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Abstract

Reanalyzing 12 experiments on the repeated prisoner’s dilemma (PD), we find strong

evidence for players’ use of behavior strategies. Starting with unrestricted memory-1

strategies, the most parsimonious non-rejected representation of behavior distinguishes

three subject types: defectors, cautious cooperators and strong cooperators. The de-

fectors defect with a high probability in every round. Both cooperating types play

semi-grim behavior strategies with different cooperation rates in round 1. This sim-

ple three-type mixture fits significantly better than 1046 combinations of (generalized)

pure strategies from the literature, which we fitted at the treatment level. Semi-grim

behavior strategies fit better than all 1046 mixtures of (generalized) pure strategies even

when we use a constant and pre-defined specification, without using free parameters or

any kind of post-hoc econometric magic. Furthermore, the resulting type shares corre-

late with the treatment parameters in a predictable manner, and the strategies themselves

are largely predictable thanks to their approximate invariance, but the strategies cannot

be rationalized as responses to expected payoffs.
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1 Introduction

One of the most dynamic research fields over the last two decades has been behavioral game

theory, i.e. the econometric and theoretical analysis of laboratory games to align observed

behavior with game-theoretical concepts. How should we think of beliefs, utilities, and sub-

jects’ choices, and is it possible to explain choices as responses to incentives? There has been

substantial progress in aligning observed behavior and theoretical predictions across many

classes of games. In generic normal-form games involving dominated strategies, behavior is

captured after relaxing rational expectations (Costa-Gomes et al., 2001); in games without

dominated strategies, behavior tends to mainly reflect logistic errors in choice (Weizsäcker,

2003; Brunner et al., 2011); and in games involving the distribution of monetary benefits,

preference interdependence seems to organize behavior (Fehr and Schmidt, 1999; Charness

and Rabin, 2002). Similarly, in single-object auctions, behavior shows to be reasonably con-

sistent with theory after accounting for risk aversion (Bajari and Hortacsu, 2005), biased

beliefs (Eyster and Rabin, 2005), or projection (Breitmoser, 2019).

One class of games that has experienced less progress in aligning behavior and predic-

tions is the large class of repeated games, including even supposedly simple instances such

as the repeated prisoner’s dilemma. Repeated games are the main approach toward modeling

long-run interactions, in particular to study cooperation and defection, and they have been

a core object of game-theoretic analyses at least since the folk theorem for repeated games

with discounting (Fudenberg and Maskin, 1986). Regarding individual strategies used in ex-

periments, however, there is no consensus on what subjects actually do1—not even, whether

they play pure, mixed or behavior strategies.

In this paper, we propose a new approach towards the analysis of strategies in repeated

games, and apply it to the repeated prisoner’s dilemma in order to answer three questions:

Which qualitative strategies do subjects actually play? Is there heterogeneity across subjects?

And, are the particular strategies played and the shares of them predictable across conditions?

Regarding the first question, much of the existing literature restricts attention to strate-

gies that are pure (with trembles), but recent evidence suggests that behavior strategies might

better explain behavior (reviewed below). Regarding the second and third question, exist-

ing evidence suggests that the type shares playing specific cooperative strategies fluctuate

without obvious patterns between treatments, which is puzzling but may reflect inadequate

constraints in the strategy estimation that we shall relax in our analysis.

1Dal Bó and Fréchette (2018) summarize determinants of first-round and aggregate cooperation rates but

there exists no consensus on general or specific properties of individual strategies.
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More generally, the existing literature distinguishes four approaches towards analyzing

strategy choice in repeated games: indirect elicitation approaches (e.g. Engle-Warnick and

Slonim, 2006; Bruttel and Kamecke, 2012), direct elicitation approaches (e.g. Dal Bó and

Fréchette, 2019; Romero and Rosokha, 2023), model-free clustering (e.g. Heller and Tubul,

2023), and model-based clustering by means of mixture models (e.g. Dal Bó and Fréchette,

2011; Fudenberg et al., 2012). All existing approaches seem to have advantages and disad-

vantages. Indirect elicitation approaches restrict attention to pure strategies, which is a re-

striction that more recent approaches seek to avoid. Direct strategy elicitation asks subjects

to define repeated game strategies (automata) in a way following Axelrod (1980a,b), and

these automata are then matched against the automata programmed by say 20 other players.

The overall payoff accumulated in all these say 20 supergames determines the experimen-

tal pay-out of subjects. Elicitation is appealing due to an apparent transparency and direct

identification of the strategies used. However, they entail a potential bias towards simple

strategies, for which expected payoffs may be easier to compute, and they have the impor-

tant disadvantage of disturbing the incentives of players by offering hedging opportunities:

As players are committed to their automaton for many supergames, the single automaton

choice determines the aggregate payoff of hundreds of round-by-round decisions. This en-

ables hedging over hundreds of lotteries, as discussed in more detail below, and induces an

incentive to play other strategies than in hot play where choices are made one-by-one. To

our knowledge, it is currently not possible to quantify the behavioral bias implied by the in-

centive change in programming automata, amongst others because it depends on the beliefs

about the automata of others. This implies that we cannot say how close the programmed

automata are to the strategies actually used in hot play.

Thirdly, model-free clustering approaches estimate individual strategies from hot play

(e.g. by estimating individual cooperation strategies in each memory-1 state) and then es-

timates clusters of strategies to obtain say five representative strategies that characterize a

population (e.g. by K-means clustering). Analyzing hot play, model-free clustering does not

bias incentives and requires relatively few assumptions such as pre-selection of candidate

strategies (beyond the restriction to memory-1, for example). However, model-free cluster-

ing cannot correct for measurement errors regarding individual strategies, it cannot control

for differences in individual sample sizes per state for different subjects (who enter differ-

ent states different numbers of time), as discussed shortly, and it requires large data sets to

estimate the parameters of say five representative strategies without further assumptions. Ex-

perimental data sets are sufficiently large for this approach only after pooling observations

from several treatments and experiments, which is adequate under the assumption that the
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strategies are the same across treatments, but this assumption has been refuted in prior work

(e.g. Fudenberg et al., 2012). As a result, aggregating observations from several treatments,

clustering will tend to overestimate the plurality of strategies, as strategies from different

treatments are observed, and considering the aforementioned measurement errors, the plu-

raliy will likely be overestimated even further. As an example of the latter, consider a fair

coin that is tossed four times, by 100 subjects, and let us cluster subjects with respect to

their relative frequency of tossing heads. Note, that individual strategies are often estimated

based on few (e.g. 4) observations for some states. We ran such simulations, and in all

our simulation runs, we estimated at least 3 clusters (based on optimum average silhouette

width in k-means clustering), one with subjects hitting heads 50%, and the other two with

approximately 15% and 85% probability. In strategy estimation, this issue is prevalent when

estimating cooperation probabilities following rounds where one subject cooperated and the

other one defected, as such states are observed comparably rarely.2

Finally, model-based clustering, usually by finite-mixture analyses (McLachlan and

Peel, 2004), starts with a model of the data generating process, including certain models

for clusters (strategy prototypes), and attempts to optimize the fit between the data and the

model taking the actual number of observations per subject and state into account. In the

coin tossing examples, this approach can use the information that each subject tosses their

coin four times, which is not used in model-free clustering, and it estimates the different

types of coins in the population. In our simulations, based on our implementation, this ap-

proach has identified the single cluster of a 50-50 coin, and in other simulations discussed

below, it reliably identifies the qualitative strategies in simulated data sets of standard size in

experimental repeated games. Modeling the data-generating process implies that the number

of observations per states are accounted for in the likelihood function, avoiding the concerns

about measurement errors emerging in direct estimation of individual strategies, the restric-

tion to certain strategy prototypes reduces the number of free parameters substantially and

enables estimation treatment-by-treatment, and the analysis of hot-play enables an unbiased

analysis of behavior. The disadvantage is, as mentioned, the underlying restriction to a set

of strategy prototypes. This restriction serves to reduce the number of free parameters in

the estimation, but can of course bias the results. Consider a possible case that the set of

candidate strategies has two elements, e.g. always defect and tit-for-tat, then all subjects will

inevitably be classified as playing one of the strategies—even in the extreme case that none

of them actually played either strategy. In this paper, we present a novel approach towards

2These comments notwithstanding, Heller and Tubul (2023) estimate five strategy clusters, which are sub-

jects playing either always defect or a strategy that is closer to a semi-grim strategy as estimated below than to

any pure strategy. From this perspective, our results are fairly compatible.
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resolving this concern, based on a transparent and evidence-backed pre-selection of candi-

date strategies and data mining to estimate an upper bound for the goodness-of-fit attainable

by certain classes of strategies, in order to be able to reach reliable conclusions. This way, we

maintain the advantages of model-based clustering while minimizing the disadvantages, in a

re-analysis of a large data set comprising 12 experiments to robustly estimate the strategies

that subjects play and study how they align with expected payoffs.

Our main results can be summarized as follows. First, on a data set comprising 145,000

decisions from 12 experiments, we use data-mining techniques to obtain an upper bound

for the goodness-of-fit that could be obtained assuming all subjects play versions of pure

strategies. We relax many assumptions made in the literature, grant many degrees of freedom

“for free”, allow for systematic randomization in round 1, and allow for either no switching,

random switching, or Markov switching of strategies between supergames. This way, we

combat the aforementioned pre-selection bias and determine the model with the best-fitting

pure strategies treatment-by-treatment, out of 1046 combinations of pure-strategy mixtures

across treatments.

Second, we estimate a lower bound for the goodness-of-fit that can be reached when we

relax the restriction to pure strategies and allow cooperating subjects play behavior strate-

gies. To this end, we evaluate the simple population mixture where subjects play either

always defect or one of two generic memory-1 behavior strategies (without restrictions to

pure or otherwise known strategies). It provides a lower bound for the adequacy of behavior

strategies, as it represents just one of many possible mixtures involving behavior strategies,

implying that the best possible mixture will be different. However, this simplistic mixture

still is highly significantly above the upper bound for the pure strategies. The result answers

our first question regarding the qualitative strategies: Some subjects certainly play behavior

strategies and strategy choice in the repeated PD can be understood only if the empirical

analysis allows for subjects playing behavior strategies.

Regarding the second question, heterogeneity, we employ both a top-down and a bottom-

up approach toward model selection. In the top-down approach, we start with a very general

specification (three unrestricted behavior strategies plus always defect per treatment) and

incrementally restrict the model until further restrictions are rejected at a statistically signifi-

cant level.3 Independently in both, the first and the second halves of sessions, this top-down

approach toward heterogeneity converges to a model containing three subject types across all

3Our unrestricted estimation is initially focused on memory-1 strategies, following a number of results in

the literature on behavior in the repeated PD with perfect information (Dal Bó and Fréchette, 2018; Breit-

moser, 2015), but the focus on memory-1 is corroborated by a robustness check (to memory-2) reported in the

appendix. The memory-1 states will be abbreviated as /0,cc,cd,dc,dd in the following.
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treatments and experiments: We refer to them as defectors, strong cooperators and cautious

cooperators. The defectors play a slightly perturbed version of always defect and the coop-

erators both play behavior strategies predicting nearly pure behavior after cc and dd (joint

cooperation and defection, respectively), and randomization after cd and dc. In round 1, the

strong cooperators cooperate with high and the cautious cooperators with intermediate prob-

ability. The intuitive interpretation is that subjects expect cooperation when both cooperated

in the previous round, or defection when both defected, and hence either cooperate or defect

with very high probability. Otherwise, they are “unsure” and randomize.

Alternatively, in the bottom-up approach toward model selection, we start with an overly

restricted model and keep removing restrictions until these restrictions stop being statistically

significant. In general, the bottom-up approach may well select a different model than the

top-down approach, but in our case, it converges to the very three-type mixture described

above. Our starting point, the overly restricted model, is a model containing a simple behav-

ior strategy previously hypothesized based on a small sample analysis in Breitmoser (2015),

where subjects cooperate with the probabilities 0.9 after joint cooperation in the previous

round, 0.3 after unilateral cooperation/defection, and 0.1 after joint defection. We obtain

a prediction for round 1 by the implication of Markov perfect equilibrium that behavior in

round 1 may equate with behavior in any other state. This yields a model with two types

of “cooperating” subjects, one with first-round cooperation probability of 0.9 and the other

with 0.3, and a “defecting” type that plays always defect – defined as usual. Note that all

three probabilities (0.9,0.3,0.1) above are neither optimized nor optimal, thus providing an

a priori reasonable though presumably restrictive model as starting point.

We observe that even this very simple mixture of three constant behavioral types fits

weakly better than the above upper bound for pure strategies for experienced and signifi-

cantly better for inexperienced subjects. This shows that behavior strategies fit better than

pure strategies even without exploiting any free parameters or other sources of econometric

magic, which we find quite intuitive: Average cooperation probabilities reasonably close to

0.9, 0.3, and 0.1 are observed in all experiments on the repeated PD with perfect monitor-

ing (see Table 2 in the appendix for the exact numbers). Our analysis simply considers the

possibility that subjects actually play the behavior strategy that we observe so robustly on

average—instead of ruling out this possibility ex-ante and assuming that there must be hid-

den types of pure strategies with highly variable type shares that implicitly reproduce this

average behavior again and again. Second, we observe that relaxing the three probabilities

(0.9,0.3,0.1) to be treatment specific improves the goodness-of-fit significantly for experi-

enced subjects. These results answer our second question: Subjects are heterogeneous –
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the bottom-up and the top-down approach congruently lead us to a three-type model with

defectors, strong cooperators, and cautious cooperators. Let us emphasize that this mixture

of types is not necessarily optimal for any single treatment, but it fits best on average in our

analysis, where we average across 32 treatments from 12 experiments to get robust results.

Regarding the third question, the shares of the three subject types vary significantly

across treatments, while the cooperation probabilities in the five memory-1 states of the

strategies vary relatively little across treatments. The latter are largely uncorrelated with

treatment parameters or other known predictors of cooperation, but the distribution of types

is highly predictable based on the discount factor δ and the Blonski et al. (2011) (BOS)

threshold of cooperation δ⋆. As δ approaches δ⋆, the share of defectors decreases relative to

cooperators, and as δ is raised further, the strong cooperators start to outnumber the cautious

cooperators, see Figure 3. That is, allowing for behavior strategies in the estimation implies

that the distribution of subject types stops being erratic and becomes predictable. This find-

ing extends existing results on the determinants of round-1 cooperation (see e.g. Dal Bó and

Fréchette, 2018; Embrey et al., 2018) towards determinants of defective, cautiously coopera-

tive and strongly cooperative behavior, and it partially answers our third question. It suggests

that subjects are aware of δ and other parameters when picking their strategy, while the actual

strategies seem largely uncorrelated with δ (see Figure 2 below). In other words, subjects

seem to be choosing one of three strategies depending on the environment, but hardly adapt

the strategy as such to the environment. This impression is reminiscent of the automata

discussed by Rubinstein (1986) and Schmidt (1993), amongst others, and reinforced by our

final result that the cooperation probabilities in the five memory-1 states are not rationaliz-

able as responses to expected payoffs under rational expectations. Overall, we conclude that

while strategy shares are predictable and strategies as such are largely invariant (hence, also

predictable), the strategies are not immediately rationalizable.

2 Background information

Definitions The prisoner’s dilemma (PD) involves two players choosing whether to coop-

erate (c) or defect (d). In the normalized PD, each player’s payoff is 1 if both cooperate and 0

if both defect. If exactly one player cooperates, the cooperating player’s payoff is −l (l > 0)

and the defecting player’s payoff is 1+ g (g > 0). The infinitely repeated PD is an infinite

repetition of this constituent game, mostly assuming future payoffs are discounted exponen-

tially (using factor δ < 1). Laboratory experiments implement the indefinitely repeated PD,

which is terminated with probability 1− δ after each round and where payoffs accrue for
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all rounds at once after termination of the game. The two games are strategically equivalent

under expected utility. We will refer to these games jointly as repeated PD (or, supergame).

Given g, l > 0, cooperation is dominated in the one-shot game but may be sustained along

the path of play in subgame-perfect equilibria of the repeated PD (depending on δ).

A strategy σ in the repeated PD maps all finite histories to probabilities of cooperation in

the next round. The strategy has memory-1 if it prescribes the same cooperation probability

for any two histories not differing in the actions chosen in their respective last rounds. It

has memory-2 if the same holds for the last two rounds. We denote memory-1 strategies as

σ = (σ /0,σcc,σcd,σdc,σdd) corresponding to the five memory-1 histories { /0,cc,cd,dc,dd},

called states in the following. For example, σcd , denotes the probability of cooperation when

a player’s most recent action is c and her co-player’s most recent action is d, σ /0 denotes the

action in the first round. A strategy is a pure strategy if it prescribes degenerate cooperation

probabilities after all histories (σ ∈ {0,1}5), and it is a behavior strategy otherwise (Selten,

1975). It is a mixed strategy, when a player randomizes over the set of pure strategies prior to

the start of each supergame, but sticks to the drawn pure strategy throughout the supergame.

In contrast, when playing a behavior strategy, she randomizes during the supergame.4

Table 1: Overview of the most commonly analyzed strategies (see Table 13 in the appendix

for a more comprehensive list)

Strategy Abbreviation Description (σ /0,σcc,σcd ,σdc,σdd)

Always Defect AD Always defects (0,0,0,0,0)

Always Cooperate AC Always cooperates (1,1,1,0,0)

Grim G Only cooperate in R1 and after cc (1,1,0,0,0)

Tit-for-Tat TFT Start with c, then copy opponent (1,1,0,1,0)

Suspicious TFT STFT, D-TFT Start with d, then copy opponent (0,1,0,1,0)

Win-Stay-Lose-Shift WSLS Cooperate in R1, cc and dd (1,1,0,0,1)

Semi-Grim SG Behavior strategy satisfying . . . σcc > σcd ≈ σdc > σdd

Note: The conventional definition of AC is (1,1,1,1,1), which is behaviorally equivalent to (1,1,1,0,0). The

definition used above implies that any memory-1 behavior strategy that might be observed on average can be

rebuilt using some combination of AD, AC, Grim, TFT and WSLS.

Related behavioral literature We will keep the literature review short and focused due to

the availability of an excellent recent survey by Dal Bó and Fréchette (2018). The modern

experimental research on the repeated PD started with Dal Bó (2005), who criticized earlier

experiments for implementing experimental designs that let subjects play against comput-

4Including the case when she would switch between pure strategies within a supergame. Note that Kuhn’s

Theorem, as generalized to infinite extensive-form games in Aumann (1964), implies that every mixed strategy

has a behavior strategy representation, but not vice versa, implying that the distinction is relevant.
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erized opponents. The first wave of experiments following Dal Bó (2005) includes Dreber

et al. (2008), Duffy and Ochs (2009), Blonski et al. (2011) and Kagel and Schley (2013),

and focuses on analyzing first-round and total cooperation rates. A second wave comprising

Dal Bó and Fréchette (2011, 2019), Bruttel and Kamecke (2012), Camera et al. (2012), Fu-

denberg et al. (2012), Sherstyuk et al. (2013), Breitmoser (2015), and Fréchette and Yuksel

(2017) analyzes the strategies actually chosen by players. The general theme in the reported

results is that round-1 cooperation rates depend on the strategic environment. More specif-

ically, the results indicate that subgame perfection of Grim is necessary but not sufficient

for cooperation to emerge (first reported in Dal Bó, 2005), and that subsequent coopera-

tion of subjects depends on their own and their opponent’s actions, primarily on those in

the previous round. The central importance of initial cooperation is also demonstrated in

Fudenberg and Karreskog (2023, forthcoming). Many of the second-wave analyses clas-

sify individual subjects’ strategies into varying sets of pre-selected strategies. Even allowing

for noise, these analyses clearly show that subjects do not homogeneously follow a given

pure strategy across all supergames. The studies differ in their assumptions of what subjects

might be doing instead—whether they are playing pure, mixed, or behavior strategies—and

consequently in their conclusions about behavior.

Many analyses assume that decisions are made only prior to the first supergame of a

session, with subjects then sticking to a pure strategy (with trembles) for the rest of the

session. Given this restriction to pure strategies, these analyses typically conclude that the

majority of subjects play either AD, TFT, or Grim, with each being attributed weights around

20–30%. For example, Result 6 of Dal Bó and Fréchette (2018, DF18) states that these

three strategies account for “most of the data”, specifically they “account for 70 percent of

strategies in most treatments”, but importantly, this result is obtained after a-priori restricting

attention to (a subset of) pure strategies without further validating this restriction. We refer

to this statement as the pure-strategy conjecture and will seek to evaluate the identifying

assumption.

