
 

    

Collaborative Research Center Transregio 224 - www.crctr224.de 

Rheinische Friedrich-Wilhelms-Universität Bonn - Universität Mannheim 

 

 

 

 

 

 

 

 

Discussion Paper No. 353 

Project C 05 

 

 

The Empirical Performance of Financial Frictions Since 2008 

 
Gregor Boehl1 

Felix Strobel2 

 
 

 

 

June 2022 

 
 

 

 

1 University of Bonn, Email: gboehl@uni-bonn.de 
2 Deutsche Bundesbank 

 

 

 

 

 

 

 

 

Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 

through CRC TR 224 is gratefully acknowledged. 

Discussion Paper Series – CRC TR 224 

mailto:gboehl@uni-bonn.de


The Empirical Performance of Financial Frictions since 2008

Latest version at http://gregorboehl.com/live/financial_frictions_bs.pdf

Gregor Boehla,∗, Felix Strobelb

aUniversity of Bonn
bDeutsche Bundesbank

June 14, 2022

Abstract

We use nonlinear Bayesian methods to evaluate the performance of financial frictions à la Bernanke

et al. (1999) during and after the Global Financial Crisis. We find that, despite the attention

received in the literature, including these frictions in the canonical medium-scale DSGE model

does not improve the model’s ability to explain macroeconomic dynamics in the US during the

Great Recession. The reason is that in the estimated model with financial frictions, the firms’

leverage declines in response to the post-2008 collapse of investment, which in turn implies a

narrowing of the credit spread. Hence, the estimated model predicts financial decelerator effects.

Associated financial shocks play only a minor role for macroeconomic dynamics. Our estimates

account for the binding effective lower bound on nominal interest rates, and confirm our findings

independently for US and euro area data.
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1 Introduction

The Global Financial Crisis and the subsequent Great Recession triggered a need to improve

the understanding of the interlinkages between the financial sector and business cycles. As a

consequence, an ever-evolving body of literature developed a plethora of approaches to incorporate

financial frictions into dynamic macroeconomic models.1 While progress flourished on the front

of theoretical modeling, only few attempts have been made to test these models empirically on

the period including and following the Great Recession. This is primarily due to the long-lasting

binding effective lower bound on nominal interest rates (ELB), which, as a strong nonlinearity,

rendered conventional econometric methods unsuitable.

In this paper, we make a step towards closing this gap by testing the empirical performance

of one of the most widely used frameworks of financial frictions: the financial accelerator model

of Bernanke et al. (1999).2 To overcome the problem of the binding ELB we employ a novel

set of nonlinear solution and estimation methods that we develop in a companion paper (Boehl

and Strobel, 2022). These tools, recapped further below, allow us to estimate and empirically

evaluate large-scale macroeconomic models while accounting for the effects of the binding ELB.

As a benchmark, we assess the empirical performance of the standard medium-scale representative

agent New Keynesian (“RANK”) model of Smets and Wouters (2007), which does not feature

financial frictions, on a sample that extends to 2019. We contrast this with the model developed by

Del Negro et al. (2015), who add to RANK a financial sector inspired by Bernanke et al. (1999) –

the “FRANK” model.

Our central finding is that the inclusion of the financial friction improves neither the model’s

empirical fit nor its ability to explain the macroeconomic dynamics during the Great Recession.

By construction, the difference between the two models is that in FRANK, the credit spread (the

difference between the return on capital and the risk-free rate) is tied to firms’ leverage. A higher

leverage raises the credit spread. However, we show that in the estimated model, the leverage

ratio barely increases during the crisis and falls substantially thereafter. This deleveraging is due

to the substantial decline in the capital stock that is implied by the collapse of investment in the

Great Recession, and actually causes the model-implied spread to fall. These model predictions

are not in line with what we see in the data, where the credit spread soars with the onset of the

crises, and remains high for most of the time. To match the data in the estimated model, the lower

1Prominent examples include Meh and Moran (2010); Gerali et al. (2010); Cúrdia and Woodford (2011); Gertler

and Karadi (2011); Brunnermeier and Sannikov (2014); Christiano et al. (2014); Del Negro et al. (2017).
2Among many others, examples for studies that build on this framework are Christensen and Dib (2008); De Graeve

(2008); Darracq Pariès et al. (2011); Brzoza-Brzezina and Kolasa (2013); Del Negro and Schorfheide (2013); Verona

et al. (2013); Christiano et al. (2014); Del Negro et al. (2015); Carlstrom et al. (2016); Rannenberg (2016); Villa

(2016); Zivanovic (2019).

2



model-implied credit spread must be compensated by additional financial shocks, which worsens

the empirical performance of the model compared to the plain RANK model.

We document further that through the mechanism outlined above, the introduction of a financial

sector attenuates the decline in investment in response to recessionary shocks. This is problematic

because after 2008, the considerable decline in investment was a key feature of the US macroecon-

omy. In the estimated FRANK model, the collapse of investment in the Great Recession causes a

decline in the leverage ratio. This reduces the required return on investment, thereby dampening

the overall investment response: the financial accelerator becomes a financial attenuator. There-

fore, the addition of a financial sector impedes the ability of the model to explain the characteristics

of this episode. We show that this issue applies to recessionary risk premium shocks as well as for

shocks to the marginal efficiency of investment, both of which have previously been identified as

the main drivers of the great recession (e.g. Del Negro and Schorfheide, 2013; Christiano et al.,

2015).

In addition, we show that in our estimated models, financial shocks as in Christiano et al.

(2014) play only a minor role for macroeconomic dynamics. In principle, the advantage of in-

troducing financial frictions is that it allows to further discipline the model’s parameter estimates

with financial data series and opens the door for the analysis of the effects of financial shocks. In

the estimated model however, the relevance of these shocks is negligible. This result is driven by

the fact that, on balance, these financial shocks have an inflationary effect and hence put upwards

pressure on the interest rate via the Taylor rule. A more prominent role of these shocks would thus

be hard to reconcile with the prolonged duration of the ELB post-2008.

Instead of ascribing a prominent role to financial shocks or shocks to the firms’ investment

decisions, we conclude that elevated risk premiums in household financing are the dominant driver

of the crisis, and have a large explanatory power for the joint movement of consumption and

investment thereafter. This shock can either be interpreted as an economy-wide increase in the

demand for liquid or safe assets (Fisher, 2015), or it can be associated with the importance of

household financing for the Great Recession. This latter interpretation analysis corroborates the

work by Mian and Sufi (2014, 2015) and Guerrieri and Lorenzoni (2017), and is in line with Kehoe

et al. (2020), who argue that the credit tightening for households contributed more to the downturn

than the credit tightening for firms.

The episode of missing disinflation is reflected by an estimate of a flat Phillips curve.3 Recently,

several paper have attempted to resuscitate the Phillips Curve by including financial frictions. In

Christiano et al. (2015) and Gilchrist et al. (2017), increased refinancing costs drive firms to raise

3This observation fuelled the literature on the Missing Deflation Puzzle. See, e.g., Hall (2011), King and Watson

(2012).
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their prices and prevent a severe disinflation. In our model with financial frictions, recessionary risk

shocks can, in principle, generate inflationary pressure. However, their weight in the estimation is

not sufficient to revive the Phillips curve and hence to address the missing disinflation puzzle.

Using euro area data, we show that financial frictions also fail to improve the explanation of the

events on the other side of the Atlantic. The unfolding of the financial crisis and the response of

monetary policy differed in many important aspects in the euro area. Notably, the ECB steered the

deposit facility rate into negative territory. Yet despite these differences, the poor performance of

financial frictions is common to both settings. As in the US, the introduction of financial frictions

reduces the importance of the risk premium shock and attributes the recession to various different

shocks instead of offering a unifying narrative. Again, the role of financial shocks for business

cycle dynamics is minor. At the same time, our results for the US economy are also robust to

employing shorter samples that have a narrower focus on the Great Recession.

Related literature

To render the analysis of the empirical performance of financial frictions with post-2008 data

possible, we employ the novel set of Bayesian methods introduced in Boehl and Strobel (2022).

This allows us to account for the binding ELB on nominal interest rates in the estimation procedure.

Accordingly, we use the method of Boehl (2021) to solve for the ELB as an occasionally binding

constraint, which grants a significant increase in computational speed compared to alternative algo-

rithms. The Bayesian filter for the likelihood inference of the nonlinear model is an adapted version

of Evensen (1994, 2009). Furthermore, to allow us to quickly sample from possibly multi-modal

high-dimensional posterior distributions in parallel, we apply the adaptive differential evolution

Monte Carlo Markov Chain method suggested by Boehl (2022). Adding to this, we here develop a

systematic method that allows for historic shock decompositions of linearized models with occa-

sionally binding constraints. Notably, the results of this method are independent of the ordering of

shocks, and do not require elaborated sampling and simulation schemes. In particular, we exploit

the structure of the models that we estimate and provide a procedure to decompose the contribution

of each shock into its direct, linear impact on the general equilibrium dynamics, and its indirect,

nonlinear impact via the occasionally binding constraint.

The finding of a significantly worse fit of FRANK vs. RANK and its inability to explain the

Great Recession stand in contrast to Del Negro and Schorfheide (2013); Del Negro et al. (2015) and

Cai et al. (2019), who argue for the performance of FRANK-type models for economic forecasts.

Indeed, the introduction of financial frictions allows for a model-consistent role of financial spreads

for macroeconomic dynamics. As financial data are available earlier than national account data

and at a higher frequency, this provides an advantage for forecasts, in particular, during a financial

crisis. However, as we show, it does not improve upon the ex-post explanation of the data. With
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a focus on a smaller set of pre-crisis US macroeconomic time series, Brzoza-Brzezina and Kolasa

(2013) find that the inclusion of Bernanke et al. (1999) in a small-scale New Keynesian model does

not improve its empirical fit.4 In contrast to their work, our analysis casts the evaluation of financial

frictions in medium-scale models, which were tailored for empirical analysis, and we discipline

our estimates with a larger set of macroeconomic time series. Importantly, our methodological

approach also allows us to shed light on the performance of financial frictions in the aftermath of

the financial crisis. Despite the differences in the design of the analyses, we share the sceptical

view of Brzoza-Brzezina and Kolasa (2013) and take it one step further. Our results suggest that

frictions as in Bernanke et al. (1999) actually worsen the empirical fit of the model.

