix B.2, but we are not given t̂. Instead, t̂ is defined by the commutative diagram.
The second and third rows of (14) and (16) become

Θ×Θ′

Θ×Θ′ × T ′ Θ×Θ′ × T

t
t̂

t̄

In (15), put t̄ in place of t̂. The rest of the proof is completed as above.

B.4 Proof of Proposition 1

A Markov transition k on {0, 1} can be represented as a vector

(k(0), k(1)) ∈ [0, 1]2,

where k(s) is the probability of transitioning from s ∈ {0, 1} to 1. A Markov transition k
is monotone and satisfies πτ |θk = πψ|θ if and only if the vector (k(0), k(1)) satisfies

k(1) ≥ k(0) and π(τ |θ)k(1) + (1− π(τ |θ))k(0) = π(ψ|θ).

We separate the solution into cases.
1. If π(τ |θ) ≥ π(ψ|θ), then the solutions are given by

[

k(0)
k(1)

]

= λ

[

0
π(ψ|θ)/π(τ |θ)

]

+ (1− λ)

[

π(ψ|θ)
π(ψ|θ)

]

,

for λ ∈ [0, 1], provided that we use the convention that 0/0 equals 1.
2. If π(τ |θ) < π(ψ|θ), then the solutions are given by

[

k(0)
k(1)

]

= λ

[

π̄(ψ|θ)/π̄(τ |θ)
1

]

+ (1− λ)

[

π(ψ|θ)
π(ψ|θ)

]

,

28Take a sequence (θn, ψn, τn) in grH converging to a limit (θ, ψ, τ) in Θ′ × T × T ′. For each n, there
is a monotone Markov transition kn on S such that (i) πτn|θnkn = πψn|θn , and (ii) πτn|θ′kn ≤SD πψn|θ′ for
all θ′ ∈ Θ. The space of Markov transitions on S is compact, so after passing to a subsequence, we may
assume that kn converges to a limit k, which must be monotone. Since π is continuous, taking limits gives
(i) πτ |θk = πψ|θ, and (ii) πτ |θ′k ≤SD πψ|θ′ for each θ′ ∈ Θ. Therefore, (θ, ψ, τ) is in grH.
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for λ ∈ [0, 1].
In each case, the left term is the vector representation of F̃τ |θQ̃τ |θ and the right term is the
vector representation of the constant Markov transition πψ|θ.

B.5 Proof of Proposition 2

Fix a type θ and tests τ and ψ. If k = λF̃τ |θQ̃τ |θ + (1− λ)πψ|θ, then by Lemma 1,

πτ |θ′k = λπτ |θ′F̃τ |θQ̃ψ|θ + (1− λ)πψ|θ =
(

λπτ |θ′ + (1− λ)πτ |θ
)

F̃τ |θQ̃ψ|θ.

Therefore, by Proposition 1, we have τ �θ ψ if and only if there exists λ ∈ [0, 1] such that

(

λπτ |θ′ + (1− λ)πτ |θ
)

F̃τ |θQ̃ψ|θ ≤SD πψ|θ′ , (17)

for all θ′ ∈ Θ. Now work with cases.
1. If π(τ |θ) = π(ψ|θ) = 0, the result is clear.
2. If π(τ |θ) ≥ π(ψ|θ) and π(τ |θ) > 0, we compare the probability of passage. The

inequality holds if and only if

[λπ(τ |θ′) + (1− λ)π(τ |θ)]
π(ψ|θ)

π(τ |θ)
≤ π(ψ|θ′),

This reduces to the desired inequality.
3. If π(τ |θ) < π(ψ|θ), we compare the probability of failure.The inequality holds if and

only if

[λπ̄(τ |θ′) + (1− λ)π̄(τ |θ)]
π̄(ψ|θ)

π̄(τ |θ)
≥ π̄(ψ|θ′).

B.6 Proof of Proposition 3

Fix a type θ and tests τ1 and τ2.
One direction is clear. If τ1 and τ2 are equal, then τ1 and τ2 are clearly θ-equivalent.

If type θ is minimal on τ1 and τ2, take λ = 1 in Proposition 2 to see that τ1 and τ2 are
θ-equivalent.

