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Abstract

This paper develops an adaptive differential evolution Markov chain Monte Carlo (ADEMC)
sampler. The sampler satisfies five requirements that make it suitable especially for the
estimation of models with high-dimensional posterior distributions and which are com-
putationally expensive to evaluate: (i) A large number of chains (the “ensemble”) where
the number of chains scales inversely (nearly one-to-one) with the number of neces-
sary ensemble iterations until convergence, (ii) fast burn-in and convergence (thereby
superseding the need for numerical optimization), (iii) good performance for bimodal
distributions, (iv) an endogenous proposal density generated from the state of the full
ensemble, which (v) respects the bounds of prior distribution. Consequently, ADEMC
is straightforward to parallelize. I use the sampler to estimate a heterogeneous agent
New Keynesian (HANK) model including the micro parameters linked to the stationary
distribution of the model.

Keywords: Bayesian Estimation, Monte Carlo Methods, DSGE Models, Heterogeneous
Agents
JEL: C11, C13, C15, E10

1 Introduction

Since the pioneering work of Geweke (1999) and Schorfheide (2000), Bayesian estima-
tions have found their way into the toolboxes of macroeconomic researchers at universities
and central banks alike. They are used extensively to bring modern New Keynesian-type
DSGE models to the data, to evaluate their empirical performance, and to asses the
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effects of macroeconomic policy. Bayesian estimations allow to combine all available
prior information on the model parameters with the likelihood of these parameters, and
provide means to sensibly quantify the uncertainty of the resulting parameter estimates.
They are, however, challenging on a technical domain: the estimation of DSGE model
requires sampling from the posterior distribution, which is an high-dimensional object
with ex-ante unknown properties. The quality, and thereby the economic usefulness of
these estimations crucially depends on our ability to precisely approximate the posterior
distribution.

This paper seeks to substantiate this ability for particularly complex models by intro-
ducing a novel sampling algorithm that is inspired by contemporary methods in the field
of astrophysics: the adaptive differential-evolution Markov chain Monte Carlo (ADEMC)
method. This method has three serious advantages over conventional methods. First,
ADEMC allows to sample from high-dimensional, ill-conditioned, and potentially bi-
modal distributions. Second, ADEMC is “embarrassingly parallelizable”, allowing the
estimation of models whose likelihood is computationally expensive to evaluate. Third,
ADEMC is equally efficient for burn-in – that is, during convergence to the high-density
region of the posterior – and for posterior sampling. The first point is important because
DSGE models are especially hard to sample from, e.g. because of indeterminacy regions
where the likelihood is zero.1 The second point is very relevant because current DSGE
models are becoming more and more expensive to evaluate, either because of nonlin-
earities or because of massive heterogeneities across multiple agents.2 The third point
is crucial because often, a significant amount of computational resources is spend not
during posterior sampling but for mode finding. Such mode finding methods are difficult
to parallelize and tend to converge to local maxima only.

ADEMC is a member of the broader class of ensemble MCMC methods. Instead of
using a single or small number of state-dependent chains (such as e.g. the Metropolis
algorithm), ensemble samplers use a large number of chains (the “ensemble”). For each
iteration, proposals are generated based on the current state of the full ensemble and, as
the ensemble evolves over time, proposal steps naturally adapt direction and scale of the
posterior distribution. These methods are essentially parameter-free, self-tuning and do
– if at all – only require decisions on hyper parameters. This represents a fourth, major
advantage of ADEMC. Straightforward parallelization then comes naturally from running
a large number of chains as long as these are, in each iteration, independent. Hence,
ensemble MCMC methods form a simple, yet potentially extremely powerful tool. I build
on earlier work of Ter Braak (2006) and Nelson et al. (2013) by adapting their differential
evolution algorithm to DSGE models. Two central features are added: and adaptation
stage, which I find to greatly reduce burn-in times, and the distinction between parameter
and proposal space, which boosts acceptance ratios, thereby increasing robustness and
sampling efficiency.