By including post-2008 data in our estimations, we extend prominent contributions in the liter-

ature, which analyze the Great Recession and the ELB period through the lens of models that have

been calibrated to or estimated on pre-crisis data only (see, e.g., Gertler and Karadi, 2011; Chris-

tiano et al., 2014, 2015; Del Negro et al., 2015; Carlstrom et al., 2017). As our analysis suggests –

and also illustrated by Boehl and Strobel (2022) and Boehl et al. (forthcoming) – this practice can

generate misleading conclusions about the driving forces of business cycles and about the effects

of monetary policies. The post-2008 part of the data sample carries important information that

significantly shapes the respective parameter estimates.

We proceed as follows: Section 2 briefly sketches the baseline RANK model and the FRANK

extension. Section 3 introduces the methodology as well as the data used. Section 4 briefly dis-

cusses the parameter estimates, presents estimates of quantitative measures of the model fit, and

provides interpretations of the Great Recession through the lens of the estimated models. Section

5 discusses the mechanisms behind the relatively poor performance of the FRANK model relative

to RANK. Section 6 extends our results to the euro area. Section 7 concludes.

2 Models

In our analysis, we employ two models. We use the canonical medium-scale framework by

Smets and Wouters (2007) as a baseline. In addition, we present an extended model, which includes

financial frictions in the vein of Bernanke et al. (1999) to gauge the role of financial frictions in

explaining the Great Recession. We dub the model that includes only a representative agent the

RANK model. The model vintage including financial frictions will be referred to as the financial

representative agent NK model – FRANK.

4The authors focus on matching the dynamics of real GDP, inflation and the federal funds rate as well as two

variables for spread and loan volume. In addition, they find that frictions as in Kiyotaki and Moore (1997) reduce the

fit of the model.
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2.1 Baseline model - RANK

We adopt the framework of (Smets and Wouters, 2007, SW) as a baseline model to interpret

the Great Recession. Deviating from SW, and following Del Negro and Schorfheide (2013), we

detrend all nonstationary variables by

Zt = eγt+ 1
1−α

z̃t , (1)

where, γ is the steady-state growth rate of the economy and α is the output share of capital. z̃t

is the linearly detrended log productivity process that follows the autoregressive law of motion

z̃t = ρz̃zt−1 + σzϵz. For zt, the growth rate of technology in deviations from γ, it holds that zt =

1
1−α

(ρz − 1)̃zt +
1

1−α
σzϵz.

We take into account the fact that the central bank is constrained in its interest rate policy by a

lower bound (ELB) on the nominal interest rate, rt. Therefore, in the linear model, it holds that

rt = max{r̄, rn
t }, (2)

with r̄ being the lower bound value. Whenever the policy rate is away from the constraint, it

corresponds to the notional rate, rn
t , which follows a conventional feedback rule

rn
t = ρrn

t−1 + (1 − ρ)
(
ϕππt + ϕỹyt

)
+ ϕdy∆ỹt + vr,t, (3)

where ỹt is the output gap and ∆ỹt = ỹt − ỹt−1 its growth rate. Parameter ρ expresses an interest rate

smoothing motive by the central bank. ϕπ, ϕy and ϕdy are feedback coefficients. vr,t is governed by

an exogenous AR(1) process.

As the model is well established, we direct the reader to Appendix C for the full set of lin-

earized equilibrium conditions.

2.2 Model with Financial Frictions - FRANK

The extended model includes frictions in financial markets. We adopt the modeling choices

by Del Negro et al. (2015), who build on the work of Bernanke et al. (1999), De Graeve (2008)

and Christiano et al. (2014). Entrepreneurs obtain loans from frictionless intermediaries, which

in turn receive their funds from household at the riskless interest rate. In addition to the loans,

entrepreneurs use their own net worth to finance the purchase of physical capital, which they rent

out to intermediate good producers. They are subject to idiosyncratic shocks to their ability to

manage capital. As a consequence, their revenue might fall short of the amount needed to repay

the loan, in which case they will default on their loan. In anticipation of the risk of entrepreneurs’

default, financial intermediates pool their loans and charge a spread on the riskless rate to cover the
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expected losses arising from defaulting entrepreneurs. Crucially, the spread of the loan rate r̃k
t over

the risk free nominal interest rate, rt, depends on the entrepreneurial leverage and can be written as

Et [̃r
k
t+1 − rt] = ut + ζsp,b(qt + kt − nt) + σ̃ω,t. (4)

Here, ut is the risk premium shock on the housholds’ borrrowing rate, qt is the price of capital, kt

is the capital stock and nt denotes entrepreneurial net worth. σ̃ω,t is a shock to the entrepreneurs’

riskiness and follows an AR(1) process – the risk shock introduced by Christiano et al. (2014).

Thus, the loan spread is defined as a function of the entrepreneurs’ leverage and their riskiness,

which is determined by the dispersion of the idiosyncratic shocks to entrepreneurs. The real loan

rate is linked to the return on capital by

r̃k
t − πt =

rk

rk + (1 − δ)
rk

t +
(1 − δ)

rk + (1 − δ)
qt − qt−1, (5)

where πt is the inflation rate, rk
t and rk denote the dynamics and the steady state of the marginal

product of capital, and parameter δ is the depreciation rate. Note that if the elasticity of the loan

rate to the entrepreneurs’ leverage, ζsp,b, is set to zero we are back to the case without financial

frictions. The left hand side of Equation 5 would then read (rt−1 − πt + ut−1) as in the Smets and

Wouters (2007) model. The parameter is eventually estimated.

The evolution of aggregate entrepreneurial net worth is described by

nt = ζn,̃rk (̃rk
t − πt) − ζn,r(rt−1 − πt) + ζn,qk(qt−1 + kt−1) + ζn,nnt−1 −

ζn,σω

ζsp,σω

σ̃ω,t−1 − γ∗
v∗

n∗
z̃t. (6)

Equation (6) links the accumulated stock of entrepreneurial net worth to the real return of renting

out capital to firms, the riskless real rate, its capital holdings, its past net worth and variations in

riskiness. The technology process enters the equation due to the form of detrending we borrow

from Del Negro et al. (2015). Likewise, the coefficients ζn,̃rk , ζn,r, ζn,qk, ζn,σω , ζsp,σω , γ∗, v∗ and n∗

are derived as in Del Negro et al. (2015).

3 Methodology and Data

Data samples in which the ELB is binding pose a host of technical challenges for the estimation

of DSGE models. These are related to the solution, likelihood inference, and posterior sampling

of models in the presence of an occasionally binding constraint (OBC). While methods to solve

models with OBCs exist, and – likewise – nonlinear filters are available, the combination of both

is computationally very expensive for medium-scale models. In this section, we briefly summarize

the set of novel methods that allow us to conduct the estimation of medium-scale models in the
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presence of an occasionally binding ELB. Secondly, we discuss our choices with regard to the data,

calibrated parameters, and priors used in the empirical analysis.

3.1 Solution method

Throughout this paper, we apply the solution method for DSGE models with OBCs that is

presented in Boehl (2021). We refer to the original paper for details. The model is linearized

around its steady state balanced growth path and thereby implicitly detrended. Respecting the ELB,

the original model with variable vector yt and shock vector εt can be represented as a piecewise

linear model with

N

∣∣∣∣∣∣∣
vt

wt−1

∣∣∣∣∣∣∣
+ b max

p

∣∣∣∣∣∣∣
Etvt+1

wt

∣∣∣∣∣∣∣
+ m

∣∣∣∣∣∣∣
vt

wt−1

∣∣∣∣∣∣∣
, r̄

 = Et

∣∣∣∣∣∣∣
vt+1

wt

∣∣∣∣∣∣∣
, (7)

where

∣∣∣∣∣∣∣
vt

wt−1

∣∣∣∣∣∣∣
is a re-ordering of

∣∣∣∣∣∣∣
yt

εt

∣∣∣∣∣∣∣
: wt−1 contains all the (latent) state variables and the current

shocks, and vt contains all forward looking variables. N is the system matrix and r̄ is the minimum

value of the constrained variable rt (which is the nominal interest rate for our purpose). The

constraint is included with rt = max

pEt

∣∣∣∣∣∣∣
vt+1

wt

∣∣∣∣∣∣∣
+ m

∣∣∣∣∣∣∣
vt

wt−1

∣∣∣∣∣∣∣
, r̄

. Note that the vector b contains the

effects of rt onto all other variables. Then, denote by (k, l) ∈ N+
0

the expected duration of the ELB

spell and the expected number of periods before the ELB becomes binding.

It can be shown that the rational expectations solution to Equation (7) for the state s periods

ahead, (vt+s,wt+s−1), can be expressed in terms of wt−1 and the expectations on k and l as

Fs(l, k,wt−1) =Nmax{s−l,0}N̂min{l,s}

∣∣∣∣∣∣∣
f (l, k,wt−1)

wt−1

∣∣∣∣∣∣∣
+ (I − N)−1

(
I − Nmax{s−l,0}

)
br̄, (8)

=Et

∣∣∣∣∣∣∣
vt+s

wt+s−1

∣∣∣∣∣∣∣
, (9)

where N̂ = (I − bp)−1 (N + bm) and

f (l, k,wt−1) =

vt : ΨNkN̂

∣∣∣∣∣∣∣
vt

wt−1

∣∣∣∣∣∣∣
= −Ψ(I − N)−1(I − Nk)br̄

 . (10)

Here, Ψ =
∣∣∣∣I −Ω

∣∣∣∣ where Ω : vt = Ωwt−1 represents the linear rational expectations solution of the

unconstrained system as given, e.g., in Blanchard and Kahn (1980).

Finding the equilibrium values of (l, k) must be done numerically. The crucial advantage of

the above representation over alternative methods such as Guerrieri and Iacoviello (2015) is that
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the simulation of anticipated trajectories (and matrix inversions at runtime) can be avoided when

iterating over (l, k). This achieves a reduction in computation time by a factor of roughly 1,500,

which is necessary for our application. Ultimately, the resulting transition function is a nonlinear

state-space representation.5

3.2 Filtering and Estimation Method

Likelihood inference of models with an OBC requires a nonlinear Bayesian filter (e.g. An

and Schorfheide, 2007; Herbst and Schorfheide, 2019). Given the high dimensionality of our

model, the particle filter is not a feasible choice. As documented in Boehl and Strobel (2022), the

inversion filter used in Guerrieri and Iacoviello (2017) and discussed in Cuba-Borda et al. (2019),

for example, has a number of shortcomings that may render a correct likelihood inference difficult

when the filter is applied to medium-scale models.6

To bridge this gap, Boehl and Strobel (2022, henceforth BS) introduce the Ensemble Kalman

Filter (EnKF, Evensen, 1994) which can be understood as a hybrid of the particle filter and the

Kalman filter. The EnKF is initialized by sampling an ensemble of particles from the initial dis-

tribution at t = 0. For each new observable at t, instead of re-sampling (particle filter), the EnKF

applies statistical linearization to update the time-t state estimate, (which again is represented by

the ensemble) to match each new observation vector. This allows us to efficiently approximate the

distribution of states for large-scale nonlinear systems with only a few hundred particles instead of

several million or billion, as with the particle filter, which is computationally advantageous.7 For

a more detailed discussion of the properties of the EnKF, see BS and Katzfuss et al. (2016). To

obtain the smoothed/historic shock innovations, we use a nonlinear path-adjustment smoother for

high-dimensional nonlinear models, which is also proposed by BS.