A second, less common approach is based on the assumption that subjects randomly

switch pure strategies between supergames, which resemble mixed strategies in the game-

theoretical sense. For example, DF18 report that 84 percent of choices in supergames lasting

more than one round are accounted for by five pure strategies (now also including AC and

suspicious TFT) when they allow for strategy switching between supergames (DF18, Foot-

note 38).5 The difficulty now is to explain this strategy switching; otherwise, the impression

5Specifically, DF18’s observation states that subjects’ behavior is described “exactly” even if one “does not

allow for any mistakes.”
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of a perfect fit, not requiring a complicated analysis allowing for noise, is intriguing, but it

is only true in a post-hoc sense. Ex-ante, the strategy chosen by a given subject is not pre-

dictable, and the game-theoretical concept closest to such random choice over varying pure

strategies over time is that of a mixed strategy. The probabilities of choosing different pure

strategies over time may be path dependent, given the path-dependency they may be degen-

erate, and they may be heterogeneous between subjects. Below, we shall explicitly allow for

these possibilities by considering Markov-switching models to capture strategy switching

that contain pure, mixed, and path-dependent mixtures as special cases.6 This will be one of

the major novelties of our analysis and will enable us to determine an upper bound for the

goodness-of-fit of pure, mixed and Markov-switching strategies.

A third and growing group of studies attempts to validate the restrictions to pure strate-

gies by allowing subjects to randomize in each round of each supergame, as in the game-

theoretical concept of behavior strategies. Relaxing the restriction to pure strategies, Breit-

moser (2015) observed that cooperating subjects play a semi-grim behavior strategy (σcc >

σcd ≈ σdc > σdd) approximating (σcc,σcd,σdc,σdd) = (0.9,0.3,0.3,0.1), without specifying

σ /0 (behavior-strategy conjecture, c.f. Breitmoser, 2015, p. 2889). The intuition attributed

to this observation is that subjects expect cooperation after cc and then cooperate with high

probability, that they expect defection after dd and then defect with high probability, and that

they are unsure after the mixed histories cd,dc and then randomize. This intution directly en-

tails a prediction for behavior in round 1: Subjects expecting cooperation will cooperate with

high probability, subjects that are unsure will randomize, while subjects expecting defection

would play always defect as usually assumed. The game-theoretic foundation for this pre-

diction is that, if (σcc,σcd,σdc,σdd) = (0.9,0.3,0.3,0.1) is part of an equilibrium strategy,

which is approximately the case if symmetric belief-free equilibria exist (Breitmoser, 2015),

then the three possible completions of this strategy to a symmetric equilibrium strategy are

σ /0 = 0.9, σ /0 = 0.3, and σ /0 = 0.1 (round 1 can be equated with any of the subsequent states).

Additionally, semi-grim behavior strategies are found to better capture behavior than certain

mixtures of pure memory-1 strategies (Breitmoser, 2015).7 Recently, Fudenberg and Kar-

reskog (2023, forthcoming) report evidence highlighting the predictive power of semi-grim

strategies in repeated PDs, though the analysis focuses mainly on round-1 behavior.

A recent study by Romero and Rosokha (2023) elicits subjects’ strategies by letting

them construct memory-1 behavior strategies to be played by an automaton. Complemen-

tary to our results, they find that even in cold-play, that is, if subjects ex-ante must com-

6Note, Markov-switching is not covered by the definition of a mixed strategy.
7Few other studies investigate behavior strategies, e.g. Fudenberg et al. (2012), who include the strategy

"generous TFT" with randomization after opponent’s defection, and more recently Dvorak and Fehrler (2018).
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mit to a rule of play for a sequence of 20 super-games and know that their opponent does

too, many of them choose behavior strategies that involve randomization.8 This is striking

evidence for the empirical relevance of behavior strategies. Interestingly, their study also

shows that the average cooperation rates change from an approximate semi-grim pattern

(σcc,σcd,σdc,σdd) = (0.86,0.35,0.45,0.13) in hot-play, as in the experiments in our data,

towards a so-called “mixed tit-for-tat” pattern (σcc,σcd,σdc,σdd) = (0.78,0.17,0.46,0.14)

in the cold-play tournament where the selected strategies have to play against 20 other su-

pergame strategies without the possibility of interim modifications. This indicates that the

necessity to commit to a strategy for 20 supergames (against varying opponents) indeed af-

fects behavior. Such commitment is known to affect the set of equilibrium strategies (from

subgame perfection towards Nash) favoring “unbeatable” strategies such as TFT (Axelrod,

1980a,b; Duersch et al., 2014); and it affects individual incentives substantially by offering

“hedging” over bundles of 20 supergames.9 In light of this, behavior seems to be surprisingly

robust, given that the effect is largely confined to a reduction of the cooperation probability

in state cd by 18 percentage points.

The behavioral assumption that decisions are made in each round, instead of say once at

the start of a session (as in the pure-strategy conjecture), seems intuitive.10 However, there

are several concerns about Breitmoser’s results that might explain why the behavior-strategy

conjecture faces skepticism: the data set might be fortunately selected in Breitmoser (2015),

behavior might be more complex than memory-1 admits, strategies may be behavior strate-

8They elicit perturbed versions of TFT, which have slightly higher cooperation rates in state dc than cd and

find that after allowing for re-specification a larger share of subjects specifies rules similar to pure strategies.

Note the important strategic differences between this elicitation experiment and hot-play in standard PD games

that are reflected in the average cooperation rates across the memory-1 states, discussed below.
9To see the impact of hedging on individual incentives, consider a lottery that pays $10 with probability

.5 and $0 with probability .5, while the decision maker is slightly risk averse and would not be willing to buy

the lottery ticket for $4 (say α = 0.75 in a CRRA utility u(x) = xα). This would the round-by-round attitude

towards risk. Now consider the case that she is offered the option to buy 20 such lottery tickets in a bundle,

at the price $80, while she will be informed only of the total payoff after all tickets had been checked by a

computer. Would she be willing to buy this bundle of lotteries? Yes, and indeed she would be willing to pay

$99.35 (her certainty equivalent) for it – now she is “almost” risk neutral by comparison (thanks to bundling

the risks and the implied hedging). Thus, her risk attitude would be much closer to risk neutrality when she

commits to one strategy for 20 rounds (per supergame) and much more indeed if she commits to one strategy

for 20 such supergames, as in Romero and Rosokha (2023). The structure in the experiment of Romero and

Rosokha offers exactly this bundling of lotteries and thus is a strategically different situation than hot play –

giving rise to the use of riskier strategies than we would use in hot play.
10Here follow the interpretation of behavior in repeated matching pennies games (e.g. Goeree et al., 2003),

whereby the description of subjects randomizing say 50-50 each round is simply the best-possible description

for the outside observer. Subjects themselves typically do perceive their decisions to be deliberate each round.

Similarly, we consider a behavior strategy implying randomization each round to be the best-possible descrip-

tion available to observers of seemingly random but subjectively deliberate decisions that subjects make each

round.
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gies other than semi-grim, subjects might switch strategies as the session progresses, and

round-1 behavior was not included in the estimation of strategies. In the next two sections,

we address all of these concerns and report arguably conclusive answers to the following

questions:

Question 1. Which qualitative strategies do subjects play? Are they playing pure or non-

degenerate behavioral strategies? Are they choosing different strategies across supergames?

Question 2. Which particular strategies do subjects play? Is there heterogeneity across

subjects?

The case for memory-2 strategies had been made by Fudenberg et al. (2012), who an-

alyze the repeated PD with imperfect monitoring and show that if we assume subjects play

pure strategies, then there must be subjects with memory-2, based on evidence for 2TFT

and "lenient" Grim2 strategies. Similar ideas are expressed in Aoyagi and Frechette (2009)

and Bruttel and Kamecke (2012). We will provide robustness checks with memory-2, but in

addition, we will relax the restriction to pure strategies, which seems critical since behavior

strategies also generate decision patterns resembling memory-2 or -3.

The data We analyze the exact same set of experiments reviewed in Dal Bó and Fréchette

(2018). This set comprises most of the modern experiments on the repeated Prisoner’s

Dilemma with perfect monitoring, i.e. those published since Dal Bó (2005), and consists in

total of data from 12 studies, 32 treatments11, more than 1900 subjects, and almost 145,000

decisions. The set of studies equates with the studies listed in Table 2. A brief review and

an overview table is in Appendix B, but for a detailed discussion, see DF18. Due to its enor-

mous size, the wide range of experiments covered (from different experimenters at various

universities and in various countries), and its comprehensive character with respect to the

recent list of experiments on the repeated PD, this data set appears to be optimal for our

purposes. In addition, by sticking exactly to the list of experiments reviewed by Dal Bó and

Fréchette (2018), we can rule out the notion that data selection biases the results in favor of

any of the hypotheses we intend to test.

11Most studies have several treatments with varying payoff parameters and continuation probabilities. We

estimate our results at treatment level.
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3 A model-free overview of behavior

In order to provide a foundation for the subsequent analysis and discussion, let us first pro-

vide an overview of behavior in the repeated PD without imposing restrictions reflecting any

of the above stated three conjectures. To this end, we simply report average cooperation

rates in both the first and second halves of sessions of all experiments and discuss how these

average strategies align with expected payoffs across states.

Average behavior Table 2 reports the average cooperation rates across experiments in each

of the four memory-1 states after round 1 and tests for significance of differences. For brevity,

we aggregate across all treatments per experiment here but provide results by treatment upon

request. Initially, we skip round-1 behavior as it varies substantially across treatments, as

discussed below, but the cooperation rates in the remaining states are fairly similar across

treatments and indeed across experiments, as Table 2 shows. In state cc, cooperation rates

are above 0.9, in state dd they are mostly at or below 0.1 (with the sole exception of Aoyagi

and Frechette, 2009), and after the mixed histories cd and dc, cooperation rates fluctuate

somewhat in the range [0.2,0.5]. The differences between inexperienced and experienced

subjects, which we distinguish by first and second halves of sessions, are very minor over-

all. The aggregate cooperation probabilities shift by at most five percentage points. This

observation notwithstanding, it is customary to distinguish experienced and inexperienced

behavior, which we maintain also for this paper. In robustness tests, we examine alternative

definitions of experienced behavior (to be behavior after 30 or 60 decisions) and in line with

the very minor experience effects visible in Table 2, the results are highly robust.

Re-analyzing four experiments, Breitmoser (2015) made the observation that average

memory-1 strategies have a “semi-grim” pattern σcc > σcd ≈ σdc > σdd , with the approxi-

mation (σcc,σcd,σdc,σdd) = (0.9,0.3,0.3,0.1). Based on the vastly extended data set ana-

lyzed here, we can scrutinize whether this somewhat surprising observation was related to

(involuntary) data selection. To begin with, Table 2 shows that (0.9,0.3,0.3,0.1) is clearly

no more than an approximation, but in some steps of our analysis, we shall use it nonetheless

in order to avoid post-hoc specification adaptations of semi-grim.

We test for differences in the cooperation rates using bootstrapped p-values, resampling

at the subject level, and distinguishing two levels of significance: the conventional level 0.05

and the tighter level 0.002 ≈ 0.05/24. The latter implements the Bonferroni correction for

tests across 12 experiments and the two session halves. Naturally, we shall focus on this

corrected level of significance, but for clarity we also report the conventional level that does

13



Table 2: Few subjects play pure strategies and assuming pure strategies yields a striking bias even in large mixture models

Actual cooperation rates Number of subjects not randomizing 50-50

Experiment σ̂cc σ̂cd σ̂dc σ̂dd (c,c) (c,d) (d,c) (d,d)

First halves per session

Aoyagi and Frechette (2009) 0.917 ≫ 0.45 ≈ 0.408 ≈ 0.336 32/38 1/23 3/20 7/21

Blonski et al. (2011) 0.89 ≫ 0.279 ≈ 0.193 ≫ 0.034 13/17 1/5 3/3 124/135

Bruttel and Kamecke (2012) 0.91 ≫ 0.286 ≈ 0.228 ≫ 0.08 12/18 6/23 8/21 32/36

Dal Bó (2005) 0.922 ≫ 0.212 < 0.342 ≫ 0.089 13/13 0/3 2/2 42/54

Dal Bó and Fréchette (2011) 0.951 ≫ 0.334 ≈ 0.331 ≫ 0.063 94/106 28/117 51/128 218/253

Dal Bó and Fréchette (2019) 0.94 ≫ 0.297 ≈ 0.335 ≫ 0.057 216/243 37/137 62/147 404/474

Dreber et al. (2008) 0.904 ≫ 0.217 ≈ 0.213 ≫ 0.036 15/25 3/19 12/18 45/48

Duffy and Ochs (2009) 0.904 ≫ 0.301 ≈ 0.33 ≫ 0.111 43/57 4/25 10/24 61/82

Fréchette and Yuksel (2017) 0.943 ≫ 0.141 ≈ 0.266 ≈ 0.091 21/28 0/0 2/2 5/8

Fudenberg et al. (2012) 0.982 ≫ 0.4 ≈ 0.427 ≫ 0.066 38/43 1/6 5/11 20/25

Kagel and Schley (2013) 0.935 ≫ 0.263 ≈ 0.295 ≫ 0.051 71/81 20/71 32/60 98/111

Sherstyuk et al. (2013) 0.945 ≫ 0.328 ≈ 0.371 ≫ 0.117 37/44 10/36 12/34 41/52

Pooled 0.938 ≫ 0.304 ≈ 0.322 ≫ 0.065 605/713 111/465 202/470 1097/1299

Second halves per session

Aoyagi and Frechette (2009) 0.958 ≫ 0.398 ≈ 0.517 ≈ 0.375 33/37 0/12 1/12 5/9

Blonski et al. (2011) 0.923 ≫ 0.287 ≈ 0.231 ≫ 0.02 26/32 10/25 11/16 172/178

Bruttel and Kamecke (2012) 0.947 ≫ 0.221 ≈ 0.297 ≫ 0.041 13/15 8/17 9/12 31/35

Dal Bó (2005) 0.92 ≫ 0.242 < 0.388 ≫ 0.064 18/27 0/3 0/1 50/65

Dal Bó and Fréchette (2011) 0.979 ≫ 0.376 ≈ 0.362 ≫ 0.041 132/137 34/89 62/100 196/215

Dal Bó and Fréchette (2019) 0.976 ≫ 0.315 < 0.402 ≫ 0.035 340/365 52/162 77/146 448/497

Dreber et al. (2008) 0.917 ≫ 0.128 ≪ 0.39 ≫ 0.009 14/18 6/11 6/12 41/43

Duffy and Ochs (2009) 0.977 ≫ 0.367 ≈ 0.391 ≫ 0.082 80/87 5/35 16/43 60/68

Fréchette and Yuksel (2017) 0.97 ≫ 0.233 ≈ 0.398 ≫ 0.069 33/37 1/6 2/10 20/25

Fudenberg et al. (2012) 0.971 ≫ 0.487 ≈ 0.412 ≫ 0.083 41/44 2/8 4/10 14/17

Kagel and Schley (2013) 0.966 ≫ 0.262 ≈ 0.332 ≫ 0.025 87/90 16/56 30/46 91/97

Sherstyuk et al. (2013) 0.973 ≫ 0.482 ≈ 0.437 ≫ 0.078 44/48 7/24 17/23 23/29

Pooled 0.971 ≫ 0.327 < 0.376 ≫ 0.039 861/937 141/448 235/431 1151/1278

Note: The “actual cooperation rates” are the relative frequencies estimated directly from the data. The relation signs encode bootstrapped p-values (resampling at the subject level with 10,000 repetitions) where

<,> indicate rejection of the Null of equality at p < .05 and ≪,≫ indicating p < .002. Following Wright (1992), we accommodate for the multiplicity of comparisons within data sets by adjusting p-values

using the Holm-Bonferroni method (Holm, 1979). As a result, if a data set is considered in isolation, the .05-level indicated by “>,<” is appropriate. If all 24 treatments are considered simultaneously, the

corresponding Bonferroni correction requires to further reduce the threshold to .002 ≈ .05/24, which corresponds with “≫,≪”. Note that all econometric details here exactly replicate Breitmoser (2015), i.e.

the statistical tests are not adapted post-hoc. The “number of subjects not randomizing 50-50” indicates the number of subjects with cooperation rates in the various states differing significantly from 50-50 (in

subject-level two-sided binomial tests), conditioning on subjects having moved at least five times in the respective state. The required level of significance is set at p = 0.0625 such that five observations are

sufficient to trigger statistical significance if the subject plays a pure strategy.



not correct for multiple testing.12

Out of all the 24 observations, considering first and second halves separately, only

one observation, based on one session half in one experiment (Dreber et al., 2008), indi-

cates a significant violation of the key restriction σcd ≈ σdc, while the other two restrictions

σcc > σcd,dc and σcd,dc > σdd are never violated significantly. In 45/48 cases they are even

confirmed significantly at the tight 0.002 level surviving the Bonferroni correction. Pooling

all observations from all experiments, σcd ≈ σdc is not rejected in the first halves of sessions

but at the 0.05 level it is rejected in the second halves of sessions. The difference of σcd and

σdc remains small, however, and is not significant at the 0.025 level surviving the Bonferroni

correction considering that we run two simultaneous tests for the pooled data (one for the

first halves of sessions and one for the second halves). Given this range of observations on a

vastly extended data set, we conclude that Breitmoser’s observation passed the out-of-sample

test on non-selected data, i.e. that average behavior indeed exhibits the semi-grim pattern.

Of course, this is but a first indicator for semi-grim patterns, not evidence for the in-

dividual strategies played. That is, if there is subject heterogeneity, mean cooperation rates

provide unbiased estimates of the true cooperation rates but are not necessarily unbiased

estimates of the mean strategies (e.g. due to selection effects after round 1). The behavior-

strategy conjecture postulates that this semi-grim pattern does not only characterize the be-

havior on average but also the strategies of individual subjects. We will rigorously test

this conjecture below. For now we add the thought that otherwise, the observation that

this pattern recurs across all treatments and experiments would appear to be a surprising

coincidence—considering that pure strategies are estimated to be played in strikingly vary-

ing weights across treatments (Dal Bó and Fréchette, 2018).

The results of a first simple test of this hypothesis are reported in the last four columns of

Table 2. These columns list the number of subjects (per experiment) that deviate significantly

from randomizing 50-50 in the four memory-1 states. We focus on subjects with at least five

observations per state, which is sufficient to trigger significance in two-sided Fisher tests if

subjects play a pure strategy. The results are fairly clear: In state cd, i.e. after unilateral

defection of the opponent, all standard pure strategies (except AC , which is rarely observed

though) agree on the (pure) prediction that one should defect. This state is unique with

respect to the unanimity of the prediction. For this state, however, we find the lowest number

of subjects significantly deviating from randomizing 50-50—only around a quarter of the

subjects do so, putting a rather tight bound on the number of subjects potentially playing

12In Table 2, <,> indicate significance at the conventional level and ≪,≫ indicate significance surviving

the Bonferroni correction (see the table notes for details).
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pure strategies.

To further illustrate this bound, assume that subjects do use pure strategies: On one

hand, given that the semi-grim pattern results on average, there have to be subjects that

systematically cooperate after unilateral defection of opponents (state cd). These subjects

are rarely found in analyses, as indicated most clearly by the aforementioned Result 6 of

Dal Bó and Fréchette (2018), stating that “always defect” (AD), Grim, and tit-for-tat (TFT)

are the “three strategies [that] account for most of the data”. This directly contradicts the

observation that σcd ≈ σdc > σdd , unless in addition to the strategies accounting for most of

the data a substantial number of subjects systematically cooperate in state cd. However, the

strategies predicting at least occasional cooperation after cd, such as always-cooperate and

tit-for-2-tats, were found to fit behavior of only very few subjects in Dal Bó and Fréchette

(2018). This contradiction foreshadows what we will find below: even allowing for drastic

data mining, pure strategies cannot be pushed to fit behavior as well as a simple behavior

strategy does.

Relation to monetary incentives Complementing the model-free description of behavior,

let us look at what subjects should be doing under rational expectations. While relating the

decisions “cooperate” and “defect” to expected payoffs in each state is a standard behavioral

piece of information in analyses of static games, it is novel in analyses of repeated games.

The underlying question, whether the actions chosen are at least qualitatively plausible, is of

obvious relevance in any attempt to understand behavior.

For this initial model-free exposition, we will estimate the expected payoffs of coop-

erate and defect, in each state, from the perspective of an agent who assumes continuation

play follows the average relative frequencies of cooperation observed above. These relative

frequencies are denoted as the behavior strategy σ = (σ /0,σcc,σcd,σdc,σdd). Given σ, the

expected payoff in state ω ∈ { /0,cc,cd,dc,dd} is denoted as πω, with

πω = σωπω(c)+(1−σω)πω(d), (1)

where πω(c) and πω(d) denote the expected payoffs of playing c and d in state ω,

πω(c) = σω′

(

δπcc +(1−δ)×1
)

+(1−σω′)
(

δπcd +(1−δ)× (−l)
)

, (2)

πω(d) = σω′

(

δπdc +(1−δ)× (1+g)
)

+(1−σω′)
(

δπdd +(1−δ)×0
)

, (3)

with continuation probability δ and ω′ being the state ω from the opponent’s point of view,
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such that σω′ is the probability of cooperation by the opponent. Using the treatment-specific

average behavior strategies σ from above, we can solve the linear equation system, Eqs. 1–3

for all ω, and obtain the expected payoffs πω(c) and πω(d) for each state in each treatment.