For the other direction, suppose τ1 and τ2 are θ-equivalent. Without loss, we may
assume π(τ |θ) ≥ π(ψ|θ). We separate into cases according to whether θ is minimal on τ .

First suppose θ is minimal on τ1. Since τ1 �θ τ2, there are probabilities k(0) and k(1)
such that for all types θ′,

π(τ2|θ) = k(0) + (k(1)− k(0))π(τ1|θ)

≤ k(0) + (k(1)− k(0))π(τ1|θ
′)

≤ π(τ2|θ
′).

Now suppose θ is not minimal for τ , so there exists some type θ′′ such that π(τ |θ′′) <
π(τ |θ). In particular, π(τ |θ) > 0.

Claim. π(τ |θ) = π(ψ|θ).
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Suppose for a contradiction that π(τ1|θ) > π(τ2|θ). By Proposition 2, there are constants
λ1 and λ2 in [0, 1] such that for all types θ′,

[λ1π(τ1|θ
′) + (1− λ1)π(τ1|θ)]π(τ2|θ) ≤ π(τ2|θ

′)π(τ1|θ),

[λ2π̄(τ2|θ
′) + (1− λ2)π̄(τ2|θ)]π̄(τ1|θ) ≥ π̄(τ1|θ

′)π̄(τ2|θ).

With θ′ = θ′′ the first inequality is weakest when λ1 = 1, so

π(τ1|θ
′′)π(τ2|θ) ≤ π(τ2|θ

′′)π(τ1|θ). (18)

Taking λ2 = 0 in the second inequality, and noting that π̄(τ2|θ) = 1 − π(τ2|θ) > 0, yields
the contradiction π̄(τ1|θ) ≥ π̄(τ1|θ

′′). Therefore, the inequality must hold with λ2 = 1, so

π̄(τ2|θ
′′)π̄(τ2|θ) ≥ π̄(τ2|θ)π̄(τ1|θ

′′). (19)

We show that (18) and (19) are incompatible. In (19), subtract π̄(τ1|θ)π̄(τ2|θ) from
both sides to get

[π̄(τ2|θ
′′)− π̄(τ2|θ)]π̄(τ1|θ) ≥ [π̄(τ1|θ

′′)− π̄(τ1|θ)]π̄(τ2|θ),

which is equivalently,

[π(τ2|θ)− π(τ2|θ
′′)]π̄(τ1|θ) ≥ [π(τ1|θ)− π(τ1|θ

′′)]π̄(τ2|θ).

The right side is strictly positive and π̄(τ2|θ) < π̄(τ1|θ), so

π(τ2|θ)− π(τ2|θ
′′) > π(τ1|θ)− π(τ1|θ

′′). (20)

Now negate (18) and add π(τ1|θ)π(τ2|θ) to both sides to obtain

[π(τ1|θ)− π(τ1|θ
′′)]π(τ2|θ) ≥ [π(τ2|θ)− π(τ2|θ

′′)]π(τ1|θ).

But π(τ2|θ) < π(τ1|θ), so (20) gives the opposite inequality.
With the claim established, we now complete the proof. By Proposition 2 there are

constants λ1 and λ2 in [0, 1] such that for all types θ′,

[λ1π(τ1|θ
′) + (1− λ1)π(τ1|θ)]π(τ2|θ) ≤ π(τ2|θ

′)π(τ1|θ),

[λ2π(τ2|θ
′) + (1− λ2)π(τ2|θ)]π(τ1|θ) ≤ π(τ1|θ

′)π(τ2|θ).

After cancelling the common value of π(τ1|θ) and π(τ2|θ), which is nonzero by assumption,
we have

λ1π(τ1|θ
′) + (1− λ1)π(τ1|θ) ≤ π(τ2|θ

′), (21)

λ2π(τ2|θ
′) + (1− λ2)π(τ2|θ) ≤ π(τ1|θ

′). (22)

It suffices to show that λ1 = λ2 = 1, for then π(τ1|θ
′) = π(τ2|θ

′) for all types θ′. Take
θ′ = θ′′ in both inequalities. We have π(τ2|θ) = π(τ1|θ) > π(τ1|θ

′′), so (22) implies that
π(τ2|θ

′′) ≤ π(τ1|θ
′′). Substituting this into (21), we get λ1 = 1. Then π(τ1|θ

′′) ≤ π(τ2|θ
′′),
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so (22) implies λ2 = 1.