We sample from the posterior distribution using the adaptive differential evolution Monte Carlo

Markov chain method introduced in Boehl (2022). For each estimation, we initialize an ensemble

of 200 particles with the prior distribution and run 2500 iterations. Of these, we keep 500 as a

representation of the posterior distribution. The posterior is hence represented by a sample of

200 × 500 = 100.000 parameter vectors.

5The Python-implementation of the tools used for our analysis is freely available at https://github.com/

gboehl/pydsge.
6The filter is based on inverting the mapping between shocks and observables. For the medium-scale models

considered here, this mapping is not unique, which can result in noisy likelihood estimates. Additionally, the proposed

filter is not a Bayesian filter in a narrow sense and ignores uncertainty on the initial states and the observations.
7For all estimations and for the numerical analysis, we use an ensemble of 400 particles. This number is chosen to

minimize sampling errors during likelihood inference. For the same reason we sample the initial distribution of states

from quasi-random low-discrepancy series (e.g. Niederreiter, 1988). For our model, the evaluation of the likelihood

for one parameter draw then would take about 2 seconds on a single CPU.
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3.3 Data and Priors

For the quantitative analysis of the Great Recession and its aftermath, we use data spanning the

period from 1964:I to 2019:IV in our benchmark sample. As documented by Boehl and Strobel

(2022), the inclusion of the ELB period in the sample employed in the estimation matters for the

model-implied interpretation of the Great Recession. In addition, we also consider samples that

start in later years (1983:I and 1998:I) and therefore have a narrower focus on the events of the

Great Recession.

To allow for a direct comparison of the marginal data densities, we estimate the RANK and

the FRANK model on the same set of observables. These are real GDP growth, real consumption

growth, real investment growth, labor hours, the log change of the GDP deflator, real wage growth,

the Federal Funds Rate and the BAA spread. For this purpose, we augment the RANK model with

an observation equation that links an exogenous AR(1) process directly to the observable spread.

Importantly, this exogenous process stands apart from the other model equations such that it does

not affect the behaviour of agents in the model.

The measurement equations that relate the model variables to our data series are

Real GDP growth = γ + (yt − yt−1 + zt), (11)

Real consumption growth = γ + (ct − ct−1 + zt), (12)

Real investment growth = γ + (it − it−1 + zt), (13)

Real wage growth = γ + (wt − wt−1 + zt), (14)

Labor hours = l + lt, (15)

Inflation = π + πt, (16)

Federal Funds Rate = (
π

βγ−σc
− 1) ∗ 100 + rt, (17)

BAA-spread = spread + spreadt. (18)

where in the FRANK model, spreadt is defined as Et [̃r
k
t+1
− rt] and for RANK it follows an AR(1)

process. The construction of the observables is mostly standard and delegated to Appendix A.

Consistent with the detrending of nonstationary variables, the growth rate of technology, zt in

deviations from its steady state enters the measurement equations.

Notably, we set the empirical lower bound of the nominal interest rate within the model to

0.05% quarterly. Setting it exactly to zero would imply that the ELB never binds in our estimations,

as the observed series for the FFR stays strictly above zero. Our choice maintains that the ELB

is considered binding throughout the period from 2009:I to 2015:IV. For the observable Federal

Funds Rate we cut off any value below 0.05. This ensures that any observable value is also in the
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domain of the model.8

We assume small measurement errors for all variables with a variance that is 0.01 times the

variance of the respective series. Since the Federal Funds Rate is perfectly observable (though

on a higher frequency) we divide the measurement error variance here again by 100. Hence, the

observables are de facto matched perfectly.

In the calibration of some parameters and the choice of the priors for the estimation of the others

we stick as closely as possible to the previous literature. For the parameters of RANK we rely on

the choices of Smets and Wouters (2007). For the parameters associated with the extension of the

financial sector we use the priors employed by Del Negro et al. (2015). In the choice of our prior

for γ, we follow Kulish et al. (2017). Importantly, they opt for a tighter prior for this parameter

than Smets and Wouters (2007). Arguably the economy deviated strongly and persistently from its

steady state during the Great Recession. In order to dampen the data’s pull of the parameter down

to the sample mean, we prefer the tight prior as well.9

4 A decomposition of the Great Recession

In this section, we contrast the estimated RANK and FRANK models, and their empirical

performance for the post-2008 period. We first give a brief discussion of the parameter estimates

and then quantify the empirical fit of the two models using estimates of the marginal data densities.

We then give an account of the historical shock decomposition over the most recent sample.

4.1 Parameter estimates

Posterior estimates for the structural parameters of the two models are presented for all samples

in Tables B.2 and B.3 in Appendix B. Overall, the estimates are well within the range of values

previously presented in the literature.

For our benchmark sample (1964:I-2019:IV), we find that the coefficient of relative risk aver-

sion σc is slightly above unity in the RANK model. Similarly, Kulish et al. (2017), who also

include the last decade in their estimation, find σc to be close to unity. A value of σc close to one

mutes the effect of variations in labor hours on consumption via the Euler equation, which is in-

troduced through the non-separabilities in preferences. The reduction of this channel prevents the

strong drop in labor hours during the crisis to exert an excessive downward pull on consumption.

In contrast, in the FRANK model, the estimate of this parameter of 1.78 is above the prior mean.

Our estimates also share some similarities with those of Del Negro et al. (2015), who also

present estimates for both models. The parameters for habit formation, h, and investment adjust-

8The lower bound for the quarterly nominal rate is r̄ = −100( π
βγ−σc − 1) + 0.05, where π is gross inflation and the

parameters γ and σc denote the steady state growth rate and the coefficient of relative risk aversion, respectively.
9For wider priors we confirm unrealistically low estimates of the trend growth rate.
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USA Euro area

1964-2019 1983-2019 1998-2019 1998-2019

RANK -1084.15 -524.80 -331.24 176.15

FRANK -1177.89 -552.09 -354.08 138.55

Table 1: Comparison of Marginal Data Densities

ment costs, S ′′, imply that the FRANK model assigns a substantially lower importance to real

rigidities that the RANK model does. Also in line with findings by Del Negro et al. (2015), the

slopes of the price and wage Phillips curves are slightly flatter in FRANK than in RANK. With

the Calvo parameters ζp = 0.904 (RANK) and 0.927 (FRANK), the price Phillips curve in both

models are far flatter than in the original estimates by Smets and Wouters (2007) (0.65). Del Negro

et al. (2015) show that the finding of a flat Phillips curve is supported by the inclusion of the spread

as an observable.10 Furthermore, the estimated Taylor rule in RANK features a higher interest rate

smoothing parameter ρ and a stronger feedback to movements in inflation ϕπ than in the FRANK

model.

In line with the events of the financial crisis, those shocks that have been associated with

financial factors – the risk premium shock, the MEI shock, and the financial shock - all feature a

high persistence in both models.

4.2 Marginal data densities

As discussed in Section 3.3, we augment the RANK model with an extra equation in which an

exogenous spread is linked to the observed spread in order to estimate both models on the same set

of observables. This allows us to directly compare the two models using marginal data densities

(MDD). The marginal data density, sometimes also referred to as the marginal likelihood, or the

model evidence, is a central measure for the empirical fit of the model and states the probability of

the data given the model and its priors.

Table 1 displays the MDD for the two models over the different samples as well as for the euro

area. As it turns out, the introduction of financial frictions worsens the empirical performance of

the estimated model considerably. The finding of a lower fit is robust to the length of the employed

sample.11 This is startling at first, since the Global Financial Crisis and the Great Recession were

main motivators for modeling the linkages between the financial sector and the macroeconomy.

10More specifically, Del Negro et al. (2015) argue that the deep recession in conjunction with the mild decline in

inflation can be rationalized either by counteracting supply shocks or a flat Phillips curve. Including the spread as

observable puts more weight on shocks that raise the spread and which happen to have demand shocks properties,

supporting the explanation of the missing disinflation via a flat Phillips curve.
11Additionally, the result is also robust to an alternative specification of the observables in which we group durable

consumption into the observed investment series, as in Justiniano et al. (2011).
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Indeed, the introduction of financial friction allows for a model-consistent role of financial spreads

for business cycle dynamics. As data on spreads are available earlier on than national accounts

data, and as they are published at a higher frequency, this provides a substantial advantage for

nowcasts and short-term forecasts in a financial crisis.12 Nonetheless, as we discuss below, this

does not imply that the incorporation of financial frictions delivers a better ex-post explanation of

the observed macroeconomic series.

The model fit in terms of the MDD is closely linked to the historic decomposition as implied

by the estimated model. To see this, note that, mathematically speaking, the MDD is the integral

over the prior distribution, i.e. the result of marginalizing over the parameter space. Thus, it is

closely tied to those factors that also determine the likelihood. These comprise the uncertainty

about initial states (i.e., the states prior to the first observation), potential measurement errors, the

prior distribution, and the likelihood of the individual exogenous innovations. The initial states

of both models are set in the same fashion using the stationary distribution. We also assume

very small measurement errors and the priors are, apart from the additional variable ζspb, equal.

Hence, the magnitude and distribution of exogenous innovations must be the main drivers of the

differences documented in Table 1. In this regard, a model that attributes the economic dynamics

of the observables to one main shock clearly has a larger MDD than a model in which several

shocks must counteract each other in order to explain the observed time series.

4.3 Historic shock decompositions

To explain the relatively poor performance of FRANK in terms of model fit documented in the

previous section, we show historic shock decompositions of the economic dynamics since 1998

for both models. These are presented in Figures 1 and 2. We focus on the short sample because

it allows us to zoom in on the post-2008 episode, which is at the core of our investigation. The

results presented here, however, hold for the post-2008 episode regardless of the sample choice.