1An additional problem with nonlinear models constitutes trough the process of nonlinear filtering,
which is generally also based on sampling. For this reason, likelihood estimates will, to some degree,
be noisy. Neither “classic” samplers, nor local optimization methods are well suited to deal with such
problems reliably, in particular given that economic models can have quite high dimensional parameter
spaces.

2See, e.g. Boehl and Strobel (2020), for the estimation of medium scale DSGE models with the zero-
lower bound on nominal interest rates as an example for nonlinear estimation, or Bayer et al. (2020) for
the estimation of heterogeneous agent models.
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In this paper I asses the performance of ADEMC on three typical problems that are
often encountered when estimating DSGE models. I first evaluate the algorithm’s ca-
pability to deal with high dimensional odd-shaped, bimodal distributions. I document
that ADEMC performs well as long as the two modes are not fully disconnected. I then
test the performance of the sampler on the estimation exercise from Smets and Wouters
(2007). Independently of the number of chains used, ADEMC indeed returns the origi-
nal parameter estimates. For the given example, I find that convergence times roughly
scale one-to-one with the number of chains, which suggests that the losses through par-
allelization mainly amount to the computational overhead of the serialization. Finally,
I estimate a heterogeneous agents New Keynesian model, including the micro parame-
ters governing its steady state distribution. This exercise is important because it was so
far deemed impossible due to the large computational costs associated with one single
likelihood evaluation of the model.

Literature

The workhorse of Bayesian estimation is, to date, still the random walk Metropolis
Hastings (RWMH) algorithm. The shortcomings of RWMH are manifold and well doc-
umented (e.g. Chib and Ramamurthy, 2010; Herbst and Schorfheide, 2015). The main
issue is that convergence of RWMH to the posterior distribution can be extremely slow,
and sampling from ill-shaped or bimodal distributions is either very difficult, or requires
additional tweaking. To circumvent the first problem, numerical optimization routines
are frequently used to find a good initial guess for RWMH. These routines are often slow
as well, and not very robust when applied to more complicated posterior distributions.3

With RWMH going back to the seminal work of Metropolis et al. (1953) and Hastings
(1970), it is arguably time to take a sidestep and to acknowledge (and lever) process in
this area in other fields. In particular, research in the field of astrophysics has since made
considerable progress on this frontier.4

The ADEMC sampler introduced here waives the need for explicit numerical mode
finding. Rather, it can by itself be seen as an stochastic optimizer since it is based on the
concept of differential evolution (DE). This concept was initially suggested by Storn and
Price (1997) as a heuristic global optimization method. A population of candidate solu-
tions evolve and mutate iteratively, thereby exchanging candidate solutions. The method
is shown to perform well on ill-behaved, constrained or high dimensional optimization
problems for which no gradient information is available. Strens et al. (2002) first propose
to use proposals based on differential evolution in the context of Monte Carlo sampling.
Independently, Ter Braak (2006) develops the idea of combining a DE-update proposal
with Metropolis acceptance steps, which yields a Differential evolution MCMC algorithm.
Nelson et al. (2013) iterate on this work and provide general recommendations for the
use of the algorithm.

Goodman and Weare (2010) introduce Ensemble MCMC coneptionally. The authors
develop the idea of an ensemble of Markov chains iterating on a distribution, thereby

3E.g., they are apt to “getting stuck” at local maxima. Another problem is that they are often
iterative and parallelization is hence not straightforward. Another issue is that the routine may run into
regions where the likelihood is zero due to issues with the model solution.

4A notable exception from withing economics is Herbst and Schorfheide (2014) which, however, at
its core still relies on RWMH chains.
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using proposals similar to those from the numerical optimization method of Nelder and
Mead (1965). They show that such sampler can be affine invariant and hence “be uni-
formly effective over all the convex bodies of a given dimension regardless of their shape.”
The authors provide examples where ensemble MCMC significantly outperforms RWMH.
While Goodman and Weare (2010) indeed performs well in terms of sampling efficiency,
I find that it is rather slow to converge to the posterior distribution when starting off
from a bad initial distribution, and does not perform well for bimodal distributions. The
recent success of of Ensemble MCMC methods may also come from its excellent im-
plementation in the free and open source packet emcee (Foreman-Mackey et al., 2013),
which also provides routines for efficient parallelization.