B.7 Proof of Proposition 4

We simply translate Proposition 3 into the language of authentication rates. Suppose t̂1
and t̂2 are most-discerning testing functions, and let α1 and α2 be the induced authenti-
cation rates. For each type θ, we know t̂1(θ) and t̂2(θ) are most θ-discerning tests. Apply
Proposition 3 and translate the conclusion into the language of authentication rates.

B.8 Proof of Theorem 4

Let α be an authentication rate. First, suppose that α is most discerning. Let T = {τθ′ :
θ′ ∈ Θ}, and define the passage rate π by π(τθ′ |θ) = α(θ′|θ) for all types θ and θ′. Combining
Definition 8 and Proposition 2, we see that the testing function θ 7→ τθ is most discerning.
By construction, this testing function induces α.

Now suppose α is induced by a most-discerning testing function t̂ in a testing environ-
ment (T, π). Substitute the equality α(θ′|θ) = π(t̂(θ′), θ) into Proposition 2 to conclude
that α is most discerning.

B.9 Proof of Proposition 5

We apply the dominated convergence theorem. As λ converges to 0 pointwise, Λ(z|θ)
converges to 1 for all z and θ with z ≤ θ. Hence ϕ(θ) converges to ϕM (θ), for each θ.
Likewise, as λ converges to ∞ pointwise, Λ(z|θ) converges to 0 for all z and θ with z < θ.
Hence ϕ(θ) converges to θ, for each θ.

B.10 Proof of Proposition 6

We will prove a stronger result that we use below. Define functions λ+ and λ− from Θ to
[0,∞) by

λ+(θ) = −D2+α(θ|θ), λ−(θ) = D2−α(θ|θ).

In the main text, we only work with λ+, which is denoted λ. Extend the function Λ to
Λ: Θ×Θ → [0, 1] by

Λ(θ′|θ) =











exp
(

−
∫ θ

θ′
λ+(s) ds

)

if θ ≥ θ′,

exp
(

−
∫ θ′

θ
λ−(s) ds

)

if θ < θ′.

With these definitions, we now prove that α(θ′|θ) ≥ Λ(θ′|θ) all types θ′ and θ. Fix θ
and θ′. For each h, transitivity gives

α(θ′|θ + h) ≥ α(θ′|θ)α(θ|θ + h).
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Subtract α(θ′|θ) from each side to get

α(θ′|θ + h)− α(θ′|θ) ≥ α(θ′|θ)(α(θ|θ + h)− 1))

= α(θ′|θ)[α(θ + h, θ)− α(θ|θ)].

Dividing by h and passing to the limit as h ↓ 0 and h ↑ 0 gives

D2+α(θ
′|θ) ≥ −λ+(θ)α(θ

′|θ) and D2−α(θ
′|θ) ≤ λ−(θ)α(θ

′|θ).

Now we use absolute continuity to convert these local bounds into global bounds. Fix
a report θ′. Define the function ∆ on [

¯
θ, θ̄] by

∆(θ) =
α(θ′|θ)

Λ(θ′|θ)
.

By construction, ∆(θ′) = 1. We will argue that ∆(θ) ≥ 1 for all θ. For θ′ < θ, if D2+Λ(θ
′|θ)

exists, then

D+∆(θ) =
1

Λ(θ′|θ)

(

D+α(θ
′|θ) + λ+(θ)α(θ

′|θ)
)

≥ 0.

For θ′ > θ, if D2−Λ(θ
′|θ) exists, then

D−∆(θ) =
1

Λ(θ′|θ)

(

D−α(θ
′|θ)− λ−(θ)α(θ

′|θ)
)

≤ 0,

Since Λ(θ′|·) is absolutely continuous, these inequalities hold almost surely. Moreover, the
product of absolutely continuous functions on a compact set is absolutely continuous, so ∆
is absolutely continuous, and hence the fundamental theorem of calculus gives ∆(θ) ≥ 1, as
desired.