Historic shock decompositions of nonlinear models generally bear the problem that the order-

ing of shocks matters. Suggestions to circumvent this problem are based on the idea of nonlinear

impulse response functions (e.g. Koop et al. (1996) and Lanne and Nyberg (2016)). These methods

are based on sampling from the filtered shocks and are computationally rather expensive. Instead,

and interesting as an independent contribution of its own, we propose a novel method to conduct

historic decompositions for linearized economic models with occasionally binding constraints. Our

method is able to precisely distinguish the linear and the nonlinear impact of each shock, thereby

remaining independent of any ordering effects. The quantitative nonlinear effect of a shock is cal-

culated by its current and expected impact on the constrained variable. Boehl and Strobel (2022)

12The better forecast performance of the model with financial friction is discussed in Del Negro and Schorfheide

(2013); Del Negro et al. (2015); Cai et al. (2019).
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Figure 1: Historical shock decomposition of the Great Recession using the RANK Model estimated on the full sample

from 1964–2019. Consumption and Investment: percentage deviations from their steady state growth path. Inflation

and (shadow) interest rate: percentage point deviations from steady state. Note: Means over 250 simulations drawn

from the posterior. The contribution of each shock is normalized as in Boehl and Strobel (2022).

provides details.

In the context of the RANK model, risk premiums shocks ϵu
t are the most prominent driver of

the joint dynamics of key variables following the financial crisis. Figure 1 illustrates the dominant

role of this shock for macroeconomic dynamics following the Great Recession. From 2009 on,

persistently elevated risk premiums account for almost the entire drop of aggregate consumption,

weigh on aggregate investment and inflation, and are thus responsible for the long duration of the

ELB spell for the nominal interest rate.13

The use of post-2008 data is crucial to avoid misleading conclusions regarding the drivers of

13 Christiano et al. (2015) label this shock consumption wedge, contrasting it with the financial wedge that is

captured by the MEI shocks in our analysis. Smets and Wouters (2007) compare the effects of the shock to those

of disturbances to net worth of entrepreneurs in a model with financial frictions as in Bernanke et al. (1999). Fisher

(2015) offers a structural interpretation of the risk premium shock as a shock to the demand for safe and liquid assets.

Each of these interpretations share the notion that the risk premium shock is a short cut for capturing some financial

disturbances, which makes its prominent role in the Great Recession plausible.
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Figure 2: Historical shock decomposition of the Great Recession using the FRANK Model estimated on the full

sample from 1964–2019. Consumption and Investment: percentage deviations from their steady state growth path.

Inflation and (shadow) interest rate: percentage point deviations from steady state. Note: Means over 250 simulations

drawn from the posterior. The contribution of each shock is normalized as in Boehl and Strobel (2022).

business cycles.14 Importantly, Boehl and Strobel (2022) show that in the case of the RANK model,

omitting post-2008 data yields an interpretation of the Great Recession that overtaxes MEI shocks

and underestimates the role of risk premium shocks. On the other hand, a comparison with Gust et

al. (2017), Kulish et al. (2017) and Fratto and Uhlig (2020), who all employ versions of the RANK

model, confirms that the use of post-2008 data results in the dominant role of risk premium shocks.

However, high risk premiums cannot fully account for the sharp drop in investment during the

Great Recession. While recessionary risk premium shocks do trigger a simultaneous downturn of

consumption and investment, they fail to match the drop differential of these components, creating

the need for an extra driver to make up for the missing decline in investment. In the case at hand,

the initial decline in investment is triggered by recessionary MEI shocks, ϵ i
t , which at the trough

14As shown in Boehl et al. (forthcoming), the same holds for measuring the effect of quantitative easing in the

aftermath of the Great Recession.
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account for roughly half of the collapse in investment.

Similarly, the decline in inflation during the Great Recession can only partly be attributed to the

increase in risk premiums. The estimated flat Phillips Curve prevents the decline in real activity

from generating substantial deflation. It requires price markup shocks, ϵ
p
t , to account for the high-

frequency movements of inflation in the sample and account for the dip in inflation during the

Great Recession. The fact that inflation only decreased modestly triggered a debate on the missing

disinflation puzzle. Christiano et al. (2015) attribute some inflationary pressure to a persistent

decline in productivity relative to its pre-recession trend. In contrast, in our estimation, which

abstracts from a separate TFP-specific trend, the technology process, zt, is consistently measured

to be positive. In addition, Christiano et al. (2015) as well as Gilchrist et al. (2017) ascribe the

missing inflation to higher refinancing costs of firms. We cannot confirm within the RANK model

that MEI shocks, which increase the firms’ cost of investments, raise inflation. Instead, in our

analysis and similarly to Del Negro et al. (2015), the estimate of a flat Phillips Curve is responsible

for the lack of a steep decline in inflation. The long duration of the ELB is largely interpreted by

our estimation as an endogenous response of the central bank to the deterioration of fundamentals

via the Taylor rule, rather than to an active lower-for-longer policy.15

The reliance on disparate exogenous drivers for the explanation of the dynamics of key vari-

ables during the Great Recession is a shortcoming of the RANK model. Nonetheless, Figure 2

shows that in FRANK, this problem is even exacerbated. Notably, the dynamics of consumption

and investment are driven by two disparate sources of shocks. This represents a severe drawback

for the FRANK model’s appeal, as it moves farther away from providing a unifying account of

macroeconomic dynamics in the Great Recession than RANK. While the financial sector itself

acts as an attenuator for output and investment dynamics, the higher persistence of MEI shocks in

FRANK supports a more pronounced decline in aggregate demand, thereby creating deflationary

pressure. As with RANK, this pressure is too weak to cause the dip in inflation during the Great

Recession. Again, the inability of the model to account for the inflation dynamics is associated

with a flat Phillips Curve and variations in inflation are largely attributed to exogenous fluctuations

in the price markup. We see the lack of a joint propagation mechanism as the main driver for the

rather poor empirical performance of FRANK relative to RANK. In Section 5 we will study the

underlying mechanisms in detail.

15The mean expected durations vary between four and ten quarters throughout the ELB years. Though we do not

target, nor use, any prior information on the actual expectations of market participants on the duration of the ELB,

they are broadly comparable to the average expected durations reported by the Blue Chip Financial Forecast and the

New York Fed’s Survey of Primary Dealers. On average, our estimates of the expected durations are in between those

of Gust et al. (2017) and Kulish et al. (2017). For a more detailed comparison of the results for different methods for

estimating ELB durations, see Boehl and Strobel (2022).
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Figure 3: Model implied dynamics for spread, leverage and its ingredients in FRANK Note: Means over 250 simula-

tions drawn from the posterior distribution; the shaded area depicts 95% credible sets.

5 The Role of Financial Frictions

The financial crisis and the subsequent Great Recession triggered an active literature on the role

of financial frictions for macroeeconomic dynamics. In this section, we focus on the discussion

of the Great Recession through the lens of the FRANK model, which adds financial frictions a la

Bernanke et al. (1999) to the canonical Smets and Wouters (2007) model. As documented in the

previous section, this extension of the model does not improve the performance of the model in

explaining the Great Recession. This is due to the fact that the model-implied procyclicality of

the leverage in this episode is at odds with the observed countercyclical interest rate spreads. In

addition, the decline in the leverage attenuates the effects of shocks to the risk premium and MEI

shocks on investment. Thus, the model with financial frictions requires larger shocks to explain

the collapse of investment in the Great Recession than the RANK model. We further show that the

risk shock à la Christiano et al. (2014), i.e. a disturbance on the financial friction, does not increase

the explanatory power of the model.

5.1 Empirical fit: obseved spread and model-implied leverage

The difference between RANK and FRANK is that in the financial frictions model, the re-

quired return on capital is linked to the leverage of entrepreneurs (see section 2.2). In addition,

the leverage is subject to financial shocks. By construction, a higher leverage increases the default

17



probability of entrepreneurs in the model: to compensate for the increased risk of default, investors

charge a higher spread when the leverage is high. This condition is captured by Equation 4, which

is repeated here for convenience:

Et [̃r
k
t+1 − rt] = ut + ζsp,b(qt + kt − nt) + σ̃ω,t.

This endogenous relation between the leverage ratio and the spread – captured by ζsp,b(qt + kt − nt)

– is at odds with the implications of the estimated model. Figure 3 shows that the model-implied

leverage ratio of entrepreneurs barely increases 2009, and declines afterwards. At same time, the

spread, which is directly linked to the observed BAA-spread, remains elevated after its sharp spike

at the height of the recession. The decline in the leverage ratio of entrepreneurs in the model

resembles the observed de-leveraging of financial intermediates in the United States in the years

after 2008 as documented by Adrian and Shin (2014).16

In the estimated model, this deleveraging can be traced back to the substantial decline in the

capital stock, which is depressed by the collapse of investment in the Great Recession. At the same

time, the model generates a price of capital that is somewhat elevated after 2010 while suggesting

that the net worth of entrepreneurs remains largely flat. This divergence between the spread and

its endogenous driver (the leverage ratio) must be compensated by the exogenous risk premium

shocks ut and the financial shock σ̃ω,t. Hence, the one additional feature in FRANK that aims at

endogenizing the behavior of the spread fails to explain its dynamics after the Great Recession.

The exogenous shocks necessary to repair this failure and to reconcile the dynamics of the spread

with the dynamics of the observed macroeconomic series worsens the empirical fit of the model.

5.2 The role of the financial sector for the transmission of shocks

The inclusion of the financial sector also alters the transmission of shocks in important ways.

The posterior distribution of the parameter estimates for FRANK on the full sample (see Table B.3)

shows that the estimated persistence parameters of risk premium shocks as well as of MEI shocks

are substantially higher in FRANK than in RANK. The effects of these shocks are therefore more

pronounced and persistent in FRANK than in RANK.17 Figure 4 illustrates this for the dynamic

response of key variables to a positive risk premium shock.