The monetary incentive to cooperate is πω(c)−πω(d), for each ω. Figure 1 provides

an overview of the results: We plot the relative frequencies of cooperation across treatments

against the respective monetary incentives to cooperate for each state, separately for first and

second halves of sessions. The states cd and dc are pooled for simplicity. Figure 1 addi-

tionally shows the best-fitting logistic curves, estimated without intercept such that neutral

incentives πω(c)−πω(d) = 0 yield a predicted cooperation probability of 0.50. The pseudo-

R2 of the logistic curves indicate how much of the null deviance is explained by allowing for

logistic errors in utility maximization.

The observations can be summarized as follows: For each state, we have observations

from treatments with net incentives ranging from around −0.5 to +1, i.e. from cases where

πω(c)−πω(d) is highly negative to cases where it is highly positive. Essentially, the former

obtains in treatments where Grim is not a subgame-perfect equilibrium strategy and the latter

obtains in treatments where the discount factor δ is substantially above the threshold for

Grim to be a subgame-perfect equilibrium strategy. Despite this range of induced monetary

incentives, relative probabilities of cooperation and monetary incentives are highly correlated

only in round 1 (state /0). They are statistically close to independence in all states after round

1. For example, in second halves of sessions, when subjects have gained experience, the

Pseudo-R2 of the logit model is about 0.8 in round 1 and below 0.2 in all states afterwards.

Obviously, this model-free analysis has the drawback of neglecting subject heterogeneity,

which we will address below, but it seems that behavior in states cc and dd may be difficult

to align with monetary incentives. For this reason, we raise the following question, which

will be addressed in Section 5.

Question 3. Can the strategies played be predicted from parameters of the game?

4 Approach towards strategy estimation

In this section, we lay out our econometric approach and provide simulation results on the

econometric identification of strategy types.

Econometric approach and identification The general understanding of behavior in re-

peated games experiments is that there is a finite number of subject types and that each type is

17



Figure 1: Relation of monetary incentives and cooperation rates across states (naive beliefs)

(a) State /0, first halves of session
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(b) State /0, second halves of session
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(c) State cc, first halves of session
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(d) State cc, second halves of session
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(e) State cd,dc, first halves of session
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(f) State cd,dc, second halves of session
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(g) State dd, first halves of session
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(h) State dd, second halves of session
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Note: The expected payoff cooperating in that state π̂(c), the expected payoff of defecting in that state π̂(d),
the “predicted” probability of cooperation based on the logistic regression of cooperation rates on monetary

incentive π̂(c)− π̂(c), and the absolute deviation of that prediction.
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represented by a specific strategy. Since we observe actions instead of strategies (in hot-play

experiments), types are not directly observable. Formally, let K denote the finite set of types,

where type k ∈ K plays strategy σk and has population share ρk. Our data set is denoted O

where os,t denotes the action of subject s ∈ S in round t of their experimental session. The

probability of observing choice os,t , conditional on subject s being of type k is denoted as

Pr(os,t |σk). Hence, the probability that s generates the observations os = {os,t}t conditional

on being of type k is

Pr(os|σk) = ∏
t

Pr(os,t |σk),

and unconditionally, using the prior type shares ρ = {ρk}k, the probability that subject s

generates the observations os is

Pr(os|σ,ρ) = ∑
k∈K

ρk Pr(os|σk).

As McLachlan and Peel (2004) discuss in detail, by the far the most common (and easi-

est) consistent approach towards estimation of type shares ρ and strategies σ is maximum

likelihood, where we maximize

lnL(σ,ρ|O) = ∑
s∈S

lnPr(os|σ,ρ), (4)

usually using the EM algorithm. Maximum likelihood is standard practice also in the esti-

mation of strategies in the repeated prisoner’s dilemma, and to our knowledge, there is no

alternative approach towards consistent estimation given the above finite mixture model of

the subject pool. Note, that this method is well established in many fields of the empirical

economics literature, including literature on lifetime decision making and public policy for

a long time and more recently experimental economics.13

A subject using a pure strategy acts equivalently whenever a given state is reached and

she uses the same pure strategy across all supergames in the considered data set (say, first

halves of sessions). This is directly represented by the above model. A subject using a behav-

ior strategy is also assumed to use the same strategy across all supergames in the considered

13The approach of using mixture models in order to uncover decision rules in experimental data has been

established by Stahl and Wilson (1994) and El-Gamal and Grether (1995) and subsequently used in many

analyses of level-k reasoning and stochastic choice, see e.g. Houser and Winter (2004) and Houser et al.

(2004), to unravel individual decision rules. A special case of finite mixture modeling is the Strategy Frequency

Estimation Method (SFEM) employed by Dal Bó and Fréchette (2011), Fudenberg et al. (2012), Rand et al.

(2015), Dal Bó and Fréchette (2019), Fréchette and Yuksel (2017).
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data set and thus is captured by the above model. A subject using a mixed strategy uses

a pure strategy within supergames but randomizes over pure strategies prior to supergames.

This can be captured straightforwardly in finite mixture models by assuming that subjects are

represented by different agents in different supergames, where the likelihoods are aggregated

over agents instead of subjects, which we will call random-switching model for clarity.

Can we reliably identify strategy types? We estimate the strategy proportions and para-

maters (such as tremble probabilities) by maximum likelihood and evaluate model differ-

ences by the robust Schennach-Wilhelm likelihood-ratio tests, which guarantees reliable

identification for large samples. Our sample is comparably large, but is it large enough and

more generally, what is the probability of misidentification in standard experimental sam-

ples? In order to answer these questions, we simulate populations that play pure (or, mixed)

strategies exactly in the proportions estimated in DF18—for all 17 treatments analyzed in

DF18. Is our maximum-likelihood approach sufficiently robust to correctly identify the type

of strategy (pure, mixed, behavior) if the sample size is small (50 subjects)?

Appendix A.2 provides a detailed analysis answering this question, but the key results

for our purpose are provided in Table 3. If subjects play pure strategies as assumed in DF18,

in the proportions estimated in DF18, then our maximum very robustly identifies these strate-

gies as pure strategies even in small samples of just 50 subjects and 20 observations per

subject past round 1 (93% probability of correct identification, averaged across all 17 treat-

ments). Mistaken identification is in almost all cases in favor of mixed strategies (as opposed

to behavior strategies), and our “data mining” approach further benefits pure and mixed

strategies (as discussed below). Table 3 also shows that mixed strategies are identified with

very high reliability across conditions. Combined, these results very clearly demonstrate

that populations with subjects playing pure strategies as estimated in DF18, or similar pop-

ulations playing mixed strategies, will not be misidentified as populations playing behavior

strategies.

Importantly, this does not stand in contrast to the estimates of Romero and Rosokha,

who simulate populations where no agent plays semi-grim behavior strategies and then esti-

mate population shares of a set of strategies including semi-grim. They find that a positive

share of subjects is estimated to play semi-grim subjects although actually no subject did so.

The explanation for the misidentification is rather simple: many of the subjects play strate-

gies that are not in the set of candidate strategies considered by Romero and Rosokha, so

they must be misclassified, and some of them end up being misclassified as playing semi-

grim. This is not a concern in our simulations, which builds on Result 6 of DF18 that “Three
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Table 3: Identification of strategies with very few observations in simulated populations with

type shares of the 17 different treatments estimated by DF18

Type proportions In 100 simulation runs, identified as

following DF18, Tab. 10 Pure Mixed AD +
(σAD,σGrim,σTFT,σAC,σSTFT) strategies strategies Semi-Grim

Simulated agents play: Pure strategies (“No switching”)

Dreber et al. (2008), T1 (0.64,0.07,0.15,0,0.14) 100 0 0

Dreber et al. (2008), T2 (0.3,0.21,0.4,0,0.09) 100 0 0

Dal Bo and Frechette (2011), T1 (0.91,0,0.07,0,0.02) 99 1 0

Dal Bo and Frechette (2011), T2 (0.76,0,0.06,0,0.08) 94 6 0

Dal Bo and Frechette (2011), T3 (0.49,0,0.24,0.01,0.04) 100 0 0

Dal Bo and Frechette (2011), T4 (0.66,0,0.23,0,0) 100 0 0

Dal Bo and Frechette (2011), T5 (0.11,0.04,0.21,0,0.08) 100 0 0

Dal Bo and Frechette (2011), T6 (0,0.02,0.55,0.02,0) 22 78 0

Fudenberg et al. (2012) (0.06,0.12,0.15,0.24,0) 83 4 13

Rand et al. (2015) (0.18,0.43,0.27,0,0.05) 98 0 2

Frechette and Yuksel (2014) (0.14,0.32,0.39,0,0.02) 98 0 2

Dal Bo and Frechette (2015), T1 (0.53,0.06,0.05,0,0.14) 100 0 0

Dal Bo and Frechette (2015), T2 (0.25,0.36,0.19,0.03,0.03) 96 0 4

Dal Bo and Frechette (2015), T3 (0.47,0.1,0.1,0.02,0.12) 100 0 0

Dal Bo and Frechette (2015), T4 (0.12,0.35,0.3,0.08,0) 94 0 6

Dal Bo and Frechette (2015), T5 (0.14,0.17,0.39,0.02,0.07) 100 0 0

Dal Bo and Frechette (2015), T6 (0.22,0.06,0.25,0,0) 100 0 0

Probability of identification overall 0.932 0.052 0.016

Simulated agents play: Mixed strategies (“Random switching”)

Dreber et al. (2008), T1 (0.64,0.07,0.15,0,0.14) 0 100 0

Dreber et al. (2008), T2 (0.3,0.21,0.4,0,0.09) 0 100 0

Dal Bo and Frechette (2011), T1 (0.91,0,0.07,0,0.02) 0 100 0

Dal Bo and Frechette (2011), T2 (0.76,0,0.06,0,0.08) 0 100 0

Dal Bo and Frechette (2011), T3 (0.49,0,0.24,0.01,0.04) 0 100 0

Dal Bo and Frechette (2011), T4 (0.66,0,0.23,0,0) 0 100 0

Dal Bo and Frechette (2011), T5 (0.11,0.04,0.21,0,0.08) 0 100 0

Dal Bo and Frechette (2011), T6 (0,0.02,0.55,0.02,0) 2 98 0

Fudenberg et al. (2012) (0.06,0.12,0.15,0.24,0) 0 100 0

Rand et al. (2015) (0.18,0.43,0.27,0,0.05) 0 100 0

Frechette and Yuksel (2014) (0.14,0.32,0.39,0,0.02) 0 100 0

Dal Bo and Frechette (2015), T1 (0.53,0.06,0.05,0,0.14) 0 100 0

Dal Bo and Frechette (2015), T2 (0.25,0.36,0.19,0.03,0.03) 0 100 0

Dal Bo and Frechette (2015), T3 (0.47,0.1,0.1,0.02,0.12) 0 100 0

Dal Bo and Frechette (2015), T4 (0.12,0.35,0.3,0.08,0) 0 100 0

Dal Bo and Frechette (2015), T5 (0.14,0.17,0.39,0.02,0.07) 0 100 0

Dal Bo and Frechette (2015), T6 (0.22,0.06,0.25,0,0) 0 100 0

Probability of identification overall 0.001 0.999 0

Note: Analysis based on simulated data sets comprising 50 subjects and 20 observations (past round 1) per

subject, reporting the frequency of identification of the different strategy classes using our econometric method-

ology (where identification of either pure, mixed or behavior strategies is based on the ICL-BICs of the corre-

sponding no-switching, random-switching, or semi-grim structures).
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strategies account for most of the data: AD, grim, and TFT” (page 18), to which we add two

more strategies (AC and S-TFT) and extensive data mining to be on the safe side, implying

that very few pure-strategy subjects should not be accounted for in our analysis. Based on

Result 6 of DF18 and our simulation results, misclassification of pure-strategy subjects as

playing semi-grim strategies therefore appears to be practically impossible in our analysis.

Markov-switching As indicated, our analysis extends prior work by allowing also for

Markov-switching models towards strategy selection, which generalize the finite-mixture

and random-switching models used in previous analyses of repeated game strategies. They

allow us to capture a potentially heterogeneous group of agents (in our case, subjects po-

tentially playing different strategies), where each agent is characterized by a “state of mind”

(the strategy to be played), and agents may change their states of mind over the course of

time, but both states and transitions are latent and thus not directly observable. Let us refer to

Ansari et al. (2012), Breitmoser et al. (2014) and Shachat et al. (2015) for earlier applications

in behavioral analyses. The identifying assumption is that transitions between supergames

follow a Markov process, that is transitions can only depend on the strategy in the previous

supergame. This generalizes the finite mixture model, with degenerate transition probabil-

ities, and the random switching model, where the strategy choices are independent of the

strategy choice in the previous supergame.14 Note that Markov switching does not represent

a pure or mixed strategy in the standard sense, but we include it in the estimation in order to

help variations of pure strategies achieve the best-possible fit in our estimation of the upper

bound for their goodness-of-fit.

As above, the estimation of Markov-switching models proceeds by maximum likeli-

hood. Formally, let G denote the set of supergames and let κ ∈ KG denote atransition paths

across types. For example, by κ = (κ1,κ2, . . .) the subject in question is of type κ1 ∈ K in

supergame 1, of type κ2 in supergame 2, and so on. Further, let gs(t) denote the number g of

the supergame that subject s plays when she is in round t of her experimental session. Thus,

κgs(t) denotes the type according to transition path κ in the supergame where subject s is in

round t of her experimental session. Hence, the probability that s generates the observations

os = {os,t}t conditional on following the transition path κ ∈ KG is

Pr(os|σ,κ) = ∏
t

Pr(os,t |σκgs(t)
),

14The latter, with the additional assumption that choice probabilities for the strategies are constant over time,

ensures identification of random-switching models.
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and unconditionally, using ρ(κ) to denote the prior probability of transition path κ ∈ KG, the

probability that subject s generates the observations os is

Pr(os|σ,ρ) = ∑
κ∈KG

ρ(κ)Pr(os|σk).

As indicated, we assume that type transitions follow a Markov process, the specification

of which defines the path probabilities ρ(κ). Consistent estimation of the model parame-

ters is achieved by maximum likelihood, and to this end, we use the standard Baum-Welch

algorithm (Bilmes et al., 1998).

Mechanically, the more complex a model (the more parameters and the more subject

types), the larger a model’s capacity to fit the data—and implicitly, the larger its fallacy to

overfit the data. This is conventionally captured by evaluating model adequacy based on

information criteria such as the Bayes information criterion (BIC), which penalize for the

degrees of freedom in a theoretically adequate manner. Mixture and switching models ad-

ditionally contain freedom in defining the number of subject types, which provides an addi-

tional source for overfitting aside from the number of parameters used. Following Biernacki

et al. (2000), we address these concerns by using the information-classification likelihood

Bayes-information criterion (ICL-BIC), a criterion that penalizes both model complexity

and the failure of the mixture model to provide a classification in well-separated strategy

clusters.

We address the observation that modeling mixtures of pure, mixed, and behavior strate-

gies induces sophisticated nesting structures between models, and the concern that indeed

all models may be misspecified by evaluating model differences using the robust Schennach-

Wilhelm likelihood ratio tests (Schennach and Wilhelm, 2017).

Finally, we allow for stochastic choice in the form of trembles (after all histories of

play) following Harless and Camerer (1994), i.e. in each round the minimal probability of

any action is equal to γ ≥ 0 where γ is a free (noise) parameter in the estimation. In our

context, this approach is econometrically equivalent to a logistic-error approach, which is

traditionally used in random utility modeling as opposed to strategy estimation.15 In strat-

egy estimation, the perturbation approach has the advantage that it does not perturb choice

15To see the equivalence in strategy estimation, consider a type playing a pure strategy. In states where

the strategy prescribes cooperation with probability 1, the logistic-error approach prescribes cooperation with

probability 1/(1+exp{λ · (0.5−1)}, which implies the tremble probability γ = 1−1/(1+exp{λ · (0.5−1)}).
In states where cooperation is prescribed with probability 0, the logistic cooperation probability is 1/(1+
exp{λ · (0.5− 0)}), which yields the same value for the tremble probability γ = 1/(1+ exp{λ · (0.5− 0)}).
Hence, there is a bijection between logistic precision λ and tremble probability γ, implying the econometric

equivalence.
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probabilities of subjects that are already randomizing, which enables direct estimation of

strategies. Importantly, it is customary to assume that trembles, i.e. unintended deviations

from pure strategies, are symmetric across states. Behavior strategies in general, and semi-

grim strategies in particular, are not symmetric in this sense: they allow for deviations from

purity to be more pronounced in some states than in others. This is the statistical foundation

for a distinction of pure strategies with trembles and behavior strategies. If the symmetry

condition is violated significantly, then behavior strategies fit better than pure strategies, and

if the violations of the symmetry are mild, then the more parsimonious pure strategies fit bet-

ter (by our information criterion). Arguably, if the tremble probabilities exceed the .05 level,

they induce a “significant” deviation from pure strategies, and the resulting strategies might

be labeled behavior strategies even if trembles are symmetric across states. To give the pure-

strategy conjecture the best-possible chance, however, we will not restrict the magnitude of

tremble probabilities in any way.

5 Analysis

In this section, we identify the set of candidate strategies and data mine for the best pos-

sible (post-hoc) mixtures of (generalized) pure strategies for each treatment. We will not

penalize the model for data mining best mixtures but treat the resulting mixtures treatment-

by-treatment as if they had been hypothesized ex-ante. As we discuss below, this provides

us with an upper bound for the goodness-of-fit of pure and mixed strategies, which we will

compare to a simple model that contains only defectors playing AD and two types of (po-

tential) cooperators playing unrestricted memory-1 behavior strategies. Due to the one-sided

data mining, involving optimizing the post-hoc mixture of pure and mixed strategies, aug-

mented by Markov-switching strategies, measured against a simple mixture of AD and two

behavior strategies, this analysis is heavily lopsided in favor of modeling behavior using pure

and mixed strategies. In this sense, we give the pure- and mixed-strategy conjectures the best

possible chance.

We then estimate the number of subject types and the strategies played in both a top-

down and a bottom-up approach towards model selection. The top-down approach starts with

the general model and iteratively eliminates insignificant components, while the bottom-up

approach starts with a basic model and iteratively adds model components identified as sig-

nificant. Both approaches will converge to the same model distinguishing defectors playing

AD from cautious and strong cooperators playing semi-grim strategies. Section C in the ap-

pendix demonstrates robustness to longer memory lengths by showing that model adequacy

24



does not improve by equipping subjects with memory-2, neither for (generalizations of) pure

strategies nor for semi-grim. That is, while increasing memory length slightly improves the

goodness-of-fit, this increase does not make up for the increased complexity of strategies as

evaluated using the Bayesian information criterion.

Candidate strategies Our objective is to obtain an upper bound for the goodness-of-fit of

(generalized) pure and mixed strategies. To this end, we first need to define the candidate set

of pure strategies that are being considered, as it is obviously impossible to consider all pure

strategies explicitly. Nor is it necessary, however, as many strategies are simply not capturing

subjects’ behavior even by classifications focusing on pure strategies only. To begin with,

previous studies have found that in the repeated PD with perfect monitoring, strategies with

memory-2 or more seem to be of little relevance statistically (Breitmoser, 2015; Dal Bó and

Fréchette, 2019). In the appendix, we report a robustness test of our results with respect to

memory-2 and similarly find memory-2 to be statistically insignificant. For these reasons,

and following the existing literature, we shall focus on memory-1 strategies in this paper.

This leaves us with 25 = 32 pure strategies, but many of them are behaviorally equivalent.

For example, always defect (σ /0,σcc,σcd,σdc,σdd) = (0,0,0,0,0) is behaviorally equivalent

to suspicious Grim (0,1,0,0,0) and suspicious AC (0,1,1,0,0). When we eliminate these

duplicates (see Appendix A.1 for details) and the strategically dubious strategies predicting

cooperation in some state but defection in cc, this leaves us with the 10 pure strategies shown

in Table 4. Not all of them seem to be equally plausible candidate strategies, however. In

order to assess their potential relevance in capturing behavior observed in the experiments

we analyze, we next check for how many subjects these strategies best explain their play.

That is, we classify subjects into the best fitting strategy at the individual level.