The recent rise in the implementation of automatic differentiation (AD, e.g. in the
Python packages JAX or TensorFlow, or in the new Julia programming language) have
renewed interest in the Hamiltonian Monte Carlo (HMC) method (Duane et al., 1987).
HMC requires the derivatives of the likelihood function, which are normally hard to eval-
uate since its calculation via finite difference methods is computationally very expensive.
However, AD provides computationally efficient means to calculate these derivatives.
Deviates of HMC are for example implemented in the STAN framework. While HMC
indeed clearly outperforms RWMH in terms of sampling efficiency and also in its capabil-
ity to sample from more complex distributions, it comes with two disadvantages. First,
it is required to implement the likelihood function – and hence the complete model and
filtering routines – in a framework that allows for AD. Secondly, HMC is a single-particle
method which is not straightforward to parallelize, which rules out its application to
models whose likelihood is already expensive to evaluate.

A prominent exception from single-particle samplers in the spirit of RWMH in econo-

metrics is the Sequential Monte Carlo (SMC) method suggested in Herbst and Schorfheide
(2014). The authors propose to run many RWMH in parallel, interrupted by several re-
sampling and re-weighting steps. They additionally develop a tempering scheme to allow
for the smooth transition the group of chains from the prior towards the posterior. The
tempering schedule is necessary because the RWMH chains do not perform well in ex-
ploring the parameter space. While this approach successfully tackles many of the flaws
of RWMH, it is yet relatively time consuming. Each individual chain will still have the
convergence speed of an individual RWMH, which is further slowed down by the tem-
pering scheme. In contrast, the proposal density of ADEMC is endogenous and, through
the adaptation extensions, chains converge more quickly.

The rest of the paper is structured as follows. Section 2 explains the basic ADEMC
algorithm. Section 3 studies the performance of the algorithm on a high dimensional
bimodal distribution. In section 4 the sampler is used on the Smets-Wouters model and
in section 5 it is applied to the estimation of a large-scale HANK model. Section 6
concludes.

2 Sampling

Let π(x) be the probably density of a target distribution with x ∈ R
n. In practice,

π(x) is the posterior density π(x) = p(x|Y ), which is given by

p(x|Y ) =
p(Y |x)p(x)

p(Y )
, (1)
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where p(Y |x) is the likelihood function, p(x) the prior density, and

p(Y ) =

∫
p(Y |x)p(x)dx (2)

is an unknown constant for given data. The prior p(x) is commonly specified such that
it is straightforward to evaluate and p(Y |x) can be calculated using various Bayesian
filtering techniques.

The classic random walk Metropolis-Hastings algorithm (RWMH) goes as follows.
Start with a single parameter vector Xh. A new proposal is generated by X̂h = Xh + εh
where εh ∼ N (0,Σ) is called the proposal distribution. The proposal X̂h is then accepted
with the Metropolis acceptance probability which is calculated as defined further below
in (8). If it is accepted, set Xh+1 = X̂h. Otherwise, set Xh+1 = Xh. A large literature
discusses the properties of RWMH, see e.g. Sokal (1997) or Roberts and Rosenthal (2001).

Clearly, the performance of the algorithm crucially depends on the choice of the
covariance matrix Σ. This is problematic since Σ has more than n2/2 degrees of freedom
and it is very challenging to determine ex-ante which choice of Σ will maintain a high
acceptance ratio while still exploring the posterior distribution to a satisfactory degree.
To maintain a sufficiently large acceptance ratio, Σ is often scaled down to relatively
small values. Consequently, RWMH is very slow to converge to the high density region
of the posterior (so-called “burn-in”). To speed up computation, RWMH is thus often
used subsequent to a numerical optimization routine in the aspiration to obtain a good
starting value.