At the same time, however, the risk premium shock in the estimated FRANK model performs

16More specifiacally, Adrian and Shin (2014) document in Fig. 5 of their paper that large commercial and investment

banks substantially delevered in the years after the Bear Stearns crisis in March 2008. The authors explain this observed

behavior with the motive of financial firms to shed risk and to maintain a stable ratio of their Value-at-Risk over their

equity, thereby effectively stabilizing their probability of default.
17The higher persistence of the effect risk premium shocks in the FRANK model than in the RANK model is in line

with previous findings by Cai et al. (2019).
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Figure 4: Impulse responses to risk premium shock of one standard deviation. Note: Medians over 250 simulations

drawn from the posterior. The shaded area depicts the 90% credible set. For each model the shock size equals the

posterior mean standard deviation of the shock.

worse than the RANK model in generating the relative drop-differential of investment and con-

sumption observed in the Great Recession. On the one hand this is due to the mean estimate of

the coefficient of relative risk aversion, which is quite high (σc = 1.782). This activates the non-

separabilities in the utility function, such that the decline in labor hours in the Great Recession

generates excessive downward pressure on aggregate consumption.

Secondly, the financial sector acts as an attenuator of the effects of risk premium shocks on

investment. As Figure 4 shows, the risk premium shock increases the spread charged by creditors.

However, at the same time it reduces the leverage of entrepreneurs. In response to the shock, the

drop in investment lowers the capital stock, but decline in the price of capital and entrepreneurial

net worth is rather modest. The subsequent reduction in leverage compresses the spread that in-

vestors demand from entrepreneurs. Hence, the response of the required return on investment is

reduced relative to RANK, which in turn lowers the appeal of risk premium shocks for explaining

the Great Recession in the FRANK model.

As can be seen in Figure 5, the effects of MEI shocks are altered in the FRANK model as

well. While the decline in consumption in response to a recessionary MEI shock constitutes an

improvement relative to the estimated RANK model, in which MEI shocks induce a negative co-

movement of consumption and investment, the financial sector again acts as an attenuator for

investment. More importantly, MEI shocks are supply shocks on the financial markets, which
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increase the price of capital while reducing investment and raising entrepreneurial net worth. As

a result, this lowers the entrepreneurial leverage and therefore the credit spread. Hence, the shock

induces a positive co-movement of investment and the financial spread, which is at odd with the

data. This presents a severe drawback of MEI shocks in the FRANK model and rules them out as

a candidate for a main driver of joint dynamics of macroeconomic and financial variables in the

Great Recession.

5.3 Can risk shocks explain the Great Recession?

One advantage of modeling the financial sector is the ability to incorporate financial shocks

and study their effect on the real economy. At first glance, this appears particularly appealing

when analyzing the Great Recession. The financial shock in the FRANK model is the risk shock,

which was developed by Christiano et al. (2014). The risk shock is an exogenous process driving

changes in the volatility of cross-sectional idiosyncratic uncertainty of entrepreneurs.

As Figure 6 shows, an increase in entrepreneurial risk raises the credit spread and makes ex-

ternal funding less affordable for entrepreneurs. Aggregate investment and the price of capital

therefore both drop, together with entrepreneurial net worth. In contrast to the MEI shock, which

drives Tobin’s Q and investment in opposite directions, the risk shock is therefore a demand shock
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in the market for investment goods. The drop in investment demand lowers output and hence labor

hours. Given, the non-separabilities in the preferences of households, the decline in labor reduces

consumption. With regard to the post-2008 course of inflation, a feature of the risk shock is that,

by raising the costs of capital, it increases marginal cost and thus creates inflationary pressure.

However, whereas the risk shock in principle speaks to the missing deflation puzzle, the outright

increase in inflation is at odds with observed price dynamics after the recession. As an additional

drawback, the higher inflation rate puts upward pressure on the nominal interest rate via the Taylor

rule such that the decline in the policy rate after the shock is short-lived. The risk shock therefore

cannot explain the drop in the nominal interest towards the effective lower bound.18

Accordingly, the estimated standard deviation of financial shocks is rather small and the effect

of the shock on macroeconomic variables is weak compared, for example, to the effect of a one

standard deviation risk premium shock. The historic shock decomposition (see Figure 2 in Ap-

pendix B) confirms that the role of the financial shock for macroeconomic dynamics is not very

prominent. Allowing the risk shock to affect the real economy therefore does not improve upon

18In an estimation of the model on a sample that starts in 1983 and therefore has a narrower focus on the last

few decades, the risk shock in the spirit of Christiano et al. (2014) is prone to inducing a negative co-movement of

investment and consumption. This issue is shared by other financial shocks in the literature (see, e.g., the investment

and the credit shock in Carlstrom et al. (2017) or the wealth shock in Carlstrom and Fuerst (1997).
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the explanation of macroeconomic dynamics as given by RANK.

6 Post-2008 dynamics in the euro area

The unfolding of the financial crisis in the euro area as well as the conduct of monetary policy

differed in many aspects from the developments in the United States. Notably, the crisis in the

euro area was extended by the sovereign debt crisis and capital flight from southern Europe. In

this setting – and in step with the ECBs longer-term refinancing operations and asset purchase

programmes – euro area banks’ holdings of excess reserves at the ECB skyrocketed. The overnight

rate in the interbank market, which prior to the crisis was closely aligned with the ECB’s rate on

marginal refinancing operations now started tracking the rate of the deposit facility (DFR), which

the ECB eventually steered into negative territory.

To accommodate the negative interest rate, while maintaining the concept of an effective lower

bound, we propose an adjustment to the RANK and the FRANK model. Importantly, we assume

that agents in the euro area did not expect the rate on reserves to dive into negative territory. This

can be justified by the high costs associated with negative interest as well as with the reluctance of

central banks to set negative interest rates even at the height of the financial crisis. Such a perceived

lower bound (PLB), although arguably only an intellectual constraint, can have a large impact on

economic dynamics. Hence, we assume that while in positive territory, the ECB’s rate on reserves,

r+t follows the policy rule for the notional rate, rn
t spelled out in Equation 3. The interest rate on

reserves (IOR), rt, thus follows

rt = max{0, rn
t } + vnir

t , (19)

where we put the stochastic negative interest rate process vnir
t – which follows an AR(1) process

– outside the max operator to allow for policy innovations that drive the IOR rate into negative

territory, while having agents expect a classic lower bound on the nominal rate ex-ante.

This design of the lower bound has consequences for the observation equations used in the

estimation of the model. Instead of using the IOR observable (the EONIA) directly, it is further

divided into IOR+ = max{IOR, 0} and NIR = min{IOR, 0}. This helps to identify the impact of the

PLB and to quantify the effects of the NIR policy. Additionally, the set of observables includes the

real per capita growth rates of euro area GDP, consumption, and investment, real wage growth, a

measure of labor hours, the GDP deflator, and the BAA yield as a measure of the credit spread. In

addition to the disturbances also used in the models for the US, we add the negative interest rate

policy shock. For our estimation, we consider a sample from 1998:I-2019:IV. Further details are

delegated to Appendix A.

As it turns out, the poor empirical performance of financial frictions extends to euro area data as

well. The marginal data density (MDD) for the FRANK model (138.6) lies well below the MDD
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for the RANK model (176.2). Figure 7 shows that, as in the case of the US, the risk premium

shock is the main driver of the recessionary dynamics in the RANK model, pushing the policy rate

towards zero. Also as in the US, Figure 7 shows that the introduction of financial frictions in the

FRANK model, reduces the importance of the risk premium shock and cocomitantly the model’s

ability to offer a common cause for the dynamics of macroeconomic variables in the crisis. In the

FRANK model, both MEI and risk premium shocks are major drivers of the recession. Importantly,

the role of financial shocks remains minor, underlining the difficulty that the FRANK model has in

reconciling macroeconomic and financial dynamics as well in the euro area.

7 Conclusion

This paper evaluates the empirical performance of financial frictions in medium-scale models

with a focus on the Great Recession in the US. We document that although the empirical perfor-

mance of the RANK model calls for improvements, the extended model that includes financial

frictions as in Bernanke et al. (1999) has a considerably worse empirical fit. This can be traced

back to the divergent dynamics of the leverage ratio and the credit spread after the recession. Addi-

tional shocks are needed to reconcile the continually elevated spread with the marked deleveraging

in the model.
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Whereas recessionary financial shocks can, in principle, be inflationary, their low estimated

standard deviations and thus their minor economic impact prevents them from contributing to an

explanation of the missing disinflation puzzle. The finding of a rather poor performance of this

type of financial friction is robust to shorter US samples and further extends to the analysis of the

financial crisis in the euro area as well.

Decomposing the US and euro area dynamics after the Great Recession into the contribution

of its causal drivers using the RANK model, we find that post-2008 dynamics are dominated by

elevated risk premiums on household borrowing rates, in line with the importance of increased

mortgage rates in the financial crisis. Going forward, it is a fruitful endeavor to use more re-

fined models that zoom in on the drivers of elevated risk premiums or to consider a more detailed

modeling of labor markets.
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Appendix A Data

Our measurement equations contain eight variables:

• GDP: ∆ ln(GDP/GDPDEF/CNP16OV)*100

• CONS: ∆ ln((PCEC)/GDPDEF/CNP16OV)*100

• INV: ∆ ln((FPI)/GDPDEF/CNP16OV)*100

• LAB: ln((AWHNONAG*CE16OV)/CNP16OV)*100

• INFL: ∆ ln(GDPDEF)*100

• WAGE: ∆ ln(COMPNFB/GDPDEF)*100

• FFR: FEDFUNDS/4

• BAA: (BAAspread)/4

For GDP, CONS, INV, INFL and WAGE we use the log changes in our measurement equations.

We demean LAB in our measurement equation.

Data sources:

• GDP: Gross Domestic Product, Billions of Dollars, Quarterly, Seasonally Adjusted Annual

Rate, FRED

• GDPDEF: Gross Domestic Product: Implicit Price Deflator, Index 2012=100, Quarterly,

Seasonally Adjusted, FRED

• PCEC: Personal Consumption Expenditures, Billions of Dollars, Quarterly, Seasonally Ad-

justed Annual Rate, FRED

• FPI: Fixed Private Investment, Billions of Dollars, Quarterly, Seasonally Adjusted Annual

Rate, FRED

• AWHNONAG: Average Weekly Hours of Production and Nonsupervisory Employees: Total

private, Hours, Quarterly, Seasonally Adjusted, FRED.

• CE16OV: Civilian Employment Level, Thousands of Persons, Seasonally Adjusted, FRED.

• CNP16OV: trailing MA(5) of the Civilian Noninstitutional Population, Thousands of Per-

sons, Quarterly, Not Seasonally Adjusted, FRED.
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• COMPNFB, Nonfarm Business Sector: Compensation Per Hour, Index 2012=100, Quar-

terly, Seasonally Adjusted, FRED

• FEDFUNDS: Effective Federal Funds Rate, Percent, FRED.