Our classification is based on maximum likelihood16, which is congruent with the other

estimates reported here, and essentially asks which strategy reports the observed choices of

a given subject with the highest probability. We report the results for two possible levels of

tremble probabilities γ = 0.01 and γ = 0.03, which cover the relevant range based on noise

levels estimated in Breitmoser (2015), in Table 4. But before we discuss the results, a word

of caution is in order. Despite our maximum-likelihood approach towards the classifications,

the reported type shares are not the maximum-likelihood estimates of the type shares in the

population. The latter estimates can only be obtained by estimating all type shares jointly,

i.e. by estimating the aforementioned finite-mixture model for the entire population. This

16We are grateful to a referee for the suggestion to classify subjects in order to justify our choice of candi-

date strategies. The suggestion was a classification based on maximum likelihood, which we adopt here, but

appendix 9 reports robustness checks showing that Euclidean distance yields similar classifications.
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joint estimation implicitly accounts for the relative weights of evidence, as for example sub-

jects that are just between Grim and AD, with a slight advantage for Grim, will count in the

relatively correct way for Grim and AD weights in the population-level estimation reported

below, while they count fully as Grim and zero as AD in the subject-level estimation reported

in Table 4. With this being the main reason for the population-level (“finite-mixture”) estima-

tion, the population-level estimation is also the only consistent approach to simultaneously

estimate strategy parameters such as tremble probabilities and cooperation probabilities in

behavior strategies (although the results are fairly robust in this respect).

Table 4: Share of strategies by maximum likelihood classification with and without allowing

for behavior strategies

Strategy definition Best fitting strategy Robustness

(σ /0,σcc,σcd,σdc,σdd) Shares Pure only Shares

AD (0,0,0,0,0) 0.21 0.32 0.23

S-TFT (0,1,0,1,0) 0.02 0.13 0.03

S-WSLS (0,1,0,0,1) 0 0 0

S-AC1 (0,1,1,1,0) 0.01 0.04 0.01

S-AC2 (0,1,1,0,1) 0 0 0

S-AC3 (0,1,1,1,1) 0 0 0

Grim (1,1,0,0,0) 0.05 0.22 0.07

AC (1,1,1,0,0) 0.02 0.07 0.03

TFT (1,1,0,1,0) 0.08 0.21 0.1

WSLS (1,1,0,0,1) 0 0.01 0

Cautious SG (.3, .9, .3, .3, .1) 0.35 – 0.31

Strong SG (.9, .9, .3, .3, .1) 0.26 – 0.21

Sum of shares:

All 1 1

AD + C/S SG 0.82 – 0.75

AD + Grim + TFT 0.34 0.74 0.37

Note: Strategy shares by maximum likelihood classification allowing for 1% tremble probabilities (“Best fitting

strategy”) and 3% tremble probabilities (“Robustness”). The set includes all possible memory-1 strategies (see

Appendix A.1 for details) and two behavior strategies cautious and strong cooperators derived from Breitmoser

(2015). If two strategies fit equally well, we prioritize known strategies over unknowns (S-ACx,S-WSLS). And

if then still two strategies fit equally well we assign the subject half to each of the strategies. For average actual

play of subjects assigned to these strategies, see Tables 7 and 8 in the Appendix.

As shown in Table 4, the results are robust to the choice of tremble probabilities con-

sidered here. Hence, let us focus on the best-fitting strategies by the γ = 0.01 classification.

In the classification restricted to pure strategies, 74% of subjects are assigned to play ei-

ther AD, TFT or Grim, with 22% to Grim and 21% to TFT, replicating Dal Bó and Fréchette

26



(2018, Result 6).17 Once we allow for the two types of semi-grim strategies discussed above,

the weights of Grim and TFT drop to 5% and 8%, respectively, while the two semi-grim

strategies represent the best fit for 61% of the subjects (35% cautious and 26% strong semi-

grim)—without any adjustments to the coarsely rounded cooperation probabilities (.9, .3, .1)

mentioned in Breitmoser (2015). These observations again foreshadow the results of the

population-level analysis allowing for general behavior strategies: any restriction to pure

strategies is behaviorally inadequate and will be statistically rejected.

At present, however, we are defining the the set of candidate strategies, which we con-

sider to be played in pure, mixed, and/or generalized form, as the set of strategies attracting at

least 0.02 weight in the above classification, i.e. AD, Grim, TFT, STFT and AC, which repli-

cates the observation of DF18 (Footnote 38) that these five strategies are the most relevant

pure strategies. The candidate WSLS, which we hypothesized to be a promising candidate

as a number of studies established its evolutionary robustness (Nowak and Sigmund, 1993;

Imhof et al., 2007) receives only a negligible share below 1%.18

In order to extend the scope of pure and mixed strategies, we extend this set of strate-

gies by adding generalized versions. These generalized versions have a free parameter per

strategy prescribing first-round cooperation rates σ /0, thus allowing subjects’ first-round co-

operation rates to be different from 0 in AD and STFT and different from 1 in the other

strategies, not just in the form trembles (which are the same for all strategies), but indi-

vidually for each strategy type. Note that round-1 randomization has trivial mixed-strategy

representations, since mixed strategies also randomize in round 1. This way, we allow for

some types to play pure and other types to play (certain) mixed strategies randomizing over

cautious and cooperative play in round 1. The definition of the continuation behavior re-

mains unchanged, such that (σcc,σcd,σdc,σdd) ∈ {0,1}4 aside from trembles. We refer to

these strategies as generalized pure strategies. In addition, we will of course consider the

pure strategies in their original form (with trembles), thereby covering the possibility that in

at least some treatments the generalizations do not improve the goodness-of-fit, allowing us

to post-hoc save parameters.

Pure, mixed or behavior strategies? In order to answer this question, we now estimate

an upper bound of the goodness-of-fit of pure strategies. As indicated, the models that we

consider for estimating this upper bound go far beyond what one would usually consider to

17The actual average play of subjects assigned to these strategies is far from being pure, though (see Table 7

in the Appendix.
18Results with WSLS are available in previous working paper versions and upon request.
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be pure strategies, but we relax some restrictions to put pure and mixed strategies at an ad-

vantage. In combination with the way we pick the best specifications at the treatment-level,

preceded by several optimization steps, deliberately puts them in a head start position com-

pared to what is generally considered best practice in model selection (hence, upper bound).

This is true particularly in comparison to the simple mixture of AD and two unrestricted

behavior strategies without post-hoc model selection.

Given the set of candidate strategies defined above, our approach towards data mining

pure-strategy mixtures across treatments is as follows. First, we evaluate independently for

each treatment which mixture of pure or generalized pure strategies best captures behavior.

That is, we determine for each treatment, which combination of pure strategies fits best,

which combination of generalized pure strategies fits best, and which of the best combi-

nations fits best. Following the pure-strategy conjecture, we assume the best combination

always contains at least TFT, AD, and Grim. We add AC, STFT, or pure noise players (ran-

domizing 50-50 in all states) when this improves the goodness-of-fit by ICL-BIC (see above).

Thus, we choose the best out of 9 as promising conjectured memory-1 mixtures, for each of

the 32 treatments and each of the two half-sessions independently.19 In total, we therefore

evaluate 932 models per level of experience and afterwards pick the best-fitting model by

ICL-BIC. Second, we do all of this separately for the three “switching models” designed to

capture the three possibilities of strategy switching between supergames: "No Switching"

(pure strategy), "Random Switching" (mixed strategy), and "Markov Switching" (strategy

switching between supergames follows a Markov process).

The results for each of the three switching models are reported in columns 2-5 of Table

5. The leftmost column contains the results for the baseline model comprising AC, AD,

TFT, Grim, and STFT without data mining, which can serve as a reference for how much

of the goodness-of-fit is due to data mining. The three columns “No Switching”, “Random

Switching” and “Markov Swiching” contain the ICL-BICs of the best fitting combination

of pure and generalized pure strategies—optimally picked by treatment, but for the sake of

readability, we report ICL-BICs aggregated by experiment.20

The random switching model in column 3 of Table 5 capturing mixed strategies gen-

erally fits worst, by the enormous amount of more than 2000 points on the log-likelihood

19For each of the two classes of strategies (pure and generalized pure ), we consider mixtures containing

AD, TFT and Grim and in addition either (i) no other strategy, (ii) AC, (iii) STFT, and (iv) AD + STFT. This

makes 8combinations in total. In addition, in the case of pure strategies, we allow for a mixture containing

noise players (randomizing 50-50 in all states) as type besides AD, TFT and Grim.
20Treatment-wise ICL-BICs are provided upon request. Each entry in the aggregated table represents the

sum of ICL-BICs of the best out of 9 models for each respective treatment.
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scale. This shows that subjects are reasonably consistent in their strategy choice. The no-

switching model capturing pure strategies (column 2) fits worse than the Markov-switching

model (column 4) in the first halves of sessions, but weakly better in the second halves of

sessions. If these models captured behavior well, this could suggest that subjects initially

experiment with different pure strategies, though not randomly, as in mixed strategies, but

systematically, as in a stochastic Markov process, to then converge to individual choices for

strategies as the session proceeds.

Overall, the aggregate effect achieved by data mining for the best-fitting combination of

(generalized) pure strategies and switching model is highly significant in relation to the base-

line model. Modeling the behavior of inexperienced subjects (first halves of sessions), our

generalizations and data mining combined yield a gain of 1000 points on the log-likelihood

scale, comparing the baseline model to the best-fitting Markov switching models, and mod-

eling experienced subjects (second halves), generalization and data mining combined yield a

gain of about 700 points compared to the baseline model. Since these scores do not account

for the degrees of freedom inherent in the model selection during data mining, they do not

imply that the baseline model has to be rejected, but they clearly show that our approach

yields an enormous improvement in fit over the memory-1 strategies identified as the candi-

date strategies and in the literature. Further, since we attempted to include all specifications

that may be considered compatible with either the pure- or the mixed-strategy conjecture,

and picked the best one for each treatment, we can consider this data-mined specification to

be a generous upper bound of the adequacy of these memory-1 models to describe behavior.

Second, this upper bound, reported in column 5 (“Best Switching”) of Table 5, allows

us to test the pure- and mixed-strategy conjectures, extended by Markov-switching, against

the behavior-strategy conjecture. While the behavior-strategy conjecture suggests that the

behavior of cooperating subjects is well-described using semi-grim strategies after round

1, we will initially use no such prior insights and estimate strategy mixtures involving un-

restricted memory-1 strategies (σ /0,σcc,σcd,σdc,σdd). Specifically, we estimate mixtures

dubbed “2×P5+AD” involving an AD type and two such unrestricted behavior-strategy

types (with five free parameters each, hence “P5”). This mixture generalizes the three-type

mixture AD+TFT+Grim hypothesized by DF18, simply by lifting all restrictions, without

imposing ex-ante plausible restrictions, and without any model selection to improve the in-

formation criterion. For this reason, we refer to it as a lower bound of the goodness-of-fit

attainable when considering behavior strategies. We will explore possible improvements

incorporating semi-grim structure below.

Specifically, we compare the simple three-type model with an invariant and sub-optimal
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Table 5: Best mixtures of pure or generalized strategies in relation to behavior strategies. Strategy mixtures are estimated treatment-by-

treatment. The resulting ICL-BICs are pooled for experiments and overall (less is better, relation signs point to better models)

Best mixture of pure or generalized strategies Best Mixture

Baseline No Random Markov Best Unrestr Beh Best Switching

Model Switching Switching Switching Switching 2×P5+AD By Treatment

Specification

# Models evaluated 1 932 932 932 3×932 1 2732 ≈ 1046

# Pars estimated (by treatment) 5 48 48 180 276 13 276

# Parameters accounted for 5 3–10 3–10 12-35 3–30 13 3–30

First halves per session

Aoyagi and Frechette (2009) 888.46 ≈ 843.08 ≈ 834.4 ≈ 845.5 845.5 ≫ 744.76 < 834.4

Blonski et al. (2011) 1126.33 ≫ 1069.54 ≈ 1103.29 ≪ 1220.75 1220.75 ≈ 1209.41 ≫ 1060.2

Bruttel and Kamecke (2012) 827.86 ≈ 821.99 ≈ 835.56 > 785.49 785.49 ≈ 759.46 ≈ 785.49

Dal Bó (2005) 639.5 ≈ 623.19 ≪ 674.07 ≈ 641.52 641.52 ≈ 609.66 ≈ 619.34

Dal Bó and Fréchette (2011) 7143.23 ≫ 6874.99 ≪ 7459.16 ≫ 6378.54 6378.54 ≈ 6273.56 ≈ 6378.54

Dal Bó and Fréchette (2019) 8590.44 ≫ 8367.55 ≪ 9152.85 ≫ 8181.42 8181.42 ≫ 7775.32 ≪ 8161.75

Dreber et al. (2008) 840.44 > 789.22 < 863.52 ≫ 744.21 744.21 ≈ 767.3 ≈ 744.21

Duffy and Ochs (2009) 1401.73 ≈ 1396.68 < 1467.36 ≫ 1372.98 1372.98 ≈ 1345.12 ≈ 1372.98

Fréchette and Yuksel (2017) 314.71 ≈ 300.87 < 339.64 > 297.74 297.74 ≈ 285.33 ≈ 297.74

Fudenberg et al. (2012) 437.5 ≈ 437.5 ≈ 432.38 ≈ 435.85 435.85 ≫ 372.32 ≪ 432.38

Kagel and Schley (2013) 2660.58 ≈ 2660.58 ≪ 2992.72 ≫ 2439.06 2439.06 ≈ 2398.74 ≈ 2439.06

Sherstyuk et al. (2013) 1318.22 ≈ 1299.14 ≪ 1450.71 ≫ 1274.09 1274.09 > 1186.92 < 1274.09

Pooled 26371.37 ≫ 25710.49 ≪ 27804.74 ≫ 25307.72 25307.72 ≫ 24202.07 ≪ 24919.14

Second halves per session

Aoyagi and Frechette (2009) 530.1 ≈ 492.28 ≈ 484.04 ≈ 482.66 492.28 ≫ 408.59 < 482.66

Blonski et al. (2011) 1473.77 ≫ 1373.41 < 1479.64 ≪ 1592.81 1373.41 < 1458.47 ≫ 1369.08

Bruttel and Kamecke (2012) 522.14 ≈ 493.79 ≪ 611.49 ≫ 498.18 493.79 ≈ 471.73 ≈ 493.79

Dal Bó (2005) 715.1 ≈ 712.63 ≪ 782 > 740.37 712.63 > 687.86 < 712.63

Dal Bó and Fréchette (2011) 5355.14 ≫ 5045.08 ≪ 6396 ≫ 4860.82 5045.08 ≫ 4493.1 ≪ 4820.25

Dal Bó and Fréchette (2019) 8273.95 > 8107.4 ≪ 9413.23 ≫ 7837.73 8107.4 ≫ 7152.05 ≪ 7785.24

Dreber et al. (2008) 603.7 ≈ 580.69 < 661.75 ≫ 558.39 580.69 > 519.56 ≈ 558.39

Duffy and Ochs (2009) 1914.65 ≈ 1910.09 ≈ 1992.7 ≫ 1883.18 1910.09 ≫ 1598.03 ≪ 1883.18

Fréchette and Yuksel (2017) 458.49 ≈ 433.18 < 474.9 ≈ 429.95 433.18 ≫ 382.11 ≪ 429.95

Fudenberg et al. (2012) 505.1 ≈ 505.1 ≈ 540.33 ≈ 523.98 505.1 ≫ 421.81 < 505.1

Kagel and Schley (2013) 1681.03 ≈ 1681.03 ≪ 2347.19 ≫ 1621.42 1681.03 ≫ 1527.49 < 1621.42

Sherstyuk et al. (2013) 901.02 ≈ 890.27 ≪ 1137.49 ≫ 896.87 890.27 > 815.26 < 890.27

Pooled 23116.57 ≫ 22462.25 ≪ 26533.34 ≫ 22747.03 22462.25 ≫ 20410.22 ≪ 22069.97

Note: Relation signs encode p-values of Schennach-Wilhelm likelihood-ratio tests where <,> indicate rejection of the Null of equality at p < .05 and ≪,≫ indicating p < .002,

which implements the Bonferroni correction of 24 simultaneous tests per hypothesis. “No Switching” assumes that subjects chooses a strategy prior to the first supergame and

plays this strategy constantly for the entire half session. “Random Switching” assumes that subjects randomly chooses a strategy prior to each supergame (by i.i.d. draws), and

“Markov Switching” allows that these switches follow a Markov process.



number of 13 free parameters per treatment (column 6: “Unrestr Beh, 2×P5+AD”), to the

“Best Switching” model (column 5) that was post-hoc picked from 3× 932 models, after

estimating 276 parameters for each of the 32 treatments, but without accounting for the

degrees of freedom used in the model selection process (solely accounting for the 3–10

parameters of the best-fitting model that is finally used—in line with the data mining ideal).

Despite this abuse of statistical power, the behavior strategy mixture fits significantly

better than the mined mixture of generalized pure or mixed strategies: it improves on the

data-mined model by more than 1100 points in the first-halves of sessions and even by more

than 2000 points in the second halves of sessions. Since AD players are contained in all

models, this demonstrates that the behavior of subjects not playing AD—i.e. behavior of

cooperating subjects—is much better described by behavior strategies than using any mix-

ture of standard or generalized pure strategies. Indeed, the effect gets more pronounced as

subjects gain experience. This is substantial and perhaps surprising, but in the end, it is sim-

ply a reflection of the deficiency of deterministic choice rules in capturing behavior as we

observed already in the subject-level classification. A robustness check clarifying that this

observation also holds true after accounting for memory-2 is reported in the appendix.

Third, we evaluate the arguably extreme model, which identifies the best-fitting combi-

nation of (generalized) pure strategies (out of 9 combinations) and the best-fitting switching

model (out of 3) treatment by treatment without any consistency requirement. Thus, we

choose the best-fitting model from 27 models for each treatment, amounting to the enor-

mous selection of the best out of 2732 models across all experiments. Note that such analysis

without imposing consistency requirements across treatments does not yield economically

useful estimates, but if anything, this provides an even more generous upper bound of the

behavioral content of pure and generalized pure strategies of memory-1. The results are re-

ported in the right-most column (“Best Switching By Treatment”). In total, this exhaustively

mined model still fits worse than the behavior-strategy mixture, by more than 700 points in

first halves of sessions and by almost 1600 points in second halves of sessions.21 Hence,

it is key to allow cooperating subjects to play strategies involving non-trivial randomization

in strategy estimation, and restrictions to pure strategies are invalid. We summarize these

observations as follows.

Result 1 (Question 1). Cooperating subjects seem to use memory-1 behavior strategies. The

upper bound of the goodness-of-fit that we can attain with pure or mixed strategies, even

allowing for Markov-switching, is significantly below the (lower bound of) goodness-of-fit of

21Section C in the appendix demonstrates that this result is robust to allowing for memory-2, where we find

that memory-2 is overall insignificant.
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a model allowing for cooperating subjects to play behavior strategies.

Heterogeneity of cooperators and strategy estimation Let us now examine to what ex-

tent the cooperating subjects are heterogeneous and if there is any structure in the behavior

strategies they seem to be playing. We estimate the extent of heterogeneity in two ways,

by a top-down approach and by a bottom-up approach. In the top-down approach, we start

with a general model allowing for four different subject types (per treatment), one of which

plays AD and three that play memory-1 behavior strategies without any restrictions, and

successively impose restrictions until they reduce the goodness-of-fit in a statistically signif-

icant manner. In Table 6, we refer to the first model as “3×P5+AD”, where P5 indicates

the unrestricted five-parameter behavior strategy. Note that we explicitly distinguish AD

and behavior strategies, as the behavior strategy conjecture is that cooperating subjects play

(semi-grim) behavior strategies.

In the bottom-up approach, we start at a highly restricted model with just 3 free parame-

ters per treatment, to capture type shares and trembles (column 2: “Fixed SG, 1.5×SG+AD”,

Table 6)22, and successively lift restrictions until this stops improving the goodness-of-fit in a

statistically significant manner. As starting point, we use the cautious and strong semi-grim

strategies discussed above, which we identified to be played by 61% of subjects overall,

which amounted to about 75% of cooperating subjects in the individual-level analysis.

Table 6 provides detailed information on a range of models connecting these two ex-

tremes, distinguishing either up to three cooperating types playing general behavior strate-

gies or up to three types playing semi-grim (SG) strategies, which we define as strategies

satisfying σcc = 1−σdd > σcd = σdc. These intermediate models represent our prior hy-

pothesis and allows us to implement the two approaches toward model selection. Finally,

Table 6 includes a model with just one type of cooperating subjects (“P5+AD” in the right-

most column), as a robustness check if this might suffice, but unsurprisingly, this model fits

significantly worse.