ADEMC aims to supersede conventional samplers in five dimensions:

i) Convergence speed scales with the number of chains (almost) one-to-one.

ii) Fast burn-in to the high density region of the posterior.

iii) Good performance for bimodel distributions.

iv) The proposal density is generated endogenously from the state of all chains.

v) The proposal density respects the bounds of prior distribution.

While each of these points addresses a generic sampling problem, point v) is of partic-
ular importance for the context of DSGE models. The reason is that DSGE models often
feature exogenous AR(1) processes which are estimated to be close to a unit root. How-
ever, since the prior of the AR(1)-coefficient is bounded above by one, parameter values
close to unit roots will often cause poor sampling performance because any proposals
with values of the AR-coefficient larger one will be rejected.

2.1 Proposal space

To circumvent this problem define the prior space X : x ∈ X ⇔ p(x) > 0 to be the
space of all parameter combinations for which the prior density is positive and let the
proposal space Z = R

n be unbounded. Let fb be a bijective map

fb : R
n → X (3)

such that for any x ∈ X there exists a unique z ∈ R
n for which fb(z) = x. This implies

that fb is always uniquely invertible, and that by definition, fb maps within the bounds
of the prior distribution whereas its domain is unbounded. In the following, fb will be
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used to map samples from the proposal space into prior space, thereby maintaining that
every sample has a positive prior density.

At its core, and in the spirit of Ter Braak (2006), ADEMC replaces the random-
walk proposal distribution of MH with a proposal that follows the differential evolution

concept. To that end, ADEMC holds an ensemble of chains at each iteration s (or, using
the evolutionary terminology, at each “generation” s). Define

Xs = (Xs,1, . . . , Xs,nc
), (4)

to be an ensemble of nc chains (or “particles”, in SMC terminology), with individual
chains Xs,i indexed by i = 1, 2, . . . , nc. While Xs holds the ensemble in prior space, let

Zs = (Zs,1, . . . , Zs,nc
) = (f−1

b (Xs,1), . . . , f
−1

b (Xs,nc
)) (5)

be its representation in proposal space.

2.2 Adaptation stage

Before introducing the differential evolution proposal, another step will help to in-
crease burn-in speed (point ii) from above): the adaptation stage. In this stage, ensemble
members that are sufficiently far away from the current mode are substituted for better
candidates. For this purpose, define a threshold value δ very close to zero. Divide the
ensemble in three subsets Xs = {X1,s,X2,s,X3,s} of (almost) equal sizes, and randomly

assign to each chain i another chain j ̸= i of the same subset. The candidate chain X̃s,i

is then generated by comparing Xs,i and Xs,j :

X̃s,i =

{
Xs,j if π(Xs,i)/π(Xs,j) < δ,

Xs,i else.
(6)

Xs,j is hence adapted if the Metropolis acceptance probability of Xs,i contra Xs,j is below
δ. Thereby, the value of δ must be chosen sufficiently low to maintain that adaptations
only occur during burn-in but not once the sampler is converging to the final posterior
distribution.

2.3 Evolution stage

For each chain i in iteration s, create a displacement vector from two chains k and
l ̸= k from different subset than i, and add this displacement vector to chain i. More
formally, the proposed replacement for chain Xs,i is

Ẑs,i = Z̃s,i + γ(Zs,j − Zs,k) + ϵs,i ∀i = 1, 2, . . . , nc, (7)

where γ is a scaling factor, ϵs,i is some (very) small noise, and Z̃s,i = f−1

b (X̃s,i) is the
bijective transform of the candidate chain associated with Xi,s, which results from the

adaptation stage. Generate ensemble Xs+1 by accepting the proposals X̂s,i = fb(Ẑs,i)
with a Metropolis acceptance probability of

P (Xs+1,i = X̂s,i) = min

{
1,
π(X̂s,i)

π(Xs,i)

}
∀i = 1, 2, . . . , nc, (8)
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or reject X̂s,i and set Xs+1,i = Xs,i with probability

P (Xs+1,i = Xs,i) = 1− P (Xs+1,i = X̂s,i). (9)

Note that in the case of a rejection of the proposal, Xs+1,i remains independent of the
candidate chain from the adaptation stage. As the ensemble evolves over time, proposal
steps naturally adapt direction and scale of the posterior distribution.