B.11 Proof of Proposition 7

First we introduce notation. For a given quantity function q, there is a one-to-one correspon-
dence between the transfer function t and the utility function U , given by U(θ) = θq(θ)−t(θ).
We will interchangeably refer to such a mechanism as (q, t) or (q, U). Let

u(θ′|θ) = α(θ′|θ)[θq(θ′)− t(θ′)], U(θ) = u(θ|θ) = max
θ′∈Θ

u(θ′|θ).

Lemma 6 (Utility bound). Let q be a bounded quantity function, and let U be a utility
function. If (q, U) is incentive compatible, then for every type θ, we have

U(θ) ≥

∫ θ

¯
θ

Λ(z|θ)q(z) dz. (23)

If the function θ 7→ Λ(θ|θ̄)q(θ) is increasing and the global upper bound is satisfied, it is
incentive compatible for (23) to hold with equality.

Lemma 6 is proved in Appendix B.12. Here we prove the theorem, taking Lemma 6
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as given. There is no loss in restricting attention to bounded quantity functions.29 Pick a
bounded quantity function q : Θ → R+. The principal’s objective function can be decom-
posed as the difference between the total surplus and the agent’s rents:

∫ θ̄

¯
θ

[θq(θ)− c(q(θ))]f(θ) dθ −

∫ θ̄

¯
θ

U(θ) dθ.

Plug in the bound from Lemma 6 and switch the order of integration to obtain the following
upper bound on the principal’s objective:

V (q) =

∫ θ̄

¯
θ

[ϕ(θ)q(θ)− c(q(θ))]f(θ) dθ.

The quantity function q⋆ from the theorem statement maximizes the expression in brackets
pointwise, and t⋆ is the corresponding transfer that achieves the utility bound. Since ϕ is
increasing and the global upper bound is satisfied, this mechanism is incentive compatible.
Since c′ is strictly increasing, the pointwise maximizer is unique, so this quantity function
q⋆ is unique almost everywhere.

B.12 Proof of Lemma 6

Let (q, t) be a bounded incentive compatible mechanism. The first step is showing that the
equilibrium utility function U is absolutely continuous. Fix types θ and θ′. We have

U(θ′) ≥ α(θ′|θ)
(

θ′q(θ)− t(θ)
)

+

≥ Λ(θ′|θ)
(

θ′q(θ)− t(θ)
)

+

≥ Λ(θ′|θ)
(

θ′q(θ)− t(θ)
)

,

where the first inequality uses individual rationality and incentive compatibility, and the
second uses the inequality between α and Λ established in Appendix B.10. Therefore,

U(θ)− U(θ′) ≤ θq(θ)− t(θ)− Λ(θ′|θ)
(

θ′q(θ)− t(θ)
)

= θq(θ)− t(θ)− Λ(θ′|θ)
(

(θ′ − θ)q(θ) + θq(θ)− t(θ)
)

= (1− Λ(θ′|θ))(θq(θ)− t(θ))− Λ(θ′|θ)(θ′ − θ)q(θ)

≤ (1− Λ(θ′|θ))(θ̄‖q‖∞ + ‖t‖∞) + |θ′ − θ|‖q‖∞.

To avoid separating into cases according to the relative sizes of θ and θ′, set λ̂ = λ+ ∨ λ−.
Since λ̂ ≤ λ+ + λ−, we know λ̂ is integrable. Using the inequality ex ≥ 1 + x, we have

1− Λ(θ′|θ) ≤ 1− exp

(

−

∫ θ′∨θ

θ′∧θ
λ̂(z) dz

)

≤

∫ θ′∨θ

θ′∧θ
λ̂(z) dz.

29Pick a quantity q̄ such that θ̄q̄ = c(q̄). Offering more than q̄ will always result in weakly negative profits,
so we can remove those offerings from the menu and increase the principal’s revenue. Therefore, there is no
loss in focusing on quantity functions that are bounded above by q̄.