• BAAspread: BAA Corportate Bond Yield Relative to Yield of 10-Year Treasury Constant

Maturity, Percent, Not Seasonally Adjusted, FRED.

Appendix A.1 Data and further details for euro area estimation

• GDP: ∆ ln(GDP/WAP)*100

• CONS: ∆ ln(CONS/WAP)*100

• INV: ∆ ln((GFCF-4*IP)/WAP)*100

• LAB: demeaned (ln(Hours*100/WAP)*100)

• INFL: ∆ ln(GDPDEF)*100

• WAGE: ∆ ln(Wage/Hours/GDPDEF)*100

• IOR: max(Euribor/4,0); NIRP: min(Euribor/4,0)

• GM: (GM-spread)/4

Data sources:

• GDP: EA19; Gross Domestic Product, constant prices, quarterly, seasonally adjusted, OECD

• CONS: EA19; Private Final Consumption Expenditures, constant prices, quarterly, season-

ally adjusted, OECD

• GFCF: EA19; Gross Fixed Capital Formation, constant prices; quarterly, seasonally ad-

justed, OECD

• IP: EA19; Intellectual Property, constant prices; quarterly, seasonally adjusted, OECD

• Wage: EA19; Total Wages and Salaries, current prices, quarterly, seasonally adjusted, OECD

• Hours: EA19; Total Hours Worked, quarterly, seasonally adjusted, OECD

• GDPDEF: Gross Domestic Product, Price Index, OECD Reference Year, quarterly, season-

ally adjusted, OECD

• WAP: Working Age Population (Age 15-64), Statistical Office of the European Communities
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• Euribor: 3-months-rate, quarterly averages from monthly data, annualized, ECB

• GM-spread: Gilchrist-Mojon-Spread, quarterly averages from monthly data, annualized,

Gilchrist and Mojon (2018)

To facilitate the nonlinear filtering, we assume small measurement errors for all variables with

a variance that is 0.01 times the variance of the respective time series. Since the IOR+ and NIR

rate are perfectly observable, we divide the measurement error variance here again by 100. Except

for the labor supply, the data is not demeaned as we assume the non-stationary model follows a

balanced growth path, with a growth rate estimated in line with SW.

We fix several parameters prior to estimating the others. In line with SW, let the depreciation

rate be δ = 0.025, the steady state government share in GDP to G/Y = 0.18, and the curvature

parameters of the Kimball aggregators for prices and wages to ϵp = ϵw = 10. The steady state

wage markup is set to λw = 1.1. Lastly, we calibrate the empirical perceived lower bound of the

nominal interest rate to exactly to zero.
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Appendix B Parameter estimates
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Prior Posterior

RANK 1964–2019 RANK 1983–2019 RANK 1998–2019

distribution mean sd/df mean sd mode mean sd mode mean sd mode

σc normal 1.500 0.375 1.156 0.121 1.023 1.500 0.150 1.539 1.048 0.106 1.091

σl normal 2.000 0.750 3.333 0.416 3.490 2.411 0.471 2.468 2.440 0.441 2.043

βtpr gamma 0.250 0.100 0.147 0.044 0.146 0.148 0.045 0.175 0.131 0.044 0.133

h beta 0.700 0.100 0.635 0.042 0.667 0.590 0.054 0.560 0.523 0.052 0.415

S normal 4.000 1.500 5.140 0.637 5.574 4.435 0.890 4.444 5.154 0.994 5.507

ιp beta 0.500 0.150 0.657 0.058 0.651 0.425 0.109 0.395 0.367 0.124 0.436

ιw beta 0.500 0.150 0.528 0.092 0.586 0.493 0.106 0.582 0.413 0.124 0.315

α normal 0.300 0.050 0.173 0.015 0.157 0.213 0.017 0.222 0.191 0.019 0.206

ζp beta 0.500 0.100 0.904 0.016 0.900 0.714 0.042 0.670 0.909 0.021 0.887

ζw beta 0.500 0.100 0.817 0.018 0.823 0.773 0.051 0.743 0.815 0.156 0.619

Φp normal 1.250 0.125 1.440 0.058 1.412 1.591 0.067 1.629 1.318 0.065 1.293

ψ beta 0.500 0.150 0.502 0.077 0.460 0.617 0.083 0.685 0.840 0.055 0.851

ϕπ normal 1.500 0.250 2.190 0.128 2.198 1.958 0.164 1.987 2.229 0.415 2.536

ϕy normal 0.125 0.050 0.173 0.018 0.194 0.072 0.029 0.054 0.085 0.024 0.078

ϕdy normal 0.125 0.050 0.254 0.018 0.258 0.250 0.023 0.263 0.235 0.033 0.258

ρ beta 0.750 0.100 0.870 0.012 0.876 0.820 0.027 0.804 0.904 0.026 0.868

ρr beta 0.500 0.200 0.098 0.039 0.111 0.192 0.068 0.231 0.339 0.108 0.246

ρg beta 0.500 0.200 0.949 0.017 0.939 0.972 0.010 0.968 0.940 0.018 0.937

ρz beta 0.500 0.200 0.985 0.002 0.985 0.968 0.009 0.965 0.976 0.007 0.973

ρu beta 0.500 0.200 0.836 0.022 0.845 0.499 0.141 0.486 0.910 0.011 0.908

ρp beta 0.500 0.200 0.167 0.059 0.160 0.808 0.127 0.882 0.343 0.127 0.317

ρw beta 0.500 0.200 0.990 0.003 0.986 0.936 0.030 0.942 0.700 0.288 0.988

ρi beta 0.500 0.200 0.651 0.038 0.637 0.822 0.053 0.844 0.756 0.065 0.701

ρ f in beta 0.500 0.200 0.904 0.021 0.915 0.926 0.023 0.922 0.884 0.029 0.898

µp beta 0.500 0.200 0.140 0.077 0.077 0.646 0.129 0.706 0.224 0.082 0.233

µw beta 0.500 0.200 0.968 0.005 0.966 0.851 0.064 0.850 0.631 0.273 0.880

ρgz normal 0.500 0.250 1.316 0.089 1.299 1.394 0.100 1.386 1.183 0.133 1.251

σg inv.gamma 0.100 2.000 0.467 0.023 0.469 0.496 0.025 0.495 0.374 0.023 0.373

σu inv.gamma 0.100 2.000 0.574 0.070 0.586 1.088 0.339 0.972 0.201 0.022 0.159

σz inv.gamma 0.100 2.000 0.437 0.027 0.467 0.395 0.025 0.381 0.338 0.028 0.354

σr inv.gamma 0.100 2.000 0.197 0.010 0.200 0.223 0.012 0.223 0.105 0.013 0.104

σp inv.gamma 0.100 2.000 0.143 0.010 0.135 0.119 0.012 0.110 0.115 0.012 0.111

σw inv.gamma 0.100 2.000 0.340 0.016 0.338 0.258 0.021 0.274 0.395 0.030 0.377

σi inv.gamma 0.100 2.000 0.387 0.030 0.386 0.365 0.033 0.350 0.285 0.031 0.304

σ f in inv.gamma 0.100 2.000 0.079 0.003 0.078 0.080 0.004 0.083 0.078 0.004 0.076

γ normal 0.440 0.050 0.351 0.013 0.346 0.402 0.017 0.399 0.392 0.019 0.386

l normal 0.000 2.000 3.257 0.760 2.711 1.653 0.849 1.266 -3.650 1.150 -4.206

π gamma 0.625 0.100 0.936 0.097 0.986 0.973 0.084 0.979 0.885 0.201 1.035

spread normal 0.500 0.100 0.518 0.042 0.522 0.540 0.058 0.543 0.544 0.040 0.527

Table B.2: Estimation results for RANK
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Prior Posterior