Before delving into the details, one point is worth noting: Table 6 reports on a large

range of models where cooperating subjects always are assumed to play unrestricted or

semi-grim behavior strategies. All of these models improve on the best of the 1046 models

assuming subjects play pure or generalized pure strategies (“Best Mixture, Best Switching”

in the left-most column of Table 6). That is, our earlier result on the inadequacy of pure and

generalized pure strategies is confirmed very robustly: whatever specification we use, allow-

22Slightly abusing notation, 1.5 semi-grim types indicates that the two cooperating types have different

cooperation probabilities in round 1 of each supergame but equivalent continuation strategies.
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ing for two types of cooperating subjects to play flexible semi-grim or unrestricted behavior

strategies fits behavior much better. Importantly, this would not be observed if the pure-

strategy conjecture was empirically valid: Besides AD, our behavior-strategy estimation can

accommodate cooperating subjects to play any mix of up to three cooperative strategies like

TFT, Grim, and say WSLS, STFT or AC depending on treatment (in 3×P5+AD). If they

actually did so, then the (generalized) pure strategy mixture would fit at least as well as

the behavior strategy mixture without using as many free parameters, which improves the

ICL-BIC score. And if there were more than three different types of cooperating subjects in

some treatments, say TFT, Grim, STFT, and AC which the pure strategy mixture can capture

very parsimonously treatment-by-treatment, then the (generalized) pure strategies would fit

substantially better than the behavior strategy models. This is not the case, however.

Now, in the top-down approach using “3×P5+AD” as starting point, we can analyze

which form of heterogeneity is most suitable for describing behavior. Starting with four sub-

ject types seems to be sufficient ex-ante, and will turn out to be sufficient ex-post. In Table 6,

the two right-most columns report on the adequacy of nested models that distinguish only two

types or one type of cooperating subjects (besides the AD type). It turns out that distinguish-

ing just two types of cooperating subjects (“2×P5+AD”) weakly improves on distinguish-

ing three types, while models with just one cooperating type (“P5+AD”) fit significantly

worse. The latter further corroborates that cooperating subjects are not homogeneous. To the

left of column “3×P5+AD”, Table 6 details information on models assuming the cooper-

ating subjects play semi-grim strategies rather than unrestricted memory-1 strategies. To be

exhaustive, we consider models distinguishing three semi-grim types (“3×SG+AD”), two

semi-grim types (“2× SG+AD”) and 1.5 semi-grim types (“1.5× SG+AD”), besides the

model with fixed semi-grim strategies (“Fixed SG, 1.5×SG+AD”) defined above.

At this point, the discussion can be kept rather short as the results are fairly clear: All

models distinguishing at least two types of cooperating subjects and flexible semi-grim be-

havior strategies fit about equally well. The differences between these models are at best

weakly significant, while all of them fit significantly better than the model assuming coop-

erating subjects are homogeneous (“P5+AD”). Compared to the model specification with

the fixed semi-grim strategies used above, the differences are insignificant in first halves of

sessions but become significant in second halves of sessions. Initially, that is, cooperating

subjects seem to be well-described by (σcc,σcd,σdc,σdd) = (0.9,0.3,0.3,0.1), while their

behavior becomes more nuanced and treatment-dependent as they gain experience. Further,

the best-fitting mixtures generally involve semi-grim strategies, indicating that the semi-grim

restrictions (σcc = 1−σdd and σcd = σdc) are statistically insignificant even in these large
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Table 6: Examining heterogeneity of cooperating subjects and semi-grim structure of their strategies

Best Mixture Fixed SG Treatment-specific SG specification

Best Switching 1.5×SG+ AD 1.5×SG+AD 2×SG+AD 3×SG+AD 3×P5+AD 2×P5+AD P5+AD

Specification

# Models evaluated 2732 ≈ 1046 1 1 1 1 1 1 1

# Pars estimated (by treatment) 276 3 7 9 13 19 17 11

# Parameters accounted for 3-30 3 7 9 13 19 17 11

First halves per session

Aoyagi and Frechette (2009) 834.4 > 793.63 ≈ 792.28 ≈ 777.81 ≈ 782.63 > 742.29 ≈ 744.76 ≈ 744.06

Blonski et al. (2011) 1060.2 ≈ 1043.19 ≪ 1104.1 < 1138.64 ≪ 1236.36 ≪ 1333.92 ≫ 1209.41 ≫ 1104.45

Bruttel and Kamecke (2012) 785.49 ≈ 763.66 ≈ 771.14 ≈ 762.83 ≈ 748.06 ≈ 751.87 ≈ 759.46 ≈ 803.58

Dal Bó (2005) 619.34 ≈ 600.65 < 618.12 ≈ 601.72 < 627.73 ≈ 640.66 > 609.66 ≈ 620.39

Dal Bó and Fréchette (2011) 6378.54 ≈ 6458.01 ≈ 6352.64 ≈ 6304.98 ≈ 6198.13 ≈ 6217.26 ≈ 6273.56 ≪ 6553.24

Dal Bó and Fréchette (2019) 8161.75 ≫ 7912.58 > 7829.75 ≈ 7810.64 ≈ 7830.56 ≈ 7829.08 ≈ 7775.32 ≪ 7969.32

Dreber et al. (2008) 744.21 ≈ 774.76 ≈ 764.44 ≈ 763.51 ≈ 766.74 ≈ 766.69 ≈ 767.3 ≈ 783.46

Duffy and Ochs (2009) 1372.98 ≈ 1325.28 ≈ 1361.13 ≈ 1320.67 ≈ 1297.82 ≈ 1291.38 < 1345.12 ≈ 1361.84

Fréchette and Yuksel (2017) 297.74 ≈ 284.66 ≈ 289.54 ≈ 284.1 ≈ 289.67 ≈ 294.37 ≈ 285.33 ≈ 291.69

Fudenberg et al. (2012) 432.38 ≈ 421.46 > 377.96 ≈ 370.01 ≈ 381.2 ≈ 381.32 ≈ 372.32 ≈ 377.33

Kagel and Schley (2013) 2439.06 ≈ 2473.59 ≈ 2450.24 ≈ 2421.34 ≈ 2384.98 ≈ 2354.05 ≈ 2398.74 ≪ 2551.75

Sherstyuk et al. (2013) 1274.09 ≈ 1243.95 ≈ 1234.52 ≈ 1200.28 ≈ 1184.82 ≈ 1177.26 ≈ 1186.92 ≪ 1286.15

Pooled 24919.14 ≫ 24204.84 ≈ 24201.19 ≈ 24084.8 ≈ 24202.88 < 24473.15 > 24202.07 ≪ 24702.58

Second halves per session

Aoyagi and Frechette (2009) 482.66 ≈ 460.38 ≫ 421.21 ≈ 422.29 ≈ 423.58 > 404.94 ≈ 408.59 ≈ 409.05

Blonski et al. (2011) 1369.08 ≈ 1350.39 ≈ 1373.9 ≈ 1393.26 < 1452.56 ≪ 1561.35 ≫ 1458.47 ≫ 1382.85

Bruttel and Kamecke (2012) 493.79 ≈ 487.8 ≈ 480.47 ≈ 478.23 ≈ 470.25 ≈ 443.83 ≈ 471.73 < 528.54

Dal Bó (2005) 712.63 ≈ 688.66 ≈ 677.22 ≈ 679 < 698.19 ≈ 707.19 ≈ 687.86 ≈ 696.4

Dal Bó and Fréchette (2011) 4820.25 ≈ 4966.19 ≫ 4565.87 ≈ 4545.09 ≈ 4428.79 ≈ 4431.94 ≈ 4493.1 ≪ 5045.23

Dal Bó and Fréchette (2019) 7785.24 ≈ 7820.35 ≫ 7306.18 ≈ 7310.31 > 7171.6 ≈ 7089.53 ≈ 7152.05 ≪ 7683.74

Dreber et al. (2008) 558.39 ≈ 545.25 ≈ 544.66 ≈ 541.83 ≈ 539.8 ≈ 520.49 ≈ 519.56 < 563.51

Duffy and Ochs (2009) 1883.18 > 1764.77 > 1656.55 ≈ 1602.92 > 1518.65 ≈ 1509.7 < 1598.03 ≪ 1715.88

Fréchette and Yuksel (2017) 429.95 ≈ 436.46 ≈ 422.52 ≈ 382.45 ≈ 377.48 ≈ 384.1 ≈ 382.11 < 409.93

Fudenberg et al. (2012) 505.1 ≈ 493.46 ≫ 433.74 ≈ 416.17 ≈ 406.54 ≈ 410.66 ≈ 421.81 ≈ 448.37

Kagel and Schley (2013) 1621.42 ≈ 1713.66 ≫ 1572.95 ≈ 1541.38 > 1488.44 ≈ 1477.83 ≈ 1527.49 ≪ 1748.01

Sherstyuk et al. (2013) 890.27 ≈ 901.89 > 834.73 ≈ 823.06 ≈ 801.05 ≈ 801.52 ≈ 815.26 ≪ 935.01

Pooled 22069.97 ≈ 21738.7 ≫ 20545.33 ≈ 20464.29 > 20251.1 ≈ 20436.11 ≈ 20410.22 ≪ 21821.84

Note: This table verifies a number of possible mixtures involving semi-grim types as a robustness check for the sufficiency of focusing on the mixtures examined

above. E.g. “3× SG” refers to a model containing three different versions of memory-1 semi-grim with allowing for heterogeneity of randomization parameters

across subjects.



data sets and thus behaviorally adequate.

These results provide strong evidence for heterogeneity and the behavior-strategy con-

jecture, and as indicated, let us next implement the top-down and bottom-up approaches

towards model selection. By the top-down approach, we start with the most general model

(3×P5+AD) and successively reduce its complexity until such reductions dampen its ade-

quacy significantly. The simplest model that we reach this way without a significantly neg-

ative impact on adequacy is 1.5× SG+AD—with fixed semi-grim strategies in first halves

of sessions and with flexible ones in second halves of sessions.This confirms the above re-

sult that cautious and strong semi-grim account for the vast majority of cooperating subjects

by individual classification, and importantly, if the populations would be better captured by

replacing one of the semi-grim types by any other strategy (say STFT), post-hoc selected at

the treatment level, which would contradict the individual classification, then the restriction

to semi-grim would have been rejected significantly. In turn, by the bottom-up approach,

we start with the simplest model (Fixed SG, 1.5×SG+AD) and successively increase its

complexity as long as these increments significantly improve model adequacy. Starting with

this, adequacy improves significantly only in second halves of sessions, then by allowing for

flexible semi-grim strategies, but beyond that, further increments again are not significant in

a manner surviving the Bonferroni correction (indicated by ≫ or ≪ in Table 6).

That is, both the top-down and the bottom-up approach converge to the same conclu-

sion that we need to distinguish two types of cooperating subjects, whose behaviors differ

only in round 1 of each supergame. On average, the less cooperative type cooperates with

probabilities in [0.2,0.5] in round 1, similar to the cooperation probabilities after mixed his-

tories cd/dc, and the more cooperative type cooperates with probabilities above 0.9 in most

treatments, similar to cooperation probabilities after cc (see also Figure 2).

Result 2 (Question 2). The analysis identifies two types of cooperating subjects playing

the same semi-grim continuation strategy but different cooperation probabilities in round 1

(cautious cooperators and strong cooperators) and a subject type playing a strategy close

to always defect (defectors). A model with this subject composition, and any other model

allowing for two types of cooperating subjects playing behavior strategies, fits significantly

better than all 1046 models assuming pure or generalized pure strategies.

Hence, allowing for non-trivial randomization particularly in the states cd and dc is

crucial for understanding subject behavior. As the fixed and flexible model fit equally well in

the first halves of sessions, the actual strategies seem to be largely independent of treatment

parameters for inexperienced subjects. This is not the case for experienced subjects, however.
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We investigate this in detail next.

6 How do strategies relate to supergame parameters?

Having estimated the number of subject types, and along the way their strategies, we can

revisit Question 3 and ask to what extent the subjects’ strategies are functions of treatment

parameters and to what extent they may be predictable. In light of the above results, we dis-

tinguish defecting and cooperating subjects. The defecting subjects play slightly perturbed

strategies close to AD, which are essentially invariant to treatment parameters and rationaliz-

able to the extent that AD is rationalizable (AD is a best response to itself in all supergames

considered here). For this reason, we shall focus on the strategies played by cooperating

subjects. By Result 2, there are two types of cooperating subjects, both identified as playing

semi-grim supergame strategies with significant differences found in the probability of co-

operation in round 1. The strategies are significantly treatment-dependent when subjects are

experienced, i.e. in second halves of sessions, on which we shall focus in the following.

Overview Recall that Figure 1 plots the average cooperation rates across states against the

expected payoffs from cooperation, which suggested that subjects act highly rationally in

round 1 but ignore expected payoffs afterwards. We suspected confounds due to looking at

raw cooperation rates, most notably possible selection effects, and our maximum-likelihood

estimates of the strategies of (cooperating) subject types allow us to resolve these concerns.

Figure 2 now plots the cooperation probabilities according to the estimated strategies of

cooperating subjects against two predictors of cooperation (expected payoffs and δ−δ∗). In

the left column of plots, we see how the cooperation probabilities across states relate to the

difference of discount factor δ and BOS threshold23 δ∗ = (g+ ℓ)/(1+ g+ ℓ). In the right

column of plots, we see how the probability of cooperation relates to the monetary incentive

to cooperate, πω(c)−πω(d) as defined above, Eqs. 1–3, for each state ω. For these plots,

we assume that subjects hold “false consensus” beliefs that their opponent plays the same

strategy that they play. That is, strong cooperators believe they face strong cooperators and

weak cooperators believe they face weak cooperators. In comparison to Figure 1, the results

do not change substantially: Behavior is still close to being independent of the predictors

of cooperation in most states (bottom three panels), arguably with the exception of strong

cooperators in round 1 (panel b).

23The threshold is axiomatically derived in Blonski et al. (2011) and characterized by risk dominance in

Blonski and Spagnolo (2015).
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Figure 2: Relation of δ (left) and monetary incentives (right) to cooperation rates (second

halves of sessions)
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Note: Cooperation probabilities of estimated strategies by states and by two predictors of cooperation: Differ-

ence between δ and the BOS theshold δ∗ (left panel) and the monetary incentive π̂(c)− π̂(c) (right panel), with

π̂(c) the expected payoff of cooperating in that state and π̂(d) the expected payoff of defecting in that state.
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Figure 3: Relation of δ−δ∗ to shares of cooperators (second halves of sessions)
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Note: This figure shows how the ratios of the three strategies – defectors, cautious cooperators, and strong

cooperators change with the distance of δ to the BOS cooperation threshold δ∗ across treatments. The solid

line represents the best fitting logistic curve estimated with intercept. Panel (a) displays the total share of

both cooperators, panel (b) the relative share of cautious cooperators among cooperators, panel (c) the share of

cautious cooperators overall, panel (d) the share of strong cooperators overall.

Recall that we know from Dal Bó (2005) and subsequent work that average cooperation

rates change as payoff parameters change, and above we have seen that most of these changes

can be reduced to changes in round 1 (see also Dal Bó and Fréchette, 2018). Yet, as just seen,

the types of strategies are largely independent of the payoff parameters. To illuminate this

further, we next test the complementary statistic and examine how the shares of the three

subject types change as parameters change. Figure 3 plots the shares of cooperators as a

function of the discount factor δ in relation to the BOS-threshold δ∗. We see two relatively

strong effects: As δ approaches δ∗, the overall share of cooperators increases, i.e. defectors

become cooperators, and at the same time, the relative share of cautious cooperators declines,

i.e. cautious cooperators turn into strong cooperators.

Result 3 (Question 3). The shares of subjects playing either of the three strategies change

highly predictably. As δ increases defectors are replaced by cooperators and as it passes the

BOS-threshold δ∗ the strong cooperators start to outweigh the cautious cooperators (R̃2 ≥
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0.2 in all cases). The strategies themselves are largely invariant to treatment parameters

and monetary incentives. The only exception satisfying R̃2 ≥ 0.2 are strong cooperators in

round 1, whose strategies correlate with treatment parameters (δ−δ∗) but not with monetary

incentives, and only in round 1.

That is, the behavioral changes regarding average and round 1 cooperation observed

in the literature (e.g. Dal Bó and Fréchette, 2018, Result 4) are mainly transitions from de-

fection to cautious cooperation and from cautious cooperation to strong cooperation. These

transitions are neatly predictable, being logistic functions of δ− δ∗, which is a substantial

result in relation to previous work that found no reliable association between the individual

strategies used and the payoff parameters (Dal Bó and Fréchette, 2018). This result directly

follows from the unrestricted estimation of strategies, which thus not only fits better but also

renders type shares predictable. In turn, the actual strategies associated with these seemingly

archetypical behavioral types are largely invariant of payoff parameters, which also is a novel

result raising questions about their potential rationalizability for future work.

7 Concluding discussion

Revisiting our initial research questions, we summarize our main results as follows.

Regarding the first two questions, re-analyzing 12 experiments, we find robust evidence

for the use of behavior strategies and subject heterogeneity. The most parsimonious popula-

tion model consistently capturing behavior in 12 experiments contains three different types

of subjects per treatment: defectors, playing a strategy close to AD, and cautious and strong

cooperators who play behavior strategies with a semi-grim structure that differ only in their

first-round cooperation probability. This confirms the subject-level classification, which as-

signs about 80% of the subjects to either AD or stylized semi-grim strategies.

Regarding our third question, we find that the estimated strategies are largely indepen-

dent of treatment parameters but the shares of subjects picking either of the three strate-

gies depend strikingly on the continuation probability δ in relation to the BOS-threshold

δ∗ (Blonski et al., 2011). To be more precise, strategies are statistically treatment-invariant

in first halves of sessions (when subjects are inexperienced), and strategy shares are pre-

dictable (see also Figure 4 in the appendix). In second halves of sessions, the strategy choice

is still predictable, but the treatment invariance is rejected highly significantly—suggesting

that subjects have started to adapt their behavior to the environment, but not in a way that is

immediately clear or even predictable based on predictors of cooperation.
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Moreover, following rounds where at least one player cooperated, the cooperators coop-

erate systematically even in supergames where Grim is not a subgame-perfect equilibrium.

In such supergames, cooperation is not rationalizable if we assume that subjects seek to max-

imize pecuniary payoffs, i.e. it is never a best response, regardless of the subjective beliefs

about the opponent’s strategy.

By using the advantages of a meta-study in aggregating plenty of observations, we iden-

tify how future research can analyze behavior in the repeated PD: We need to distinguish

three subject types and estimate the behavior strategies used by the cooperating subjects.

Based on this, we can aim to identify the strategies and predict behavior in repeated games

more generally, which at present seems to be an ambitious long-term goal.

The above observation that subjects cooperate even in supergames where it is not ratio-

nalizable based on pecuniary payoffs may suggest that subjects have interdependent prefer-

ences, but the recurring semi-grim strategies are also instances of belief-free equilibria (Ely

et al., 2005) for appropriate discount factors. Furthermore, the predictive BOS-threshold δ∗

is the threshold for the existence of belief-free equilibria satisfying σcd = σdc. However,

the cooperation probabilities exhibit semi-grim patterns even if belief-free equilibria sus-

taining cooperation do not exist, which is not an obvious implication of the theory as it is

currently developed. Having said this, cooperating subjects do not generally play subgame-

perfect equilibria of the games they face, hence also not belief-free equilibria of the games

they face. This may be indicative of analogical reasoning in the sense of Samuelson (2001),

who argued that subjects initially play the version of the game they know from prior experi-

ence and over time adapt to the new circumstances, which may explain the divergence from

treatment-invariant behavior over time.

This might also explain how semi-grim strategies are being played although belief-free

equilibria are not particularly robust, e.g. to utility perturbations (Doraszelski and Escobar,

2010), strategy perturbations (Heller, 2017) or evolutionary mutation (Kandori, 2011), and

appear “unrealistically complex” (Compte and Postlewaite, 2015): subjects are not partic-

ularly adaptive to the game that they face in the first place. If the recurrence of strategies

similar to semi-grim is not a coincidence, belief-free equilibrium may thus help us to predict

behavior in repeated games more generally in the long run.
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Appendix

A Econometric approach and validity

A.1 Possible memory-1 strategies

Given that previous literature has focused on memory-1 strategies and has claimed that

memory-1 is enough to describe players behavior in games with perfect monitoring (Dal Bó

and Fréchette, 2019) we use memory-1 as a starting point. In terms of pure strategies there

are 16 possible memory-1 strategies where subjects cooperate in round 1, and another 16

where they do not cooperate in round 1. Reducing the number by requiring that if coop-

eration in any state, then also in σcc (why else cooperate?), yields the following memory-1

strategies:

With initial defection: (σ /0,σcc,σcd,σdc,σdd) = (0,0,0,0,0), (0,1,0,0,0), (0,1,1,0,0),
(0,1,0,1,0), (0,1,0,0,1), (0,1,1,1,0), (0,1,1,0,1), (0,1,1,1,1)

With initial cooperation: (σ /0,σcc,σcd,σdc,σdd)= (1,1,0,0,0), (1,1,1,0,0), (1,1,0,1,0),
(1,1,0,0,1), (1,1,1,1,0), (1,1,1,0,1), (1,1,1,1,1)

Between them, the following strategies are behaviorally indistinguishable: (0,0,0,0,0)≡
(0,1,0,0,0)≡ (0,1,1,0,0)

Also indistinguishable: (1,1,1,0,0)≡ (1,1,1,1,0)≡ (1,1,1,0,1)≡ (1,1,1,1,1)

Hence, there are 10 remaining memory-1 strategies: (σ /0,σcc,σcd,σdc,σdd)= (0,0,0,0,0),
(0,1,0,1,0), (0,1,0,0,1), (0,1,1,1,0), (0,1,1,0,1), (0,1,1,1,1), (1,1,0,0,0), (1,1,1,0,0),
(1,1,0,1,0), (1,1,0,0,1)

Table 4 in the main body shows the classification of subjects behavior into these strate-

gies with maximum likelihood. For the maximum-likelihood classification we have allowed

for a noise level of 1% (robustness with 3%) for the pure strategies to avoid potential likeli-

hoods of minus infinity. Based on this we calculated for each individual the log-likelihoods

for playing a given strategy with

ll(σ|c,d) = ∑
ω

(

cω · logσω +dω · log(1−σω)
)

where ω are the memory-1 states, σ ∈ {σAD,σT FT , . . . ,σstr,σcau} the strategies, and cω and

dω the number of cooperations and defections in a given state, respectively. We classify

subjects by the maximum likelihood. We allow for an exhaustive set of pure memory-1

strategies including besides well known strategies also for completely unknown candidates.