45



Plug this into the inequality above to get

U(θ)− U(θ′) ≤ C

∫ θ′∨θ

θ′∧θ
(λ̂(z) + 1) dz,

where C = max{1, θ̄}‖q‖∞+‖t‖∞. Switching the roles of θ and θ′ gives the same inequality,
so we conclude that

|U(θ)− U(θ′)| ≤ C

∫ θ′∨θ

θ′∧θ
(λ̂(z) + 1) dz,

which proves the desired absolute continuity.
Now we use the absolute continuity of U to establish the bound. Define the auxiliary

function ∆ on [
¯
θ, θ̄] by

∆(θ) = Λ(θ|θ̄)

(

U(θ)−

∫ θ

¯
θ

Λ(z|θ)q(z) dz

)

= Λ(θ|θ̄)U(θ)−

∫ θ

¯
θ

Λ(z|θ̄)q(z) dz.

The function ∆ is absolutely continuous since it is the product of absolutely continuous
functions on a compact set. By Theorem 1 in Milgrom and Segal (2002), whenever U is
differentiable, we have

q(s)− λ+(s)U(s) = D2+u(θ|θ) ≤ U ′(s) ≤ D2−u(θ, θ) = q(s) + λ−(s)U(s).

At each point θ where all the functions involved are differentiable, which holds almost surely,
we have

∆′(θ) = λ+(θ)Λ(θ|θ̄)U(θ) + Λ(θ|θ̄)U ′(θ)− Λ(θ|θ̄)q(θ)

= Λ(θ̄, θ)
[

U ′(θ)− (q(θ)− λ+(θ)U(θ))
]

≥ 0.

Since ∆(
¯
θ) = 0, the fundamental theorem of calculus implies that ∆(θ) ≥ 0 for all θ, as

desired.
It remains to check that the global incentive constraints are satisfied, provided that q is

monotone. Expressing incentive-compatibility in terms of U , we need to show that for all
types θ and θ′,

U(θ) ≥ α(θ′|θ)(U(θ′) + (θ − θ′)q(θ′)). (24)

We consider upward and downward deviations separately. First suppose θ′ > θ. Write
out (24) as

U(θ) + α(θ′|θ)(θ′ − θ)q(θ′) ≥ α(θ′|θ)U(θ′),

or equivalently,

∫ θ

¯
θ

Λ(z|θ)q(z) dz + α(θ′|θ)

∫ θ′

θ

q(θ′) dz

≥ α(θ′|θ)

∫ θ

¯
θ

Λ(z|θ′)q(z) dz + α(θ′|θ)

∫ θ′

θ

Λ(z|θ′)q(z) dz.
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Compare the corresponding terms on each side. Since Λ(z|θ) ≥ Λ(z|θ′) for z ≤ θ ≤ θ′, we
get the inequality between the first terms. For the inequality between the second terms,
multiply by Λ(θ′|θ̄)/α(θ′|θ) and use the fact that Λ(z|θ̄)q(z) is increasing in z.

Now suppose θ′ < θ. Express (24) as

∫ θ′

¯
θ

Λ(z|θ)q(z) dz +

∫ θ

θ′
Λ(z|θ)q(z) dz

≥ α(θ′|θ)

[

∫ θ′

¯
θ

Λ(z|θ′)q(z) dz +

∫ θ

θ′
q(θ′) dz

]

=
α(θ′|θ)

Λ(θ′|θ)

[

∫ θ′

¯
θ

Λ(z|θ)q(z) dz +

∫ θ

θ′
Λ(θ′|θ)q(θ′) dz

]

.

Multiply both sides by Λ(θ|θ̄) and then rearrange to get the equivalent inequality

α(θ′|θ) ≤ Λ(θ′|θ)

∫ θ′

¯
θ

Λ(z|θ̄)q(z) dz +
∫ θ

θ′
Λ(z|θ̄)q(z) dz

∫ θ′

¯
θ

Λ(z|θ̄)q(z) dz +
∫ θ

θ′
Λ(θ′|θ̄)q(θ′) dz

= Λ(θ′|θ)

∫ θ

¯
θ

Λ(z|θ̄)q(z) dz

/
∫ θ

¯
θ

Λ(z ∧ θ′|θ̄)q(z ∧ θ′) dz.