2.4 Parameterization

Theorem 1 in Ter Braak (2006) shows that the unique stationary distribution of DE-
MCMC has the PDF π(x). This result applies one-to-one to the stationary distribution
of X (in the stationary distribution, no more adaptations are proposed for a reasonably
chosen δ). If π(x) follows a Gaussian distribution, after convergence each individual
proposal X̂s,i is of the same form as an RWMH proposal.5 Respectively, if the target
distribution is near-Gaussian, the optimal choice is γ = 2.38√

2n
from the RWMH literature

(e.g. Roberts and Rosenthal, 2001), which is expected to give an acceptance probability
of 23% for large n.

The value of the adaptation threshold should be chosen to be close to zero, and be
low enough to maintain that adaptations are proposed (and accepted) during burn-in,
but never during posterior sampling. A larger value of δ can speed-up burn-in, but
potentially makes it more likely to end up in a local maximum. For all exercises in this
paper I set δ = exp(−100) and find that results are robust to variations to this number.

Sections 4 and Appendix B investigate the question of the optimal number of chains
nc vs. the number of iterations S in detail. As I document there, a value of nc ≥ 4n
is often sufficient to guarantee that the ensemble have full rank after the adaptation
stage. However, using a larger number of chains does neither have severe advantages nor
drawbacks. In other words, as long as nc ≥ 4n, in terms of pure function evaluations, a
larger number of chains compensates one-to-one for fewer ensemble iterations.

A straightforward choice for the functional form of the bijective transform fb I chose
xp = exp(zp) for priors following a gamma and inverse gamma distribution (hence
for distributions bounded below by zero), and the standard logistic function xp =
1/ (1 + exp(−zp)) for beta priors.

2.5 Initialization

Ensemble initialization can be done in several ways. Goodman and Weare (2010)
suggest to initialize the ensemble as a small ball around some initial value. However, if
the posterior is oddly or irregularly shaped – e.g., if the posterior is bimodal –, this bears
the risk that the ensemble can not fully unfold. Further, it is unclear which initial value
to choose, in particular since we seek to avoid mode finding methods for the reasons
discussed above. In the following I initialize the ensemble with the prior distribution
p(θ). This will put equal initial weight to each region of the prior space:

X0 = (X0,1, . . . , X0,nc
) with P (X0,i = x) = p(x) ∀i = 1, . . . , nc. (10)

5This can be seen by acknowledging that, if π(x) is Gaussian, each draw Xs,i is also Gaussian, and
the difference between two chains hence also follows a Gaussian distribution.
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Initializing the ensemble with the prior distribution ensures that the full relevant pa-
rameter space is considered, independently of multi-modality or possible discontinuities.
It hence combines the strength of multi-start algorithms (see, e.g. Arnoud et al., 2019)
with an efficient MCMC sampler.

3 A high dimensional bimodal toy distribution

This section studies the performance of ADEMC on a distribution with known prop-
erties. I focus on a class of high dimensional bimodal distributions potentially different
maximum densities on each mode. Such densities are known to pose a challenge to
MCMC samplers. Let the probability density of the random variable T be given by the
multivariate Gaussian mixture

π(x) = λP (X = x) + (1− λ)P (Y = x) (11)

where X ∼ Nn(µX ,Σ) and Y ∼ Nn(µY ,Σ) are both n-dimensional Gaussian dis-
tributions with the same covariance, and λ ∈ (0, 1) is a weighting parameter. Set
Σ = σIn to the identity matrix scaled by the scalar σ > 0. µX = (m/2, 0, · · · , 0)′
and µY = (−m/2, 0, · · · , 0)′ are both vectors of zeroes apart from the first entries, which
are m/2 and −m/2 respectively. The distribution of T is then bimodal whenever m ̸= 0
and the distance between the two modes is given by |m|. When keeping σ fix, increasing
m imposes a greater challenges to Monte Carlo sampling because the modes are less
connected. I chose T to be in n = 35 dimensions since this is typical size of a tar-
get distribution when estimating medium-scale DSGE models (the dimensionality of the
posterior of the HANK model estimated in section 5 is 36).