The Tables 7 and 8 show the actual strategies played by the subjects classified in the

respective strategy, with and without allowing for behavior strategies. Without allowing for

behavior strategies (Table 7) we see that the actual play is far from representing the strategy

that they are assigned to.
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Table 7: Actual strategies played by players’ best fitting strategy allowing only for pure

strategies (maximum likelihood classification)

Strategy definition Average strategy played

Share "N" /0 (cc) (cd) (dc) (dd) /0 (cc) (cd) (dc) (dd)
"AD" 0.32 551.5 0 0 0 0 0 0.07 0.54 0.19 0.08 0.02

"S-TFT" 0.13 225 0 1 0 1 0 0.24 0.96 0.2 0.64 0.07

"S-WSLS" 0 3 0 1 0 0 1 0.24 0.47 0.19 0.32 0.58

"S-AC1" 0.04 75 0 1 1 1 0 0.22 0.96 0.66 0.67 0.09

"S-AC2" 0 4 0 1 1 0 1 0.57 0.76 0.63 0.38 0.68

"S-AC3" 0 4 0 1 1 1 1 0.26 0.67 0.53 0.72 0.68

"Grim" 0.22 373.5 1 1 0 0 0 0.82 0.96 0.21 0.2 0.07

"AC" 0.07 126.5 1 1 1 0 0 0.8 0.97 0.72 0.39 0.1

"TFT" 0.21 360 1 1 0 1 0 0.85 0.98 0.23 0.78 0.06

"WSLS" 0.01 11.5 1 1 0 0 1 0.83 0.87 0.4 0.46 0.78

Note: Strategy shares by maximum likelihood classification allowing for 1% deviation from pure strategies.

The set includes all possible memory-1 strategies (see above). If two strategies fit equally well, known

strategies are prioritized over unknowns (S-ACx,S-WSLS), and otherwise the subject is assigned half to one

and half to the other strategies.

Table 8: Actual strategies played by players’ best fitting strategy allowing for semi-grim and

pure strategies (maximum likelihood classification)

Strategy definition Average strategy played

Share "N" /0 (cc) (cd) (dc) (dd) /0 (cc) (cd) (dc) (dd)
"AD" 0.21 366 0 0 0 0 0 0.02 0.24 0.13 0.02 0.01

"S-TFT" 0.02 34 0 1 0 1 0 0.05 1 0.15 0.84 0.02

"S-WSLS" 0 0 0 1 0 0 1 – – – – –

"S-AC1" 0.01 14 0 1 1 1 0 0.05 1 0.7 0.9 0.04

"S-AC2" 0 0 0 1 1 0 1 – – – – –

"S-AC3" 0 0 0 1 1 1 1 – – – – –

"Grim" 0.05 91 1 1 0 0 0 0.98 0.99 0.07 0.13 0.02

"AC" 0.02 32 1 1 1 0 0 0.98 1 0.88 0.27 0.06

"TFT" 0.08 136 1 1 0 1 0 0.97 1 0.09 0.91 0.03

"WSLS" 0 1 1 1 0 0 1 1 1 0.5 – 1

"cau SG" 0.35 606 0.3 0.9 0.3 0.3 0.1 0.29 0.91 0.33 0.41 0.08

"str SG" 0.26 454 0.9 0.9 0.3 0.3 0.1 0.84 0.96 0.35 0.45 0.09

Note: Strategy shares by maximum likelihood classification allowing for 1% deviation from pure strategies.

The set includes all possible memory-1 strategies (see above) and two behavior strategies cautious and strong

cooperators derived from Breitmoser (2015). If two strategies fit equally well, known strategies are prioritized

over unknowns (S-ACx,S-WSLS), and otherwise the subject is assigned half to one and half to the other

strategies.
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Table 9 shows the robustness classification via euclidean distances, i.e. classifying the

subject into the strategy with the shortest distance. There is little difference in classifications.

Table 9: Classifying subjects into memory-1 strategies using euclidean distances

Strategies pure

/0 (cc) (cd) (dc) (dd) " best fit" "perfect fit"

"AD" 0 0 0 0 0 0.27 0.097

"S-TFT" 0 1 0 1 0 0.134 0.006

"S-WSLS" 0 1 0 0 1 0.003 0

"S-AC1" 0 1 1 1 0 0.059 0.005

"S-AC2" 0 1 1 0 1 0.003 0

"S-AC3" 0 1 1 1 1 0.005 0

"Grim" 1 1 0 0 0 0.228 0.015

"AC" 1 1 1 0 0 0.073 0.008

"TFT" 1 1 0 1 0 0.21 0.023

"WSLS" 1 1 0 0 1 0.014 0.002

"sum" 1 0.155

A.2 Validity

We test the validity of our econometric approach to distinguish pure, mixed, and behavior

strategies by running the algorithm on different sets of simulated data: For each of the three

strategy types, we simulate 17 populations following estimates of DF18, and each population

100 times, in order to verify if we identify the underlying strategy type based on model-fit

evaluations using ICL-BIC. Before we proceed, let us emphasize that our estimation pro-

ceeds by maximum likelihood, implying that we can expect to be correct (on average) if

the data set is sufficiently large. We want to find out, however, if typical experimental data

sets are sufficiently large and what the probability of misidentification is. In addition, let

us note that the analysis below does not engage in the kind of data mining implemented in

our main analysis. This data mining yields a bias towards pure and mixed strategies, while

the simulations now report the results without this bias, verifying the reliability of unbiased

identification. On top of the simulation results reported next, we should therefore expect a

bias in favor of pure or mixed strategies in our actual analysis.

In our analysis, we simulate populations representing type proportions implementing

the actual estimates of DF18, as presented in their Table 10, for all 17 treatments analyzed

in DF18. This way, we can ask whether our approach identifies pure strategies if subjects

actually play the pure strategies in the proportions identified by DF18, and the same for

corresponding mixtures of mixed strategies or behavior strategies. The tremble parameter

is γ = 0.05. For each simulation run we determine the average ICL-BICs of the three basic
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econometric models, no-switching (pure strategies), random-switching (mixed strategies),

and semi-grim or AD+1.5×SG (behavior strategies). Aggregating across the 100 simulated

data sets per population, we the count how often which strategy type obtained the lowest

ICL-BICs and got identified this way.

Tables 3 and 11 reports the results for populations with 50 subjects and 20 observations

(on average) per subject past round 1, and as a robustness check, and Tables 10 and 12 report

the results of simulation runs in larger data sets with 30 observations per subject past round

1. In comparison, the data sets we analyze contain on average 90 observations per subject,

which we split into two halves containing about 45 observations per subject each, putting us

above either range on average. In all cases, the true models are identified in the vast majority

of simulation runs, with relative frequencies above 90% on average across treatments. At the

treatment level, the only exceptions are treatment 6 of DF11, where subjects playing pure

strategies are likely to be misidentified as playing mixed strategies, and treatment 1 of DF11,

where subjects playing behavior strategies are somewhat likely to be misidentified as playing

pure strategies. Critically, there is no bias in favor of behavior strategies in any condition.

Result 4. Our approach identifies pure, mixed and behavior strategies with more than 90%

reliability even in populations comprising just 50 subjects and 20 or 30 decisions per subject

(past round 1). Singular treatments exhibit biases towards pure and mixed strategies, but no

treatment exhibits a bias towards semi-grim strategies.

In conclusion, let us recall that our data set overall is much larger than such small data

sets, which obviously benefits the reliability of identification by the limiting properties of

maximum likelihood.
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Table 10: Identification of strategy types in populations with 30 observations past round 1

and type shares of the 17 different treatments estimated by DF18

Type proportions In 100 simulation runs, identified as

following DF18, Tab. 10 Pure Mixed AD +
(σAD,σGrim,σTFT,σAC,σSTFT) strategies strategies Semi-Grim

Simulated agents play: Pure strategies (“No switching”)

Dreber et al. (2008), T1 (0.64,0.07,0.15,0,0.14) 100 0 0

Dreber et al. (2008), T2 (0.3,0.21,0.4,0,0.09) 100 0 0

Dal Bo and Frechette (2011), T1 (0.91,0,0.07,0,0.02) 99 0 1

Dal Bo and Frechette (2011), T2 (0.76,0,0.06,0,0.08) 96 4 0

Dal Bo and Frechette (2011), T3 (0.49,0,0.24,0.01,0.04) 100 0 0

Dal Bo and Frechette (2011), T4 (0.66,0,0.23,0,0) 100 0 0

Dal Bo and Frechette (2011), T5 (0.11,0.04,0.21,0,0.08) 100 0 0

Dal Bo and Frechette (2011), T6 (0,0.02,0.55,0.02,0) 38 62 0

Fudenberg et al. (2012) (0.06,0.12,0.15,0.24,0) 94 2 4

Rand et al. (2015) (0.18,0.43,0.27,0,0.05) 100 0 0

Frechette and Yuksel (2014) (0.14,0.32,0.39,0,0.02) 100 0 0

Dal Bo and Frechette (2015), T1 (0.53,0.06,0.05,0,0.14) 100 0 0

Dal Bo and Frechette (2015), T2 (0.25,0.36,0.19,0.03,0.03) 100 0 0

Dal Bo and Frechette (2015), T3 (0.47,0.1,0.1,0.02,0.12) 100 0 0

Dal Bo and Frechette (2015), T4 (0.12,0.35,0.3,0.08,0) 100 0 0

Dal Bo and Frechette (2015), T5 (0.14,0.17,0.39,0.02,0.07) 100 0 0

Dal Bo and Frechette (2015), T6 (0.22,0.06,0.25,0,0) 100 0 0

Probability of identification overall 0.957 0.04 0.003

Simulated agents play: Mixed strategies (“Random switching”)

Dreber et al. (2008), T1 (0.64,0.07,0.15,0,0.14) 0 100 0

Dreber et al. (2008), T2 (0.3,0.21,0.4,0,0.09) 0 100 0

Dal Bo and Frechette (2011), T1 (0.91,0,0.07,0,0.02) 0 100 0

Dal Bo and Frechette (2011), T2 (0.76,0,0.06,0,0.08) 0 100 0

Dal Bo and Frechette (2011), T3 (0.49,0,0.24,0.01,0.04) 0 100 0

Dal Bo and Frechette (2011), T4 (0.66,0,0.23,0,0) 0 100 0

Dal Bo and Frechette (2011), T5 (0.11,0.04,0.21,0,0.08) 0 100 0

Dal Bo and Frechette (2011), T6 (0,0.02,0.55,0.02,0) 3 97 0

Fudenberg et al. (2012) (0.06,0.12,0.15,0.24,0) 0 100 0

Rand et al. (2015) (0.18,0.43,0.27,0,0.05) 0 100 0

Frechette and Yuksel (2014) (0.14,0.32,0.39,0,0.02) 0 100 0

Dal Bo and Frechette (2015), T1 (0.53,0.06,0.05,0,0.14) 0 100 0

Dal Bo and Frechette (2015), T2 (0.25,0.36,0.19,0.03,0.03) 0 100 0

Dal Bo and Frechette (2015), T3 (0.47,0.1,0.1,0.02,0.12) 0 100 0

Dal Bo and Frechette (2015), T4 (0.12,0.35,0.3,0.08,0) 0 100 0

Dal Bo and Frechette (2015), T5 (0.14,0.17,0.39,0.02,0.07) 0 100 0

Dal Bo and Frechette (2015), T6 (0.22,0.06,0.25,0,0) 0 100 0

Probability of identification overall 0.002 0.998 0

Note: Analysis based on simulated data sets comprising 50 subjects and 60 observations (past round 1) per

subject, reporting the frequency of identification of the different strategy classes using our econometric method-

ology (where identification of either pure, mixed or behavior strategies is based on the ICL-BICs of the corre-

sponding no-switching, random-switching, or semi-grim structures).
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Table 11: Identification of strategy in populations with 20 observations past round 1 where

agents play AD + semi-grim behavior strategies in proportions representing the estimates of

DF18

Type proportions In 100 simulation runs, identified as

following DF18, Tab. 10 Pure Mixed AD +
(σAD,σGrim,σTFT,σAC,σSTFT) strategies strategies Semi-Grim

True model: semi-grim behavior strategies

Dreber et al. (2008), T1 (0.64,0.18,0.18) 0 0 100

Dreber et al. (2008), T2 (0.3,0.35,0.35) 0 0 100

Dal Bo and Frechette (2011), T1 (0.91,0.045,0.045) 19 4 77

Dal Bo and Frechette (2011), T2 (0.76,0.12,0.12) 0 0 100

Dal Bo and Frechette (2011), T3 (0.49,0.255,0.255) 0 0 100

Dal Bo and Frechette (2011), T4 (0.66,0.17,0.17) 0 0 100

Dal Bo and Frechette (2011), T5 (0.11,0.445,0.445) 0 0 100

Dal Bo and Frechette (2011), T6 (0,0.5,0.5) 0 0 100

Fudenberg et al. (2012) (0.06,0.47,0.47) 0 0 100

Rand et al. (2015) (0.18,0.41,0.41) 0 0 100

Frechette and Yuksel (2014) (0.14,0.43,0.43) 0 0 100

Dal Bo and Frechette (2015), T1 (0.53,0.235,0.235) 0 0 100

Dal Bo and Frechette (2015), T2 (0.25,0.375,0.375) 0 0 100

Dal Bo and Frechette (2015), T3 (0.47,0.265,0.265) 0 0 100

Dal Bo and Frechette (2015), T4 (0.12,0.44,0.44) 0 0 100

Dal Bo and Frechette (2015), T5 (0.14,0.43,0.43) 0 0 100

Dal Bo and Frechette (2015), T6 (0.22,0.39,0.39) 0 0 100

Probability of identification overall 0.011 0.002 0.986

Note: Analysis based on simulated data sets comprising 50 subjects and 20 observations (past round 1) per

subject, reporting the frequency of identification of the different strategy classes using our econometric method-

ology (where identification of either pure, mixed or behavior strategies is based on the ICL-BICs of the corre-

sponding no-switching, random-switching, or semi-grim structures).
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Table 12: Identification of strategy in populations with 30 observations past round 1 where

agents play AD + semi-grim behavior strategies in proportions representing the estimates of

DF18

Type proportions In 100 simulation runs, identified as

following DF18, Tab. 10 Pure Mixed AD +
(σAD,σGrim,σTFT,σAC,σSTFT) strategies strategies Semi-Grim

True model: semi-grim behavior strategies

Dreber et al. (2008), T1 (0.64,0.18,0.18) 0 0 100

Dreber et al. (2008), T2 (0.3,0.35,0.35) 0 0 100

Dal Bo and Frechette (2011), T1 (0.91,0.045,0.045) 6 0 94

Dal Bo and Frechette (2011), T2 (0.76,0.12,0.12) 0 0 100

Dal Bo and Frechette (2011), T3 (0.49,0.255,0.255) 0 0 100

Dal Bo and Frechette (2011), T4 (0.66,0.17,0.17) 0 0 100

Dal Bo and Frechette (2011), T5 (0.11,0.445,0.445) 0 0 100

Dal Bo and Frechette (2011), T6 (0,0.5,0.5) 0 0 100

Fudenberg et al. (2012) (0.06,0.47,0.47) 0 0 100

Rand et al. (2015) (0.18,0.41,0.41) 0 0 100

Frechette and Yuksel (2014) (0.14,0.43,0.43) 0 0 100

Dal Bo and Frechette (2015), T1 (0.53,0.235,0.235) 0 0 100

Dal Bo and Frechette (2015), T2 (0.25,0.375,0.375) 0 0 100

Dal Bo and Frechette (2015), T3 (0.47,0.265,0.265) 0 0 100

Dal Bo and Frechette (2015), T4 (0.12,0.44,0.44) 0 0 100

Dal Bo and Frechette (2015), T5 (0.14,0.43,0.43) 0 0 100

Dal Bo and Frechette (2015), T6 (0.22,0.39,0.39) 0 0 100

Probability of identification overall 0.004 0 0.996

Note: Analysis based on simulated data sets comprising 50 subjects and 30 observations (past round 1) per

subject, reporting the frequency of identification of the different strategy classes using our econometric method-

ology (where identification of either pure, mixed or behavior strategies is based on the ICL-BICs of the corre-

sponding no-switching, random-switching, or semi-grim structures).
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B Information on the experiments re-analyzed

This section provides some background information on the experiments re-analyzed in this

paper. Table 13 summarizes and defines the strategies considered by previous studies. Table

14 reviews the numbers of subjects and observations, average parameters, and average co-

operation rates for all experiments. A table with detailed overview by treatments is available

upon request.

Table 13: Pure strategies considered in behavioral analyses

Strategy Abbreviation Description (σcc,σcd ,σdc,σdd)
† References

Pure Strategies Non-responsive or Memory-1

Always Defect AD Always defects independent (0,0,0,0) DF11, DF15, FRD12,

of previous outcome FY17, STS13

Always Cooperate AC Always cooperates inde- (1,1,1,1) DF11, DF15, FRD12,

(1,1,0,0) B15

pendent of previous outcome FY17, STS13

Grim G Only cooperates after cc (1,0,0,0) AF09, DF11, DF15

was last outcome FRD12, FY17, STS13

Tit-for-Tat TFT Only plays C if opponent (1,0,1,0) AF09, DF11, DF15

did last period FRD12, FY17, STS13

Win-stay-Lose-Shift WSLS Plays same strategy if it (1,0,0,1) DF11, DF15, FRD12,

(aka Perfect TFT) was successful, otherwise shifts FY17

False cooperator C-to-AD Play c in first round – FRD12, FY17

then AD

Explorative TFT D-TFT Play d in first round then TFT – DF15, FRD12, FY17

Alternator DC-Alt Play d in first round – FRD12, FY17

then alternate c and d

Trigger-with-Reversion GwR Like Grim but revert (1,0,0,0) STS13

to cooperation after cc‡

Pure Strategies Memory-2/3

Trigger 2 periods T2 Player punishes defection for max. 2 (1,0,σ∗
1, 0) DF11, FY17

periods, otherwise cooperates

Tit-for-2(3)-Tats TF2T Defects after 2 (1,σ∗
2,1,σ∗

2) FRD12, FY17

defections

2-Tits-for-2-Tats 2TF2T Defects twice after (1,σ3,σ3,σ3) FRD12, FY17

2 defections

2-Tits-for-1-Tats 2TFT Defects twice after (1,0,σ4,0) FRD12, FY17

each defections

Grim2(3/4) G2(3) After 2(3) defections (1,σ5,0,0) FRD12, FY17, STS13

will play D forever

Win-stay-Lose-Shift-2 WSLS2 cooperate after (dd,dd),(cc,cc), – FRD12

(dd,cc) otherwise defect

Explorative TF2(3)T D-TF2(3)T Play D in first round then – FRD12, FY17

TF2(3)T

Explorative Grim2(3) D-Grim2(3) Play D in first round then Grim2(3) – FRD12, FY17

Behavior Strategies

Semi-Grim∗∗ SG Similar to Grim but may (1,σSG,σSG,0) B15

cooperate after CD or DC.