B.13 Proof of Proposition 8

The same argument as in the proof of Proposition 7 (Appendix B.11) shows that the prin-
cipal’s value as a function of q can be written as

V (q) =

∫ θ̄

¯
θ

ϕ(θ)q(θ) dθ.

The quantity function q⋆ from the theorem statement maximizes this quantity pointwise,
and t⋆ is the corresponding transfer function. Since q⋆ is monotone, this mechanism is
incentive compatible and hence optimal. Except at points θ where ϕ(θ) = 0, the pointwise
maximizer is unique, and hence the mechanism is unique almost everywhere outside the set
ϕ−1(0).

B.14 Proof of Theorem 5

The proof of Theorem 2 (Appendix B.2) can be extended to allow for multiple agents by
taking products like in the proof of Theorem 1 (Appendix B.1). For the sufficiency, define
k̂i for each agent i and set k̂ = ⊗ik̂i. For necessity, if there is some j such that t̂j is not
most-discerning, apply the construction above on agent j, assuming every type of every
other agent is indifferent over all decisions.
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B.15 Proof of Proposition 9

Applying the same argument player by player gives

V (Q) =

∫

Θ

(

n
∑

i=1

ϕi(θi)qi(θi)
)

f(θ) dθ.

This is maximized by the interim quantity functions q⋆ in the theorem statement, which
induces monotone interim quantity functions. For each agent i, the transfer function is
pinned down by the envelope expression for Ui. We then choose a transfer function t⋆

consistent with these interim transfer functions that also satisfies the ex post participation
constraints.

C Supplementary proofs

C.1 Proof of Lemma 1

(i) Fix p ∈ [0, 1]. It suffices to show that (µF̃µ)[0, p] = p. For each s ∈ R, let Fµ(s−) denote
the left limit of Fµ at s. With this notation, we have

F̃µ(s, [0, p]) =











1 if Fµ(s) ≤ p,
p−Fµ(s−)

Fµ(s)−Fµ(s−) if Fµ(s−) ≤ p < Fµ(s),

0 if Fµ(s−) > p.

Set F+
µ (p) = sup{t ∈ R : Fµ(t−) ≤ p}.30 By the left-continuity of the map t 7→ Fµ(t−), we

have Fµ(F
+
µ (p)) ≤ p, with equality if µ is continuous at F+

µ (p). If µ is continuous at F+
µ (p),

then
(µF̃µ)[0, p] = µ(−∞, F+

µ (p)] = Fµ(F
+
µ (p)) = p.

If µ is discontinuous at F+
µ (p), then

(µF̃µ)[0, p] = Fµ(F
+
µ (p)−) + µ({F+

µ (p)})
p− Fµ(F

+
µ (p)−)

Fµ(F
+
µ (p))− Fµ(F

+
µ (p)−)

,

and the right side simplifies to p.
(ii) Fix s ∈ R. For each p ∈ [0, 1], recall that for all s ∈ supp ν, we have Qν(p) ≤ s if

and only if p ≤ Fν(s). Therefore,

Q̃ν(p, (−∞, s]) =

{

1 if p ≤ Fν(s),

0 if p > Fν(s).

We conclude that

(U[0,1]Q̃ν)(−∞, s] = U[0,1][0, Fν(s)] = Fν(s) = ν(−∞, s].

30This is the right-continuous inverse of Fµ and is more commonly defined as inf{t ∈ R : Fµ(t) > p}.
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(iii) This follows immediately from (i) and (ii).

C.2 Proof of Lemma 2

By Lemma 1 (iii), we have (ii) =⇒ (iii). We prove that (i) =⇒ (ii) =⇒ (i).
(i) =⇒ (ii). Suppose µ �SD ν. Set k = F̃µQ̃ν . Fix s ∈ S and let S0 = (−∞, s] ∩ S.

Recall that the left-continuous quantile function satisfies the Galois inequality

Qν(p) ≤ s ⇐⇒ p ≤ Fν(s).