Figure 1 illustrates the results from this exercise graphically. For each of the his-
tograms, I run 210 chains (correspondingly, nc/n = 6) for 4000 iterations with δ =
exp(−100) and then marginalize over the first dimension. Each ensemble is initialized
with a sample from Nn(0n,

√
2In). The initial ensemble is hence distributed across the

domain of T , with relatively more chains closer to the origin. Results are shown for
σ = 0.05 and distances of m ∈ {1, 2, 3} (the columns of figure 1).6 The first row shows
results for λ = 0.5 where, hence, both modes peak at the same maximum density. For
m = 1 both modes are connected, meaning that for any point between the modes the
density is still reasonably large (that is, larger than 0.1 for the cases considered here). For
m = 2 the trough between the models is relatively short in distance, but the minimum
density is already close to zero. The gap for which the density is zero again increases
considerably when setting m = 3, for which the modes are fully disconnected. The chal-
lenge to MCMC sampling lies in the fact that the chains must be able to bridge this gap,
which is unlikely once the density is close to zero.

As the plots suggest, ADEMC performs very well on the first example. Even when
the target distribution is fully disconnected (m = 3), the sampling error only increases
marginally. Note that, since the initial chains are spread evenly over the domain of T the
exercise for m = 3 is not very informative: it may as well be that chains initialized close
to the first mode converge to the first mode while those initialized close to the second

6These values are chosen to demonstrate the frontier of what is possible with ADEMC, without
additional adjustments of the algorithm.
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Figure 1: A 35 dimensional multivariate Gaussian mixture, marginalized over the first dimension. The
dashed line depicts the target distribution. The orange region is the initialization of the ensemble, and
the blue region the posterior after convergence.

mode converge to the latter. Given that initial chains are distributed evenly, convergence
of a similar number of chains in each mode can be expected.

For the simulations in the second row of figure 1, λ is set to 0.33. This example is
more challenging because some chains must “jump” modes in order to correctly reflect
their different densities. This may cause problems in practice, and a single-particle
sampler is likely to “get stuck” in the mode with the higher density, thereby ultimately
misrepresent the posterior distribution. However, the figure suggests that this is not the
case for ADEMC as long as both modes are still well connected (m = 1). Form = 2 (mild
disconnected) both modes show some small sampling error at the peak. This sampling
error gets larger as the size of the trough increases (m = 3). This suggests that there is
still a good chance that chains may switch modes, but the distance between modes plays
a crucial role on sampling performance.

For the last row λ is set to 0.25, implying that one mode has a considerably larger
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posterior density. Even for m = 1 convergence to the posterior distribution for any
single-particle sample would be very slow because changing from one mode to the other
is relatively unlikely. As for the simulations for λ = 0.33, the figure suggests that ADEMC
does perform well on the case in which both modes are connected, while the quality of
the sample deteriorates when m increases. As above, if chains are equally distributed
across the parameter space, each mode is expected to attract the same number of chains.
The scaling constant is γ = 2.38√

n
≈ 0.402 < 1. If now two reference chains Xt,j and

Xt,k get drawn from different modes, X̂t,i is likely to lie between both modes and will
probably be rejected. Correspondingly, the exchange of chains between the two modes
is rather limited once the trough between them is too deep.