FRANK 1964–2019 FRANK 1983–2019 FRANK 1998–2019

distribution mean sd/df mean sd mode mean sd mode mean sd mode

σc normal 1.500 0.375 1.782 0.178 1.563 0.570 0.042 0.546 1.421 0.138 1.395

σl normal 2.000 0.750 2.413 0.457 2.430 2.403 0.437 2.236 1.466 0.389 1.537

βtpr gamma 0.250 0.100 0.105 0.034 0.124 0.410 0.067 0.339 0.080 0.026 0.066

h beta 0.700 0.100 0.357 0.044 0.364 0.761 0.031 0.776 0.292 0.040 0.297

S normal 4.000 1.500 2.979 0.530 2.406 4.510 0.643 4.846 2.346 0.562 2.189

ιp beta 0.500 0.150 0.823 0.181 0.858 0.890 0.033 0.882 0.278 0.081 0.297

ιw beta 0.500 0.150 0.676 0.086 0.702 0.775 0.073 0.815 0.353 0.101 0.311

α normal 0.300 0.050 0.133 0.017 0.134 0.147 0.017 0.152 0.150 0.017 0.158

ζp beta 0.500 0.100 0.927 0.022 0.933 0.829 0.023 0.850 0.911 0.015 0.915

ζw beta 0.500 0.100 0.940 0.011 0.944 0.915 0.015 0.921 0.830 0.028 0.824

Φp normal 1.250 0.125 1.581 0.068 1.594 1.481 0.062 1.476 1.382 0.061 1.405

ψ beta 0.500 0.150 0.479 0.099 0.566 0.439 0.092 0.491 0.784 0.072 0.835

ϕπ normal 1.500 0.250 1.195 0.046 1.168 1.035 0.022 1.051 1.461 0.197 1.519

ϕy normal 0.125 0.050 0.013 0.012 0.009 -0.009 0.009 -0.014 0.138 0.018 0.146

ϕdy normal 0.125 0.050 0.201 0.021 0.188 0.203 0.021 0.196 0.207 0.019 0.208

ρ beta 0.750 0.100 0.741 0.027 0.723 0.742 0.024 0.745 0.886 0.025 0.879

ρr beta 0.500 0.200 0.168 0.063 0.154 0.166 0.052 0.197 0.244 0.071 0.261

ρg beta 0.500 0.200 0.993 0.004 0.993 0.867 0.030 0.889 0.964 0.009 0.966

ρz beta 0.500 0.200 0.982 0.005 0.983 0.967 0.012 0.976 0.919 0.010 0.921

ρu beta 0.500 0.200 0.976 0.005 0.972 0.977 0.005 0.979 0.969 0.006 0.972

ρp beta 0.500 0.200 0.240 0.175 0.194 0.209 0.076 0.161 0.322 0.083 0.296

ρw beta 0.500 0.200 0.414 0.095 0.439 0.481 0.119 0.445 0.131 0.058 0.098

ρi beta 0.500 0.200 0.836 0.036 0.873 0.896 0.029 0.885 0.876 0.033 0.907

ρ f in beta 0.500 0.200 0.953 0.020 0.951 0.920 0.026 0.937 0.867 0.048 0.881

µp beta 0.500 0.200 0.262 0.080 0.272 0.279 0.069 0.285 0.232 0.082 0.200

µw beta 0.500 0.200 0.401 0.089 0.438 0.341 0.133 0.274 0.364 0.061 0.318

ρgz normal 0.500 0.250 1.236 0.107 1.242 1.273 0.096 1.284 0.905 0.135 1.042

σg inv.gamma 0.100 2.000 0.495 0.024 0.478 0.478 0.025 0.469 0.420 0.029 0.423

σu inv.gamma 0.100 2.000 0.061 0.006 0.058 0.054 0.005 0.053 0.089 0.008 0.097

σz inv.gamma 0.100 2.000 0.385 0.024 0.374 0.437 0.029 0.428 0.344 0.029 0.340

σr inv.gamma 0.100 2.000 0.233 0.013 0.247 0.237 0.012 0.242 0.068 0.009 0.074

σp inv.gamma 0.100 2.000 0.137 0.020 0.142 0.141 0.010 0.149 0.134 0.014 0.131

σw inv.gamma 0.100 2.000 0.356 0.021 0.373 0.251 0.020 0.238 0.559 0.044 0.544

σi inv.gamma 0.100 2.000 0.403 0.036 0.412 0.305 0.023 0.297 0.367 0.048 0.400

σ f in inv.gamma 0.100 2.000 0.066 0.003 0.065 0.060 0.003 0.059 0.071 0.007 0.072

γ normal 0.440 0.050 0.329 0.024 0.342 0.363 0.013 0.367 0.336 0.020 0.344

l normal 0.000 2.000 -2.154 1.175 -2.269 0.008 0.748 0.595 2.559 0.460 2.208

π gamma 0.625 0.100 0.810 0.129 0.813 0.600 0.082 0.582 0.703 0.051 0.723

spread normal 0.500 0.100 0.356 0.040 0.363 0.280 0.038 0.292 0.217 0.050 0.227

ζspb beta 0.050 0.005 0.051 0.004 0.048 0.047 0.003 0.047 0.051 0.004 0.050

Table B.3: Estimation results for FRANK
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Prior Posterior

RANK FRANK

distribution mean sd/df mean sd mode mean sd mode

σc normal 1.500 0.375 1.435 0.337 1.212 1.681 0.182 1.637

σl normal 2.000 0.750 0.627 0.535 0.005 1.304 0.432 1.731

βtpr gamma 0.250 0.100 0.207 0.077 0.143 0.163 0.065 0.169

h beta 0.700 0.100 0.607 0.087 0.647 0.602 0.058 0.557

S normal 4.000 1.500 4.904 1.107 5.094 8.538 1.225 8.528

ιp beta 0.500 0.150 0.325 0.121 0.351 0.462 0.156 0.631

ιw beta 0.500 0.150 0.313 0.108 0.337 0.398 0.142 0.170

α normal 0.300 0.050 0.272 0.020 0.256 0.300 0.020 0.280

ζp beta 0.500 0.100 0.856 0.029 0.849 0.863 0.058 0.885

ζw beta 0.500 0.100 0.777 0.063 0.714 0.847 0.051 0.907

Φp normal 1.250 0.125 1.730 0.076 1.708 1.710 0.078 1.665

ψ beta 0.500 0.150 0.307 0.069 0.281 0.378 0.062 0.371

ϕπ normal 1.500 0.250 1.653 0.255 1.744 1.849 0.263 1.217

ϕy normal 0.125 0.050 0.220 0.032 0.202 0.185 0.042 0.246

ϕdy normal 0.125 0.050 0.115 0.031 0.117 0.195 0.039 0.196

ρ beta 0.750 0.100 0.919 0.026 0.913 0.909 0.023 0.891

ρr beta 0.500 0.200 0.375 0.108 0.264 0.582 0.074 0.786

ρg beta 0.500 0.200 0.966 0.015 0.964 0.955 0.019 0.965

ρz beta 0.500 0.200 0.954 0.022 0.935 0.969 0.017 0.982

ρu beta 0.500 0.200 0.962 0.016 0.954 0.983 0.021 0.989

ρp beta 0.500 0.200 0.713 0.114 0.788 0.426 0.194 0.340

ρw beta 0.500 0.200 0.744 0.085 0.762 0.692 0.108 0.682

ρi beta 0.500 0.200 0.605 0.117 0.545 0.873 0.023 0.854

ρ f in beta 0.500 0.200 0.940 0.022 0.940 0.976 0.015 0.973

ρnirp beta 0.500 0.200 0.984 0.007 0.986 0.981 0.010 0.988

µp beta 0.500 0.200 0.733 0.132 0.818 0.408 0.185 0.470

µw beta 0.500 0.200 0.518 0.165 0.515 0.503 0.172 0.560

ρgz normal 0.500 0.250 1.117 0.150 1.164 1.123 0.163 1.192

σg inv.gamma 0.100 0.250 0.234 0.024 0.204 0.235 0.020 0.235

σu inv.gamma 0.100 0.250 0.176 0.051 0.178 0.077 0.016 0.061

σz inv.gamma 0.100 0.250 0.217 0.024 0.236 0.218 0.024 0.197

σr inv.gamma 0.100 0.250 0.080 0.012 0.078 0.081 0.012 0.061

σp inv.gamma 0.100 0.250 0.147 0.018 0.146 0.132 0.018 0.148

σw inv.gamma 0.100 0.250 0.108 0.018 0.101 0.118 0.020 0.104

σi inv.gamma 0.100 0.250 0.328 0.056 0.323 0.309 0.037 0.306

σ f in inv.gamma 0.100 0.250 0.152 0.015 0.154 0.113 0.016 0.122

σnirp inv.gamma 0.100 0.250 0.006 0.001 0.006 0.007 0.001 0.006

γ normal 0.440 0.050 0.297 0.025 0.275 0.350 0.037 0.303

l normal 0.000 2.000 3.082 0.736 3.545 4.135 0.937 3.916

π gamma 0.625 0.100 0.576 0.071 0.569 0.821 0.122 0.675

spread normal 0.500 0.100 0.355 0.097 0.306 0.408 0.065 0.351

ζspb beta 0.050 0.005 – – – 0.049 0.005 0.050

Table B.4: Estimation results for the Euro Area 1998:I-2019:IV
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Appendix C Model Descriptions

We adopt the framework by Smets and Wouters (2007) as a baseline model to interpret the Great

Recession. Following Del Negro and Schorfheide (2013), we detrend all nonstationary variables

by Zt = eγt+ 1
1−α

z̃t , where, γ is the steady-state growth rate of the economy and α is the output share

of capital. z̃t is the linearly detrended log productivity process that follows the autoregressive law

of motion z̃t = ρz̃zt−1+σzϵz. For zt, the growth rate of technology in deviations from γ, it holds that

zt =
1

1−α
(ρz − 1)̃zt +

1
1−α

σzϵz.

In both models, labor is differentiated by unions with monopoly power that face nominal rigidi-

ties for their wage setting process. Intermediate good producers employ labor and capital services

and sell their goods to final goods firms. Final good firms are monopolistically competitive and

face nominal rigidities as in . The model further allows for exogenous government spending and

features a monetary authority that sets the short-term nominal interest rate according to a mone-

tary policy rule. In FRANK, we assume that frictionless financial intermediates collect funds from

households. These funds are lent with a spread, which reflects default risk, to entrepreneurs, who

use it together with their own equity to purchase physical capital. Physical capital in turn is rented

out to intermediate good producers.

Appendix C.1 The linearized RANK model

This subsection briefly presents the linearized equilibrium conditions. A detailed derivation

of the linearized equations is discussed e.g. in the appendix to Smets and Wouters (2007). All

variables in this section are expressed as a log-deviation from their respective steady state values.

The consumption Euler equation of the households is given by

ct =
h/γ

(1 + h/γ)
(ct−1 − zt) +

1

1 + h/γ
Et[ct+1 + zt+1] +

(σc − 1)(WhL/C)

σc(1 + h/γ)
(lt − Et[lt+1])

−
(1 − h/γ)

(1 + h/γ)σc

(rt − Et[πt+1] + ut),

(C.1)

where ct is consumption, and lt is their supply of labor. Parameters h, σc and σl are, respectively,

the degree of external habit formation in consumption, the coefficient of relative risk aversion, and

the inverse of the Frisch elasticity. γ denotes the steady-state growth rate of the economy. rt is the

nominal interest rate, πt is the inflation rate, and ut is an exogenous risk premium shock, which

drives a wedge between the lending/savings rate and the riskless real rate.

Equation (C.2) is the linearized relationship between investment and the relative price of capi-

tal,

it =
1

1 + β
[(it−1 − zt] +

β

1 + β
Et[it+1 + zt+1] +

1

(1 + β)γ2S ′′
qt + vi,t. (C.2)
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Here, it denotes investment in physical capital and qt is the price of capital. It holds that β = βγ(1−σc)

where β is the households’ discount factor. Investment is subject to adjustment costs, which are

governed by S ′′, the steady-state value of the second derivative of the investment adjustment cost

function, and an exogenous process, vi,t. While Smets and Wouters (2007) interpret ei,t as an

investment specific technology disturbance, Justiniano et al. (2011) stress that this shock can also

be viewed as a reduced-form way of capturing financial frictions, as it drives a wedge between

aggregate savings and aggregate investment. We henceforth refer to this disturbance as a shock on

the marginal efficiency of investment (MEI).