Generous TFT GTFT Like TFT but cooperate (1,σGT ,1,σGT ) FRD12, B15

with prob α after CD or DD

† σ assigns cooperation probabilities after joint cooperation (cc), unilateral defection by opponent (cd), unilateral defection

(dc), and joint defection (dd).
‡ possible if players make mistakes.
∗ Vector assigning cooperation probabilities ∈ {0,1} depending on the state 2 periods ahead.
∗∗ σSG and σGT are mixing parameters ∈ (0,1).
References: AF09 (Aoyagi and Frechette, 2009), B15 (Breitmoser, 2015), DF11 (Dal Bó and Fréchette, 2011), DF15 (Dal Bó

and Fréchette, 2019), FRD12 (Fudenberg et al., 2012), FY17 (Fréchette and Yuksel, 2017), STS13 (Sherstyuk et al., 2013)
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Table 14: Overview of the data sets used in the analysis

Logistics Parameters Average cooperation rates

Experiment #Subj #Dec δ g l σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session

Aoyagi and Frechette (2009) 38 1650 0.9 0.333 0.111 0.465 0.917 ≫ 0.45 ≈ 0.408 ≈ 0.336

Blonski et al. (2011) 200 3040 0.756 1.345 2.602 0.295 0.89 ≫ 0.279 ≈ 0.193 ≫ 0.034

Bruttel and Kamecke (2012) 36 1920 0.8 1.167 0.833 0.481 0.91 ≫ 0.286 ≈ 0.228 ≫ 0.08

Dal Bó (2005) 102 1320 0.75 0.939 1.061 0.342 0.922 ≫ 0.212 < 0.342 ≫ 0.089

Dal Bó and Fréchette (2011) 266 17772 0.622 1.062 1.072 0.31 0.951 ≫ 0.334 ≈ 0.331 ≫ 0.063

Dal Bó and Fréchette (2019) 672 22112 0.743 1.579 1.341 0.451 0.94 ≫ 0.297 ≈ 0.335 ≫ 0.057

Dreber et al. (2008) 50 2064 0.75 1.488 1.488 0.488 0.904 ≫ 0.217 ≈ 0.213 ≫ 0.036

Duffy and Ochs (2009) 102 3128 0.9 1 1 0.53 0.904 ≫ 0.301 ≈ 0.33 ≫ 0.111

Fréchette and Yuksel (2017) 50 800 0.75 0.4 0.4 0.737 0.943 ≫ 0.141 ≈ 0.266 ≈ 0.091

Fudenberg et al. (2012) 48 1452 0.875 0.333 0.333 0.756 0.982 ≫ 0.4 ≈ 0.427 ≫ 0.066

Kagel and Schley (2013) 114 7600 0.75 1 0.5 0.573 0.935 ≫ 0.263 ≈ 0.295 ≫ 0.051

Sherstyuk et al. (2013) 56 3052 0.75 1 0.25 0.56 0.945 ≫ 0.328 ≈ 0.371 ≫ 0.117

Pooled 1734 65910 0.728 1.207 1.083 0.389 0.938 ≫ 0.304 ≈ 0.322 ≫ 0.065

Second halves per session

Aoyagi and Frechette (2009) 38 1400 0.9 0.333 0.111 0.424 0.958 ≫ 0.398 ≈ 0.517 ≈ 0.375

Blonski et al. (2011) 200 5460 0.766 1.282 2.554 0.279 0.923 ≫ 0.287 ≈ 0.231 ≫ 0.02

Bruttel and Kamecke (2012) 36 1632 0.8 1.167 0.833 0.447 0.947 ≫ 0.221 ≈ 0.297 ≫ 0.041

Dal Bó (2005) 102 1650 0.75 0.961 1.039 0.297 0.92 ≫ 0.242 < 0.388 ≫ 0.064

Dal Bó and Fréchette (2011) 266 19270 0.62 1.122 1.103 0.355 0.979 ≫ 0.376 ≈ 0.362 ≫ 0.041

Dal Bó and Fréchette (2019) 672 29480 0.766 1.666 1.386 0.469 0.976 ≫ 0.315 < 0.402 ≫ 0.035

Dreber et al. (2008) 50 1838 0.75 1.533 1.533 0.461 0.917 ≫ 0.128 ≪ 0.39 ≫ 0.009

Duffy and Ochs (2009) 102 6018 0.9 1 1 0.684 0.977 ≫ 0.367 ≈ 0.391 ≫ 0.082

Fréchette and Yuksel (2017) 50 1568 0.75 0.4 0.4 0.763 0.97 ≫ 0.233 ≈ 0.398 ≫ 0.069

Fudenberg et al. (2012) 48 1800 0.875 0.333 0.333 0.829 0.971 ≫ 0.487 ≈ 0.412 ≫ 0.083

Kagel and Schley (2013) 114 7172 0.75 1 0.5 0.704 0.966 ≫ 0.262 ≈ 0.332 ≫ 0.025

Sherstyuk et al. (2013) 56 2604 0.75 1 0.25 0.646 0.973 ≫ 0.482 ≈ 0.437 ≫ 0.078

Pooled 1734 79892 0.744 1.271 1.172 0.404 0.971 ≫ 0.327 < 0.376 ≫ 0.039

Note: The “average cooperation rates” are the relative frequencies estimated directly from the data. The relation signs encode bootstrapped p-values (resampling at the subject level with 10,000

repetitions) where <,> indicate rejection of the Null of equality at p < .05 and ≪,≫ indicating p < .002. Following Wright (1992), we accommodate for the multiplicity of comparisons within

data sets by adjusting p-values using the Holm-Bonferroni method (Holm, 1979). Note that all details here exactly replicate Breitmoser (2015). As a result, if a data set is considered in isolation, the

.05-level indicated by “>,<” is appropriate. If all 24 treatments are considered simultaneously, the corresponding Bonferroni correction requires to further reduce the threshold to .002 ≈ .05/24, which

corresponds with “≫,≪”.
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Table 15: Overview of cooperation rates in the data

Cooperators Defectors

Average cooperation rates Average cooperation rates

Experiment #Subj #Dec σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd #Subj #Dec σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session

Aoyagi and Frechette (2009) 35 1509 0.783 0.936 0.45 0.402 0.313 3 141 0.143 0.575 0.444 0.441 0.486

Blonski et al. (2011) 74 1145 0.685 0.896 0.31 0.356 0.056 126 1895 0.066 0.714 0.192 0.123 0.027

Bruttel and Kamecke (2012) 20 1062 0.75 0.926 0.253 0.267 0.113 16 858 0.144 0.806 0.375 0.198 0.055

Dal Bó (2005) 52 675 0.807 0.947 0.21 0.37 0.133 50 645 0.087 0.762 0.22 0.326 0.064

Dal Bó and Fréchette (2011) 108 7382 0.699 0.969 0.337 0.415 0.113 158 10390 0.108 0.807 0.328 0.28 0.045

Dal Bó and Fréchette (2019) 311 10133 0.819 0.954 0.326 0.499 0.084 361 11979 0.124 0.87 0.239 0.239 0.048

Dreber et al. (2008) 31 1272 0.711 0.909 0.189 0.245 0.05 19 792 0.129 0.846 0.326 0.181 0.022

Duffy and Ochs (2009) 63 1886 0.807 0.913 0.302 0.403 0.14 39 1242 0.097 0.866 0.298 0.25 0.087

Fréchette and Yuksel (2017) 41 652 0.886 0.941 0.133 0.394 0.136 9 148 0.056 1 0.25 0.129 0.039

Fudenberg et al. (2012) 39 1185 0.905 0.985 0.418 0.518 0.06 9 267 0.091 0.947 0.316 0.333 0.077

Kagel and Schley (2013) 76 5066 0.814 0.939 0.262 0.419 0.069 38 2534 0.089 0.872 0.268 0.168 0.033

Sherstyuk et al. (2013) 34 1920 0.828 0.968 0.33 0.518 0.119 22 1132 0.152 0.78 0.323 0.266 0.115

Pooled 884 33887 0.778 0.951 0.312 0.43 0.098 850 32023 0.111 0.843 0.283 0.242 0.049

Second halves per session

Aoyagi and Frechette (2009) 34 1245 0.959 0.968 0.382 0.578 0.328 4 155 0.211 0.75 0.448 0.371 0.469

Blonski et al. (2011) 66 1761 0.75 0.926 0.322 0.398 0.036 134 3699 0.049 0.91 0.189 0.164 0.015

Bruttel and Kamecke (2012) 15 656 0.893 0.954 0.136 0.613 0.031 21 976 0.129 0.922 0.351 0.211 0.044

Dal Bó (2005) 60 974 0.838 0.927 0.24 0.434 0.063 42 676 0.042 0.852 0.25 0.348 0.065

Dal Bó and Fréchette (2011) 111 7984 0.892 0.982 0.358 0.579 0.055 155 11286 0.081 0.948 0.406 0.286 0.038

Dal Bó and Fréchette (2019) 319 14330 0.897 0.978 0.312 0.585 0.067 353 15150 0.089 0.965 0.322 0.315 0.024

Dreber et al. (2008) 22 830 0.847 0.929 0.1 0.479 0.027 28 1008 0.125 0.833 0.195 0.344 0.002

Duffy and Ochs (2009) 69 4206 0.943 0.978 0.376 0.408 0.083 33 1812 0.124 0.968 0.348 0.373 0.081

Fréchette and Yuksel (2017) 42 1322 0.909 0.973 0.227 0.507 0.115 8 246 0 0.8 0.333 0.194 0.014

Fudenberg et al. (2012) 41 1542 0.957 0.969 0.465 0.456 0.106 7 258 0.065 1 0.6 0.325 0.053

Kagel and Schley (2013) 82 5176 0.949 0.968 0.242 0.505 0.035 32 1996 0.067 0.937 0.426 0.194 0.015

Sherstyuk et al. (2013) 37 1674 0.907 0.978 0.489 0.558 0.124 19 930 0.123 0.946 0.456 0.382 0.053

Pooled 898 41700 0.898 0.974 0.318 0.525 0.063 836 38192 0.084 0.954 0.347 0.292 0.03

Note: “Cooperators” and “Defectors” are determined by their average cooperation rate in round 1. If above median, they are cooperators. The “average cooperation

rates” are the relative frequencies estimated directly from the data. The relation signs encode bootstrapped p-values (resampling at the subject level with 10,000

repetitions) where <,> indicate rejection of the Null of equality at p < .05 and ≪,≫ indicating p < .002. Following Wright (1992), we accommodate for the

multiplicity of comparisons within data sets by adjusting p-values using the Holm-Bonferroni method (Holm, 1979). Note that all details here exactly replicate

Breitmoser (2015). As a result, if a data set is considered in isolation, the .05-level indicated by “>,<” is appropriate. If all 24 treatments are considered

simultaneously, the corresponding Bonferroni correction requires to further reduce the threshold to .002 ≈ .05/24, which corresponds with “≫,≪”.
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C Robustness check: Memory-2

We investigate memory length using a data mining approach similar to above. To this end,

we extend the set of pure strategies with memory-2 strategies and then evaluate these best

fitting specifications, treatment by treatment, against the above memory-1 model from above.

We follow Fudenberg et al. (2012), who introduced lenient and resilient variants of the pure

memory-1 strategies, i.e., strategies that punish only after the second deviation or that punish

for two rounds instead of one. In order to allow for memory-2 in semi-grim we use a novel

approach by allowing the cooperation probabilities in round t to depend on the behavior of

one or both players in t −2 more generally with a parametric approach. Here, we allow for

three different specifications: cooperation probabilities may be a function of the opponent’s

choice in t −2 (TFT-Scheme), a function of whether both players cooperated in t −2 or not

(Grim-Scheme), or a function of the entire choice profile in t −2 (General scheme).

Table 16 summarizes the results. First, we mine for mixtures of pure strategies, based on

the list of 8 strategies (TFT, Grim, AD, Grim2, TF2T, T2, 2TFT, 2PTFT as in Fudenberg

et al. (2012)). Given the above results, we assume that subjects do not switch strategies

within half-sessions, as this comes without loss of descriptive adequacy for experienced

subjects and only little loss for inexperienced subjects (for whom, however, memory-2 will

turn out to be of negligible relevance). For each treatment, we determine the most adequate

combination of strategies from a list of five possible combinations of Fudenberg et al.’s

strategies, thus providing a selection of the best of 532 models overall. The resulting model

(Column “Best Pure M1&M2” in Table 16) fits highly significantly worse than the selection

of pure and generalized-pure strategies with memory-1 defined above (“M1” in Table 16).

We may therefore discard the possibility that subjects play pure strategies (with noise) of

either memory-1 or memory-2, in favor of the possibility that they play strategies allowing

for non-trivial randomization.

Second, we evaluate whether behavior strategies possibly have memory-2. That is, we com-

pare the a simple SG+AD memory-1 version with the three generalizations to memory-2

introduced above. The results are report in the three left-most columns of Table 16 and ap-

pear clear-cut: None of the memory-2 extensions improves on describing behavior by the

simple memory-1 AD+SG model and the AD+1.5SG model fits significantly better. Indeed,

the finer the memory-2 ramifications, the worse the model adequacy (after accounting for

the additional degrees of freedom). These results are additionally compatible with a result

of Breitmoser (2015) who verified the Markov assumption by testing whether subjects sys-

tematically deviate from memory-1 strategies after particular histories in memory-2. We

summarize these observations as follows.

Result (Memory-2) Model adequacy does not improve by equipping subjects with memory-2,

neither for (generalizations of) pure strategies nor for semi-grim.

Table 17 shows aggregate state-wise cooperation rates for different lagged histories (co-

operation or defection of the opponent in t − 2) TFT-Scheme. Table 18 shows aggregate

state-wise cooperation rates for different lagged histories (joint cooperation or not in t − 2)

Grim-Scheme.
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Table 16: Memory-1 or Memory-2, and semi-grim, pure or generalized pure? Strategy mixtures are estimated treatment-by-

treatment. The resulting ICL-BICs are pooled within experiments and overall (less is better, relation signs point to better models)

Memory-2 Generalizations of Semi-Grim + AD Best Gen Pure Best Pure

M2“General” M2“TFT” M2“Grim” AD+SG AD+1.5×SG M1 M1 & M2

Specification

# Models evaluated 1 1 1 1 1 932 532

# Pars estimated (by treatment) 12 6 6 5 7 48 32

# Parameters accounted for 12 6 6 5 7 6–10 3–8

First halves per session

Aoyagi and Frechette (2009) 756.04 ≈ 764.13 ≈ 749.99 ≈ 781.86 ≈ 792.28 ≈ 843.08 ≈ 884.86

Blonski et al. (2011) 1244.76 ≫ 1121.17 ≈ 1120.87 ≫ 1069.26 ≈ 1104.1 ≈ 1069.54 ≈ 1105.98

Bruttel and Kamecke (2012) 807.47 ≈ 802.89 ≈ 804.16 ≈ 800.12 ≈ 771.14 ≈ 821.99 ≈ 839.97

Dal Bó (2005) 660.68 > 641.34 ≈ 642.26 ≈ 629.13 ≈ 618.12 ≈ 623.19 < 653.05

Dal Bó and Fréchette (2011) 6671.28 ≈ 6616.44 ≈ 6604.7 ≈ 6597.92 > 6352.64 ≪ 6874.99 ≪ 7391.89

Dal Bó and Fréchette (2019) 8068.37 ≈ 8028.83 ≈ 8031.59 ≈ 8017.56 ≫ 7829.75 ≪ 8367.55 ≪ 8893.78

Dreber et al. (2008) 805.74 > 785.48 ≈ 785.6 ≈ 782.38 ≈ 764.44 ≈ 789.22 < 863.47

Duffy and Ochs (2009) 1361.84 ≈ 1377.17 ≈ 1369.86 ≈ 1372.97 ≈ 1361.13 ≈ 1396.68 ≈ 1426.34

Fréchette and Yuksel (2017) 305.9 ≈ 299.72 ≈ 296.93 ≈ 299.6 ≈ 289.54 ≈ 300.87 ≈ 317.35

Fudenberg et al. (2012) 387.8 ≈ 379.84 ≈ 378.07 ≈ 381.01 ≈ 377.96 < 437.5 ≈ 463.4

Kagel and Schley (2013) 2542.02 ≈ 2556.45 ≈ 2552.09 ≈ 2561.76 ≫ 2450.24 ≪ 2660.58 ≈ 2730.66

Sherstyuk et al. (2013) 1311.64 ≈ 1307.45 ≈ 1303.94 ≈ 1303.8 ≈ 1234.52 < 1299.14 < 1398.69

Pooled 25434.21 ≫ 24972.71 ≈ 24931.86 ≈ 24779.74 ≫ 24201.19 ≪ 25710.49 ≪ 27115.39

Second halves per session

Aoyagi and Frechette (2009) 415.47 ≈ 421.18 > 409.2 ≈ 423.68 ≈ 421.21 < 492.28 ≈ 540.47

Blonski et al. (2011) 1518.54 ≫ 1395.94 ≈ 1393.41 ≫ 1352.31 ≈ 1373.9 ≈ 1373.41 < 1564.48

Bruttel and Kamecke (2012) 536.19 ≈ 532.08 ≈ 529.47 ≈ 536.78 ≫ 480.47 ≈ 493.79 < 567.99

Dal Bó (2005) 727.25 ≈ 710.88 ≈ 708.32 ≈ 699.05 ≈ 677.22 < 712.63 ≈ 741.2

Dal Bó and Fréchette (2011) 5201.05 ≈ 5137.82 ≈ 5132.96 ≈ 5128.68 ≫ 4565.87 ≪ 5045.08 ≪ 5960.78

Dal Bó and Fréchette (2019) 7840.87 ≈ 7829.51 ≈ 7808.63 ≈ 7825.98 ≫ 7306.18 ≪ 8107.4 ≪ 9143.98

Dreber et al. (2008) 597.17 ≈ 580.63 ≈ 570.33 ≈ 589.83 > 544.66 ≈ 580.69 < 648.55

Duffy and Ochs (2009) 1706.1 ≈ 1753.41 ≈ 1719.86 ≈ 1761.61 ≫ 1656.55 ≪ 1910.09 ≈ 2003.41

Fréchette and Yuksel (2017) 422.32 ≈ 424.41 ≈ 419.44 ≈ 423.34 ≈ 422.52 ≈ 433.18 < 464.23

Fudenberg et al. (2012) 452.64 ≈ 450.08 ≈ 447.25 ≈ 452.6 ≈ 433.74 ≪ 505.1 ≈ 534.47

Kagel and Schley (2013) 1782.43 ≈ 1777.83 ≈ 1773.55 ≈ 1775.62 ≫ 1572.95 < 1681.03 ≈ 1830.26

Sherstyuk et al. (2013) 959.21 ≈ 952.56 ≈ 949.46 ≈ 951.34 ≫ 834.73 ≈ 890.27 < 1023.43

Pooled 22669.9 ≫ 22258.14 ≈ 22153.7 ≈ 22103.2 ≫ 20545.33 ≪ 22462.25 ≪ 25177.57

Note: The main body contains ICL-BICs aggregated at paper level. Relation signs and p-values are exactly as above, see Table 5. “M2” (“M1”) denotes strategies, whose actions may depend on actions in t −2 and t −1

(t − 1 only). The supplements “General”, “TFT”, “Grim” indicate whether parameters of behavior strategies may depend on: all four possible histories in t − 2 (M2 “General”), whether the opponent cooperated in t − 2

(M2 “TFT”), or whether there was joint cooperation in t −2 (M2 “Grim”). Pure M2 strategies do not have such free parameters. Columns 1-3 contain one memory-2 version of semi-grim each. Column 4-5 are memory-1

models containing semi-grim and always defect. Column 6 contains the best mixture of generalized pure memory-1 strategies (identical to column 2 (“No Switching”) in Table 5) and the last column contains the best fitting

combinations of a set of pure memory-1 and memory-2 strategies from the literature (TFT, Grim, AD, Grim2, TF2T, T2, 2TFT, 2PTFT) for definitions see Table 13 in the Appendix.