Thus,

k(s, S0) =

∫ 1

0
F̃µ(s, dp)Q̃ν(p, S0) =

∫ Fν(s)

0
F̃µ(s, dp).

By first-order stochastic dominance, Fν(s) ≥ Fµ(s). Thus, the right side is at least
F̃µ(s, [0, Fµ(s)]), which equals 1.

(iii) =⇒ (i). Let k be a downward transition. Fix s in S, and let S0 = S ∩ (−∞, s].
We have

(µk)(S0) =

∫

R

µ(dt)k(t, S0) ≥

∫

(−∞,s]
µ(dt)k(t, S0) = µ(S0).

C.3 Proof of Lemma 3

(i) Suppose m is monotone on S. If µ ≥SD ν, then by Lemma 2 (iii) there is a downward
transition k on S such that µk = ν. Fix s0 ∈ S, and set S0 = (−∞, s0] ∩ S. Then

(νm)(S0)− (µm)(S0) = (µkm)(S0)− (µm)(S0)

=

∫

S

µ(ds)
[

(km)(s, S0)−m(s, S0)
]

=

∫

S

µ(ds)

∫ s

−∞
k(s, dt)

[

m(t, S0)−m(s, S0)
]

≥ 0,

where we get the second equality because k is downward, and the inequality because m is
monotone.

For the other direction, take µ = δs and ν = δt for s > t. Then

ms = δsm ≥SD δtm = mt.

(ii) Let m and m′ be monotone transitions on S. Suppose µ and ν are measures on S
satisfying µ ≥SD ν. Applying (i) twice, we have µm ≥SD νm and hence

µ(mm′) = (µm)m′ ≥SD (νm)m′ = µ(mm′).

By (i), mm′ is monotone.
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C.4 Proof of Lemma 4

Consider a Markov transition k : X×Y → [0, 1]. Define k̄ : X×Y → [0, 1] by setting k̄x equal
to the extension of kx to Y, for each x in X. For each B in Y, we have k̄(x,B) = k(x,B),
so the map x 7→ k̄(x,B) is measurable and hence universally measurable. We need to
check universal measurability for sets B in Y. Let µ be an arbitrary probability measure
on (X,X ). It suffices to show that k̄(·, B) is X µ-measurable for all B in Y(µk). If B is in

Y(µk), then we can sandwich B between B1 and B2 satisfying

0 = (µk)(B2 \B1) = µ(k(·, B2))− µ(k(·, B1)).

So the function k̄(·, B) is sandwiched between the X -measurable functions k(·, B1) and
k(·, B2), which agree µ–almost surely. Hence k̄(·, B) is X µ-measurable.

C.5 Proof of Lemma 5

For the inclusion, it suffices to show that every probability measure µ on (X × Y,X ⊗ Y),
we have

X ⊗ Y ⊂ (X ⊗ Y)µ.

Fix such a probability measure µ. Define measures µ1 and µ2 on X and Y by

µ1(A) = µ(A× Y ) and µ2(B) = µ(X ×B).

If A is in X µ1 , then there exist A1 and A2 in X sandwiching A such that

0 = µ1(A2 \A1) = µ((A2 \A1)× Y ) = µ((A2 × Y ) \ (A1 × Y )).

Similarly, if B in Yµ2 , then X × B is in (X ⊗ Y)µ. Taking intersections we conclude that

A×B is in (X ⊗ Y)µ. Therefore,

X ⊗ Y ⊂ X µ1 ⊗ Yµ2 ⊂ (X ⊗ Y)µ.

Now we turn to the last equality. For each probability measure µ on X ⊗ Y, let µ0 be
the restriction of µ to X ⊗ Y. Then

X ⊗ Y ⊂ (X ⊗ Y)µ0 ⊂ (X ⊗ Y)µ.

Taking the intersection over all such µ gives X ⊗ Y ⊂ X ⊗ Y.
Now we prove the reverse inclusion. Each probability measure ν on X⊗Y has a complete

extension ν̄ to (X ⊗ Y)ν . Let ν0 be the restriction of ν̄ to X ⊗ Y. Then

(X ⊗ Y)ν = (X ⊗ Y)ν0 ⊃ X ⊗ Y.

Taking the intersection over all such ν gives X ⊗ Y ⊃ X ⊗ Y.
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