The accumulation equation of physical capital is given by

kt = (1 − δ)/γ(kt−1 − zt) + (1 − (1 − δ)/γ)it + (1 − (1 − δ)/γ)(1 + β)γ2S ′′vi,t, (C.3)

where k denotes physical capital, and parameter δ is the depreciation rate. The following Equation

(C.4) is the no-arbitrage condition between the rental rate of capital, rk
t , and the riskless real rate:

rt − Et[πt+1] + ut =
rk

rk + (1 − δ)
Et[r

k
t+1] +

(1 − δ)

rk + (1 − δ)
Et[qt+1] − qt. (C.4)

As the use of physical capital in production is subject to utilization costs, which in turn can be

expressed as a function of the rental rate on capital, the relation between the effectively used

amount of capital kt and the physical capital stock is

kt =
1 − ψ

ψ
rk

t + kt−1, (C.5)

where ψ ∈ (0, 1) is the parameter governing the costs of capital utilization. Equation (C.6) is the

aggregate production function

yt = Φ(αkt + (1 − α)lt + zt) + (Φ − 1)
1

1 − α
z̃t. (C.6)

Intermediate good firms employ labor and capital services. Let zt be the exogenous process of total

factor productivity. Parameter α is the elasticity of output with respect to capital and Φ enters the

production function due to the assumption of a fixed cost in production. Real marginal costs for

producing firms, mct, can be written as

mct = wt − zt + α(lt − kt). (C.7)

wt denotes the real wage, which are set by labor unions. Furthermore, cost minimization for
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intermediate good producers results in condition (C.8):

kt = wt − rk
t + lt. (C.8)

The aggregate resource constraint (C.9) contains an exogenous demand shifter, gt, which comprises

exogenous variations in government spending and net exports, as well as the resource costs of

capital utilization:

yt =
G

Y
gt +

C

Y
ct +

I

Y
it +

RkK

Y

1 − ψ

ψ
rk

t +
1

1 − α
z̃t.. (C.9)

Final good producers are assumed to have monopoly power and face nominal rigidities as in Calvo

(1983) when setting their prices. This gives rise to a New Keynesian Phillips Curve (NKPC) of the

form

πt =
β

1 + ıpβ
Etπt+1 +

ıp

1 + ıpβ
πt−1 +

(1 − ζpβ)(1 − ζp)

(1 + βıp)ζp((Φ − 1)ϵp + 1)
mct + vp,t. (C.10)

Here, ζp is the probability that a firm cannot update its price in any given period. In addition

to Calvo pricing, we assume partial price indexation, governed by the parameter ıp. The Phillips

Curve is hence both, forward and backward looking. ϵp denotes the curvature of the Kimball (1995)

aggregator for final goods. Due to the Kimball aggregator, the sensitivity of inflation to fluctuations

in marginal cost is affected by the market power of firms, represented by the steady state price

markup, Φ − 1.19 Furthermore, the curvature of the Kimball aggregator affects the adjustment of

prices to marginal cost as the higher ϵp, the higher is the degree of strategic complementarity in

price setting, dampening the price adjustment to shocks. The last term in the NKPC, vp,t, represents

exogenous fluctuations in the price markup.

While final good producers set prices on the good market, wages are set by labor unions.

Unions bundle labor services from households and offer them to firms with a markup over the

frictionless wage, wh
t , which reads

wh
t =

1

(1 − h)
(ct − h/γct−1 + h/γzt.) + σllt. (C.11)

As with price setting, we assume that the nominal rigidities in the wage setting process are of the

19Note that in equilibrium, the steady state price markup is tied to the fixed cost parameter by a zero profit condition.
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Calvo type, and include partial wage indexation. The wage Phillips curve is thus

wt =
1

1 + βγ
(wt−1 − zt + ıwπt−1) +

βγ

1 + βγ
Et[wt+1 + zt+1 + πt+1] −

1 + ıwβγ

1 + βγ
πt

+
(1 − ζwβγ)(1 − ζw)

(1 + βγ)ζw((λw − 1)ϵw + 1)
(wh

t − wt) + vw,t.

(C.12)

The term wh
t − wt is the inverse of the wage markup. As in Equation (C.10), the terms λw and ϵw

are the steady state wage markup and the curvature of the Kimball aggregator for labor services,

respectively. The term vw,t represents exogenous variations in the wage markup.

We take into account the fact that the central bank is constrained in its interest rate policy by a

lower bound (ELB) on the nominal interest rate. Therefore, in the linear model, it is that

rt = max{r̄, rn
t }, (C.13)

with r̄ being the lower bound value. Whenever the policy rate is away from the constraint, it

corresponds to the notational rate, rn
t , which follows the feedback rule

rn
t = ρrn

t−1 + (1 − ρ)
(
ϕππt + ϕỹyt

)
+ ϕdy∆ỹt + vr,t. (C.14)

Here, ỹt is the output gap and ∆ỹt = ỹt − ỹt−1 its growth rate. Parameter ρ expresses an interest

rate smoothing motive by the central bank. ϕπ, ϕy and ϕdy are feedback coefficients. When the

economy is away from the ELB, the stochastic process vr,t represents a regular interest rate shock.

When the nominal interest rate is zero, however, vr,t may not directly affect the level of the nominal

interest rate. However, through the persistence of the stochastic process that drives vr,t, it affects

the expected path of the notational rate and can therefore alter the expected duration of the lower

bound spell. It can hence be viewed as a forward guidance shock whenever the economy is at the

ELB.

The model is augmented with an additional equation to allow for an estimation on the same

observables as the FRANK model, including the spread. The equations simply reads

spread = σ̃ω,t,

where the variable ’spread’ is unrelated to the dynamics of the rest of the model and is driven

exclusively by the exogenous shock, σ̃ω,t.
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Finally, the stochastic drivers in our model are the following seven processes:

ut =ρuut−1 + ϵ
u
t , (C.15)

zt =ρzzt−1 + ϵ
z
t , (C.16)

gt =ρggt−1 + ϵ
g
t + ρgzϵ

z
t , (C.17)

vr,t =ρrvr,t−1 + ϵ
r
t , (C.18)

vi,t =ρivi,t−1 + ϵ
i
t , (C.19)

vp,t =ρpvp,t−1 + ϵ
p
t − µpϵ

p

t−1
, (C.20)

vw,t =ρwvw,t−1 + ϵ
w
t − µwϵ

w
t−1, (C.21)

σ̃ω,t =ρ f inσ̃ω,t−1 + ϵ
σ̃ω
t (C.22)

where ϵk
t

iid
∼ N(0, σ2

k
) for all k = {r, i, p,w}, and likewise for {ut, zt, gt, σ̃ω,t}.

Appendix C.2 Financial Frictions

This subsection lays out the extension of the model: the inclusion of frictions in financial

markets. Here, we adopt the modeling choices of Del Negro et al. (2015), who build on the work

of Bernanke et al. (1999), and Christiano et al. (2014).

In this model, entrepreneurs obtain loans from frictionless financial intermediates, which in

turn receive their funds from household at the riskless interest rate. In addition to the loans, en-

trepreneurs use their own net worth to finance the purchase of physical capital that they rent out to

intermediate good producers. Entrepreneurs are subject to idiosyncratic shocks to their success in

managing capital. As a consequence, their revenue might fall short of the amount needed to repay

the loan, in which case they will default on their loan. In anticipation of the risk of entrepreneurs’

default, financial intermediates pool their loans and charge a spread on the riskless rate to cover

the expected losses arising from defaulting entrepreneurs. Therefore, in the full model, condition

(C.4) in the RANK model is replaced by the two conditions

Et [̃r
k
t+1 − rt] = ut + ζsp,b(qt + kt − nt) + σ̃ω,t, (C.23)

r̃k
t − πt =

rk

rk + (1 − δ)
rk

t +
(1 − δ)

rk + (1 − δ)
qt+1 − qt−1. (C.24)

r̃k
t is the nominal return on capital for entrepreneurs, nt denotes entrepreneurs’ aggregate net worth,

and σ̃ω,t allows for exogenous variations in the entrepreneurs’ riskiness. The first condition defines

the spread as a function of the entrepreneurs’ leverage and their riskiness, which is determined by

the dispersion of the idiosyncratic shocks to entrepreneurs. Note that if the elasticity of the loan

rate to the entrepreneurs’ leverage, ζsp,b, is set to zero, we are back to the case without financial
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frictions. Condition (C.24) defines the return on capital for entrepreneurs.

The evolution of aggregate entrepreneurial net worth is described by

nt = ζn,̃rk (̃rk
t − πt) − ζn,r(rt−1 − πt) + ζn,qk(qt−1 + kt−1) + ζn,nnt−1−

ζn,σω

ζsp,σω

σ̃ω,t−1 − γ∗
ν∗

n∗
z̃t.

(C.25)

Equation (C.25) links the accumulated stock of entrepreneurial net worth to the real return of rent-

ing out capital to firms, the riskless real rate, its capital holdings, its past net worth and variations in

riskiness. The coefficients ζn,̃rk , ζn,r, ζn,qk, ζn,σω , and ζsp,σω are derived as in Del Negro et al. (2015).

They depend on the steady state calibration of the default rate of entrepreneurs, the distribution of

entrepreneurial risk, and their survival probability.

Lastly, the evolution of exogenous variations in entrepreneurial risk, the risk shock in terms of

Christiano et al. (2014), follows the process

σ̃ω,t = ρσσ̃ω,t−1 + ϵσ,t, (C.26)

with ϵσ,t
iid
∼ N(0, σ2

σ).
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Appendix D The shape of the posterior distribution

The figures in this section show the 200 chains used for the estimation of the RANK model (D.8 to D.14) as well as the

FRANK model (D.15 to D.21). See Boehl (2022) for details on the adaptive differential evolution Monte Carlo Marcov

chain (ADEMC) method we use for posterior sampling. For each model, we run a total of 2500 iterations, of which we keep

the last 500. That means that the posterior contains 500× 200 = 10, 000 parameter draws. We check for convergence using

the method of integrated autocorrelation time with a window size of c = 50, as suggested by Goodman and Weare (2010).

Note that it is not trivial to find a sufficient statistics for convergence since the samples in the chain are not independent.

The figures strongly suggest that the estimation of the RANK model is converged from iteration 2000 onwards. For the

FRANK model, convergence sets in somewhat later, but is achieved within the burn-in period as well.

Figure D.8: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the RANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.

Figure D.9: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the RANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.



Figure D.10: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the RANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.

Figure D.11: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the RANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.



Figure D.12: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the RANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.

Figure D.13: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the RANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.



Figure D.14: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the RANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.

Figure D.15: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the FRANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.



Figure D.16: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the FRANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.

Figure D.17: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the FRANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.



Figure D.18: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the FRANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.

Figure D.19: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the FRANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.



Figure D.20: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the FRANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.

Figure D.21: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the FRANK model. The left panel shows a KDE of the

parameter distribution. The right displays the trace of each of the chains over time.
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