Table 17: Strategies as a function of behavior in t −2 (TFT scheme)

Cooperation after /0,(c,c),(d,c) in t −2 Cooperation after (c,d),(d,d) in t −2

Experiment σ̂cc σ̂cd σ̂dc σ̂dd σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session

Aoyagi and Frechette (2009) 0.93 ≫ 0.439 ≈ 0.388 ≈ 0.434 0.789 ≫ 0.463 ≈ 0.44 > 0.291

Blonski et al. (2011) 0.901 ≫ 0.27 ≈ 0.146 ≫ 0.053 0.667 ≈ 0.296 ≈ 0.321 ≫ 0.027

Bruttel and Kamecke (2012) 0.908 ≫ 0.312 ≈ 0.218 ≈ 0.151 0.944 ≫ 0.247 ≈ 0.247 ≫ 0.063

Dal Bó (2005) 0.93 ≫ 0.232 ≈ 0.31 > 0.126 0.833 > 0.147 ≈ 0.413 ≫ 0.071

Dal Bó and Fréchette (2011) 0.955 ≫ 0.352 ≈ 0.298 ≫ 0.086 0.885 ≫ 0.291 ≈ 0.41 ≫ 0.048

Dal Bó and Fréchette (2019) 0.944 ≫ 0.301 ≈ 0.277 ≫ 0.098 0.847 ≫ 0.288 ≈ 0.44 ≫ 0.044

Dreber et al. (2008) 0.902 ≫ 0.213 ≈ 0.189 ≫ 0.061 1 > 0.233 ≈ 0.302 ≫ 0.025

Duffy and Ochs (2009) 0.927 ≫ 0.316 ≈ 0.304 ≈ 0.232 0.691 ≫ 0.277 ≈ 0.361 ≫ 0.08

Fréchette and Yuksel (2017) 0.943 ≫ 0.153 ≈ 0.241 ≈ 0.1 1 ≈ ≈ 0.4 ≈ 0.086

Fudenberg et al. (2012) 0.984 ≫ 0.394 ≈ 0.347 ≫ 0.05 0.895 ≫ 0.41 ≈ 0.579 ≫ 0.069

Kagel and Schley (2013) 0.94 ≫ 0.29 ≈ 0.25 ≫ 0.125 0.787 ≫ 0.196 ≈ 0.402 ≫ 0.032

Sherstyuk et al. (2013) 0.951 ≫ 0.329 ≈ 0.341 > 0.186 0.844 ≫ 0.328 ≈ 0.424 ≫ 0.09

Pooled 0.944 ≫ 0.312 > 0.279 ≫ 0.106 0.826 ≫ 0.287 ≈ 0.41 ≫ 0.05

Second halves per session

Aoyagi and Frechette (2009) 0.961 ≫ 0.408 ≈ 0.567 ≈ 0.447 0.867 ≫ 0.381 ≈ 0.451 ≈ 0.328

Blonski et al. (2011) 0.922 ≫ 0.224 ≈ 0.195 ≫ 0.029 0.944 ≫ 0.402 ≈ 0.324 ≫ 0.018

Bruttel and Kamecke (2012) 0.948 ≫ 0.239 ≈ 0.214 ≈ 0.118 0.923 > 0.167 ≈ 0.5 ≫ 0.018

Dal Bó (2005) 0.919 ≫ 0.264 ≈ 0.39 ≫ 0.113 0.938 ≫ 0.175 ≈ 0.383 ≫ 0.047

Dal Bó and Fréchette (2011) 0.979 ≫ 0.391 ≈ 0.29 ≫ 0.075 0.975 ≫ 0.334 ≈ 0.547 ≫ 0.022

Dal Bó and Fréchette (2019) 0.977 ≫ 0.304 ≈ 0.328 ≫ 0.064 0.927 ≫ 0.343 ≈ 0.532 ≫ 0.028

Dreber et al. (2008) 0.917 ≫ 0.111 < 0.311 ≫ 0.005 0.909 > 0.5 ≈ 0.629 ≫ 0.01

Duffy and Ochs (2009) 0.98 ≫ 0.408 ≈ 0.371 > 0.232 0.849 ≫ 0.316 ≈ 0.415 ≫ 0.058

Fréchette and Yuksel (2017) 0.973 ≫ 0.213 ≈ 0.286 ≈ 0.214 0.818 ≈ 0.286 ≈ 0.575 ≫ 0.038

Fudenberg et al. (2012) 0.974 ≫ 0.5 ≈ 0.41 ≫ 0.111 0.84 > 0.463 ≈ 0.417 ≫ 0.075

Kagel and Schley (2013) 0.967 ≫ 0.281 ≈ 0.263 ≫ 0.061 0.872 ≫ 0.188 ≈ 0.527 ≫ 0.018

Sherstyuk et al. (2013) 0.973 ≫ 0.503 ≈ 0.417 ≫ 0.12 0.968 ≫ 0.431 ≈ 0.5 ≫ 0.062

Pooled 0.973 ≫ 0.325 ≈ 0.315 ≫ 0.076 0.917 ≫ 0.332 ≈ 0.499 ≫ 0.028

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 2, with the obvious adaptation that the Holm-Bonferroni correction

now applies to all eight tests per data set.



Table 18: Strategies as a function of behavior in t −2 (Grim scheme)

Cooperation after /0,(c,c) in t −2 Cooperation after (c,d),(d,c),(d,d) in t −2

Experiment σ̂cc σ̂cd σ̂dc σ̂dd σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session

Aoyagi and Frechette (2009) 0.939 ≫ 0.39 ≈ 0.439 ≈ 0.556 0.782 ≫ 0.485 ≈ 0.39 > 0.32

Blonski et al. (2011) 0.903 ≫ 0.248 ≈ 0.174 ≫ 0.045 0.714 > 0.318 ≈ 0.216 > 0.031

Bruttel and Kamecke (2012) 0.919 ≫ 0.296 ≈ 0.245 ≈ 0.179 0.833 ≫ 0.278 ≈ 0.213 ≫ 0.071

Dal Bó (2005) 0.926 ≫ 0.184 ≈ 0.31 ≈ 0.143 0.889 ≫ 0.254 ≈ 0.39 ≫ 0.074

Dal Bó and Fréchette (2011) 0.961 ≫ 0.342 ≈ 0.307 ≫ 0.081 0.849 ≫ 0.324 ≈ 0.364 ≫ 0.054

Dal Bó and Fréchette (2019) 0.95 ≫ 0.265 ≈ 0.301 ≫ 0.081 0.843 ≫ 0.328 ≈ 0.369 ≫ 0.052

Dreber et al. (2008) 0.901 ≫ 0.154 ≈ 0.217 ≫ 0.062 1 ≫ 0.359 ≈ 0.203 ≫ 0.031

Duffy and Ochs (2009) 0.932 ≫ 0.218 ≈ 0.301 ≈ 0.208 0.748 ≫ 0.361 ≈ 0.35 ≫ 0.102

Fréchette and Yuksel (2017) 0.942 ≫ 0.132 ≈ 0.245 ≫ 0 1 ≈ 0.182 ≈ 0.364 ≈ 0.111

Fudenberg et al. (2012) 0.985 ≫ 0.429 ≈ 0.408 ≫ 0 0.921 ≫ 0.377 ≈ 0.443 ≫ 0.068

Kagel and Schley (2013) 0.947 ≫ 0.236 ≈ 0.288 ≫ 0.133 0.763 ≫ 0.298 ≈ 0.305 ≫ 0.042

Sherstyuk et al. (2013) 0.953 ≫ 0.312 ≈ 0.395 ≫ 0.172 0.875 ≫ 0.343 ≈ 0.349 ≫ 0.107

Pooled 0.949 ≫ 0.278 ≈ 0.3 ≫ 0.091 0.825 ≫ 0.333 ≈ 0.346 ≫ 0.059

Second halves per session

Aoyagi and Frechette (2009) 0.965 ≫ 0.438 ≈ 0.625 ≈ 0.333 0.846 ≫ 0.371 < 0.443 ≈ 0.378

Blonski et al. (2011) 0.922 ≫ 0.157 ≈ 0.232 ≫ 0.027 0.941 ≫ 0.425 ≈ 0.23 ≫ 0.019

Bruttel and Kamecke (2012) 0.946 ≫ 0.156 ≈ 0.233 ≈ 0.173 0.958 ≫ 0.327 ≈ 0.4 ≫ 0.019

Dal Bó (2005) 0.918 ≫ 0.178 < 0.4 > 0.131 0.937 ≫ 0.32 ≈ 0.373 ≫ 0.052

Dal Bó and Fréchette (2011) 0.981 ≫ 0.373 ≈ 0.323 ≫ 0.077 0.95 ≫ 0.38 ≈ 0.416 ≫ 0.025

Dal Bó and Fréchette (2019) 0.98 ≫ 0.264 < 0.366 ≫ 0.058 0.904 ≫ 0.369 ≈ 0.44 ≫ 0.031

Dreber et al. (2008) 0.913 ≫ 0.029 ≪ 0.314 ≫ 0.007 0.955 ≫ 0.417 ≈ 0.611 ≫ 0.009

Duffy and Ochs (2009) 0.981 ≫ 0.362 ≈ 0.433 ≈ 0.226 0.889 ≫ 0.369 ≈ 0.368 ≫ 0.077

Fréchette and Yuksel (2017) 0.976 ≫ 0.173 ≈ 0.308 ≈ 0.222 0.75 > 0.294 ≈ 0.49 ≫ 0.06

Fudenberg et al. (2012) 0.976 ≫ 0.473 ≈ 0.509 ≈ 0.2 0.854 ≫ 0.5 ≈ 0.328 ≫ 0.077

Kagel and Schley (2013) 0.969 ≫ 0.218 ≈ 0.293 > 0.098 0.868 ≫ 0.332 ≈ 0.394 ≫ 0.02

Sherstyuk et al. (2013) 0.974 ≫ 0.465 ≈ 0.486 ≫ 0.107 0.952 ≫ 0.505 ≈ 0.369 ≫ 0.072

Pooled 0.975 ≫ 0.282 ≪ 0.351 ≫ 0.07 0.908 ≫ 0.378 ≈ 0.404 ≫ 0.033

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 2, with the obvious adaptation that the Holm-Bonferroni correction

now applies to all eight tests per data set.



D Further robustness checks for Sections 4 and 5

Figure 4: Relation of δ−δ∗ to shares of cooperators (first halves of sessions)

Pseudo − R2 = 0.3 Pseudo − R2 = 0.45

(a) Share of cooperators overall (b) Rel. share of cautious cooperators
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(c) Share of cautious cooperators overall (d) Share of strong cooperators overall
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Note: This figure shows how the ratios of the three strategies – defectors, cautious cooperators, and strong

cooperators change with the distance of δ to the BOS cooperation threshold δ∗ across treatments. The solid

line represents the best fitting logistic curve estimated with intercept. Panel (a) displays the total share of

both cooperators, panel (b) the relative share of cautious cooperators among cooperators, panel (c) the share of

cautious cooperators overall, panel (d) the share of strong cooperators overall.
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Table 19: Robustness of Table 5 towards “30 rounds of play till experience”: Best mixtures of pure or generalized strategies in relation to

behavior strategy.)

Best mixture of pure or generalized strategies Best Mixture

Baseline No Random Markov Best Unrestr Beh Best Switching

Model Switching Switching Switching Switching 2×P5+AD By Treatment

Specification

# Models evaluated 1 932 932 932 3×932 1 2732 ≈ 1046

# Pars estimated (by treatment) 5 48 48 180 276 13 276

# Parameters accounted for 5 3–10 3–10 12-35 3–30 13 3–30

First halves per session

Aoyagi and Frechette (2009) 704.77 ≈ 679.07 ≈ 667.62 ≈ 684.64 684.64 ≫ 603.81 < 667.62

Blonski et al. (2011) 2017.43 > 1942.75 < 2061.54 ≈ 2102.97 2102.97 ≫ 1993.47 ≈ 1941.45

Bruttel and Kamecke (2012) 568.74 ≈ 549.7 ≈ 560.79 ≈ 543.15 543.15 ≈ 538.89 ≈ 543.15

Dal Bó (2005) 1225.33 ≈ 1210.87 ≪ 1366.68 ≫ 1210.8 1210.8 > 1161.77 ≈ 1192.55

Dal Bó and Fréchette (2011) 3884.21 > 3735.25 ≪ 3911.56 ≫ 3686.29 3686.29 > 3535.53 < 3633.61

Dal Bó and Fréchette (2019) 8963.07 ≫ 8730.66 ≪ 9631.78 ≫ 8233.2 8233.2 ≈ 8098.25 ≈ 8115.28

Dreber et al. (2008) 580.87 ≈ 559.49 ≈ 584.75 ≫ 534.29 534.29 ≈ 549.76 ≈ 534.29

Duffy and Ochs (2009) 1677.02 ≈ 1665.73 ≈ 1720.54 ≫ 1605.79 1605.79 ≫ 1481.56 ≪ 1605.79

Fréchette and Yuksel (2017) 603.84 ≈ 590.89 < 649.85 > 568.13 568.13 ≈ 547.57 ≈ 568.13

Fudenberg et al. (2012) 455.89 ≈ 455.89 ≈ 459.83 ≈ 457.81 457.81 ≫ 394.37 < 455.89

Kagel and Schley (2013) 1621.93 ≈ 1621.93 < 1754.14 ≫ 1542.63 1542.63 ≈ 1489.87 ≈ 1542.63

Sherstyuk et al. (2013) 919.02 ≈ 914.61 < 967.22 > 922.45 922.45 ≫ 835.9 ≪ 914.61

Pooled 23404.48 ≫ 22898.28 ≪ 24522.31 ≫ 22773.53 22773.53 ≫ 21704.93 < 22161.03

Second halves per session

Aoyagi and Frechette (2009) 719.05 ≈ 656.92 ≈ 656.65 ≈ 646.25 656.92 ≫ 545.5 < 646.25

Blonski et al. (2011) 615.13 ≫ 529.97 ≈ 528.82 ≪ 701.88 529.97 ≪ 725.95 ≫ 489.09

Bruttel and Kamecke (2012) 766.66 ≈ 754.7 ≪ 885.07 ≫ 734.16 754.7 > 690.3 ≈ 734.16

Dal Bó (2005) 196.84 ≫ 148.82 ≫ 105.12 ≪ 152.48 148.82 ≪ 198.02 ≫ 105.12

Dal Bó and Fréchette (2011) 8850.02 ≫ 8206.12 ≪ 9898.77 ≫ 7445.82 8206.12 ≫ 7300.56 ≈ 7445.82

Dal Bó and Fréchette (2019) 7851.06 ≫ 7644.65 ≪ 8960.18 ≫ 7778.52 7644.65 ≫ 6865.95 ≪ 7410.23

Dreber et al. (2008) 832.58 > 778.4 ≪ 930.98 ≫ 751.43 778.4 > 723.17 ≈ 751.43

Duffy and Ochs (2009) 1692.08 ≈ 1663.82 ≈ 1738.03 ≫ 1647.57 1663.82 ≫ 1404.25 ≪ 1647.57

Fréchette and Yuksel (2017) 158.72 > 133.03 ≈ 153.88 ≈ 151.25 133.03 ≈ 134.58 ≈ 133.03

Fudenberg et al. (2012) 486.81 ≈ 486.81 ≈ 515.02 ≈ 505.03 486.81 ≫ 402.93 < 486.81

Kagel and Schley (2013) 2690.35 ≈ 2690.35 > 2347.19 ≈ 2481.64 2690.35 ≫ 2419.78 ≈ 2347.19

Sherstyuk et al. (2013) 1292.68 ≈ 1267.42 ≈ 1137.49 ≈ 1229.61 1267.42 ≈ 1182.85 ≈ 1137.49

Pooled 26334.35 ≫ 25193.46 ≪ 28083.76 ≫ 24996.21 25193.46 ≫ 23068.02 < 23874.33

Note: For a detailed description of the columns, see Table 5. This table differs from table 5 only by the definition of experience. Here we call subjects experienced for supergames

starting after round 30. We call them inexperienced in all other supergames.



Table 20: Robustness of Table 6 towards “30 rounds of play till experience”: Examining heterogeneity of cooperating subjects and

semi-grim structure of their strategies

Best Mixture Fixed SG Treatment-specific SG specification

Best Switching 1.5×SG+ AD 1.5×SG+AD 2×SG+AD 3×SG+AD 3×P5+AD 2×P5+AD P5+AD

Specification

# Models evaluated 2732 ≈ 1046 1 1 1 1 1 1 1

# Pars estimated (by treatment) 276 3 7 9 13 19 17 11

# Parameters accounted for 3-30 3 7 9 13 19 17 11

First halves per session

Aoyagi and Frechette (2009) 667.62 ≈ 637.07 ≈ 643.49 ≈ 629.81 ≈ 634.94 > 605.64 ≈ 603.81 ≈ 602.46

Blonski et al. (2011) 1941.45 ≈ 1898.44 ≈ 1908.87 ≈ 1919.49 < 1987.72 ≪ 2085.1 ≫ 1993.47 ≈ 1968.36

Bruttel and Kamecke (2012) 543.15 ≈ 522.33 ≈ 524.84 ≈ 538.67 ≈ 524.91 ≈ 531.34 ≈ 538.89 ≈ 551.79

Dal Bó (2005) 1192.55 ≈ 1164.98 ≈ 1164.09 ≈ 1187.03 ≈ 1177.08 ≈ 1170.35 ≈ 1161.77 < 1219.45

Dal Bó and Fréchette (2011) 3633.61 ≈ 3521.82 ≈ 3544.24 ≈ 3536.45 ≈ 3559.72 < 3611.59 > 3535.53 ≈ 3589.33

Dal Bó and Fréchette (2019) 8115.28 ≈ 8284.59 > 8202.48 ≈ 8139.52 ≈ 8142.63 ≈ 8130.33 ≈ 8098.25 ≪ 8326.76

Dreber et al. (2008) 534.29 ≈ 541.42 ≈ 540.96 ≈ 542.95 ≈ 556.19 ≈ 559.2 ≈ 549.76 ≈ 538.03

Duffy and Ochs (2009) 1605.79 ≈ 1537.47 > 1488.44 < 1548.72 > 1486.31 ≈ 1484.36 ≈ 1481.56 ≪ 1571.38

Fréchette and Yuksel (2017) 568.13 ≈ 580.86 ≈ 577.75 ≈ 556.27 ≈ 554.35 ≈ 551.45 ≈ 547.57 < 575.86

Fudenberg et al. (2012) 455.89 ≈ 444.08 > 398.99 ≈ 391.72 ≈ 402.04 ≈ 401.02 ≈ 394.37 ≈ 399.46

Kagel and Schley (2013) 1542.63 ≈ 1516.89 ≈ 1523.91 ≈ 1492.6 ≈ 1483.6 ≈ 1473.5 ≈ 1489.87 < 1561.95

Sherstyuk et al. (2013) 914.61 ≈ 869.61 ≈ 866.61 ≈ 841.39 ≈ 833.88 ≈ 829.05 ≈ 835.9 ≪ 889.51

Pooled 22161.03 > 21628.99 ≈ 21640.02 ≈ 21652.87 ≈ 21817.56 ≪ 22125.94 ≫ 21704.93 ≪ 22049.69

Second halves per session

Aoyagi and Frechette (2009) 646.25 ≈ 610.11 ≫ 569.62 ≈ 566.52 ≈ 564.62 ≈ 541.38 ≈ 545.5 ≈ 548.76

Blonski et al. (2011) 489.09 < 534.49 ≪ 614.55 ≪ 648.01 ≪ 753.61 ≪ 899.58 ≫ 725.95 ≫ 572.14

Bruttel and Kamecke (2012) 734.16 ≈ 706.9 ≈ 699.2 ≈ 697.16 ≈ 688.82 ≈ 659.27 ≈ 690.3 < 764.9

Dal Bó (2005) 105.12 ≪ 157.19 < 167.69 > 160.88 ≪ 224.9 ≪ 249.73 ≫ 198.02 ≫ 127.22

Dal Bó and Fréchette (2011) 7445.82 ≪ 7944.17 ≫ 7429.41 ≈ 7340.41 ≈ 7179.94 ≈ 7129.04 < 7300.56 ≪ 8095.2

Dal Bó and Fréchette (2019) 7410.23 ≈ 7515.99 ≫ 6964.58 ≈ 6990.43 ≫ 6833.14 ≈ 6826.27 ≈ 6865.95 ≪ 7367.82

Dreber et al. (2008) 751.43 ≈ 769.57 ≈ 759.05 ≈ 746.3 ≈ 740.91 ≈ 715.77 ≈ 723.17 < 806.32

Duffy and Ochs (2009) 1647.57 > 1544.71 > 1448.68 ≈ 1419.69 > 1348.05 ≈ 1343.95 ≈ 1404.25 ≪ 1499.54

Fréchette and Yuksel (2017) 133.03 ≈ 148.65 > 115.87 ≈ 126.62 ≈ 123.56 ≈ 130.91 ≈ 134.58 ≈ 124.53

Fudenberg et al. (2012) 486.81 ≈ 471.81 ≫ 415.35 ≈ 397.53 ≈ 387.56 ≈ 393.1 ≈ 402.93 ≈ 427.25

Kagel and Schley (2013) 2347.19 < 2625.27 ≫ 2451.52 ≈ 2428.78 > 2346.78 ≈ 2336.24 ≈ 2419.78 ≪ 2728.25

Sherstyuk et al. (2013) 1137.49 < 1293.71 > 1211.48 ≈ 1193.64 ≈ 1163.22 ≈ 1170.62 ≈ 1182.85 ≪ 1325

Pooled 23874.33 < 24431.99 ≫ 23102.33 ≈ 23044.26 > 22829.28 < 23088.88 ≈ 23068.02 ≪ 24642.26

Note: For a detailed description of the columns, see Table 6. This table differs from Table 6 only by the definition of experience. Here we call subjects experienced for supergames

starting after round 30. We call them inexperienced in all other supergames.