From the exercises where the distance |m| between the modes is large (and the density
at the trough is low), I conclude that ADEMC fails to reliably sample from distributions
which feature disconnected modes. This problem can be expected to be more severe once
the peak densities of the modes are sufficiently different. There are different potential
resolutions to this problem. For example, sampling quality improves when letting some
chains randomly draw a value of γ = 1. If then, two reference chains are drawn from
different modes, the proposal will suggest a candidate which lies on the respectively other
mode. This helps to balance between the two modes. The disadvantage of this approach
is a relatively lower acceptance fraction. Another solution would be a tempering scheme
as in Herbst and Schorfheide (2014). When sampling given a lower temperature the
modes are not disconnected and chains can balance between the two modes during the
early stages. However, in this case the acceptance fraction is also assumed to be lower.
Lastly, another viable option would be to introduce resampling stages. To summarize,
ADEMC performs surprisingly well if the target distribution is bimodal and both modes
are connected.

4 The Smets-Wouters model

A common benchmark case for the Bayesian estimation of DSGE models is the model
of (Smets and Wouters, 2007, SW, henceforth). I use this this famous reference in two
exercises. First, I show that ADEMC is able to exactly recover the posterior distribution
from the original paper in significantly less time. Secondly, I use it to benchmark ADEMC
against the differential evolution MCMC (DE-MCMC) method of Ter Braak (2006) in the
implementation of (Foreman-Mackey et al., 2013). Lastly, I use this model to study the
trade-off between more chains and longer chains. For each of the exercises I use exactly
the same model specification, priors, data and data treatment as in the original paper.
All estimations are run on on a workstation with 40 Intel Xeon CPUs with 3.1GHz each
and a total or 32GB RAM. I use the freely available pydsge package7 to parse and solve
the model, and to calculate the likelihood using the standard Kalman filter.

Table A.3 in Appendix A shows summary statistics over the posterior distribution
of the estimation. For the estimation, 200 chains are used and run for 3500 iterations,
of which 500 are kept as the posterior. The original estimation relies on 250.000 samples
(of which 50.000 are discarded) after running a optimization procedure. Overall, the
ADEMC estimates and the posterior values from the original estimation of SW are very

7The toolbox is developed and maintained at GitHub: https://github.com/gboehl/pydsge.
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closely aligned. The ADEMC estimate of βtpr = 0.136 is slightly below the SW estimate
(0.16). Yet, both estimates are mutually contained in the respectively other standard
error (0.052 for ADEMC). The ADEMC mean for l is 0.969 versus 0.53 in SW. Since the
parameter has a large standard deviation in both estimates and considerable differences
between mean and mode, it can be assumed that it is not well identified. In summary,
the estimates indicates that the ADEMC can fully recover the original values of SW.

ρu and σu

Figure 2: The progress of the likelihood of several ensembles with different setups. Note that for each
ensemble each individual chain is plotted.

Let us now turn to the comparison of the performance of ADEMC with the DE-
MCMC sampler from Ter Braak (2006). Figure 2 shows the likelihood of each chain dur-
ing convergence for four different setups: ADEMC with δ = exp(−100) (blue), ADEMC
without the bijective map between prior and proposal space (green), ADEMC with bi-
jective transform (orange) but without adaptation (δ = 0) and plain DE-MCMC. The
figure suggests that DE-MCMC converges slowly and does not converge to the prior
distribution within the given 3000 iterations (red lines). Relative to this, the extension
of prior and proposal space is quite powerful, and, through the significant increase in
the acceptance ratio, speeds up convergence considerably (orange lines). However, al-
though burn-in of ADEMC without adaptation is faster than ADEMC without bijective
transform (green lines), final convergence to the posterior distribution seems relatively
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slow. As to be expected, adding the bijective transform additionally boosts sampling
performance (blue lines).

Appendix B includes a benchmark of the sensitivity of the estimation results with
respect to the number of chains nc. Figure B.3 shows estimations with different multiples
of the number of parameters n as the number of chains nc. I start with nc = 2n, which
is the minimum number of chains suggested by Foreman-Mackey et al. (2013). The
exercise reveals two core-findings: first, ADEMC requires a larger number of chains as e.g.
Goodman and Weare (2010) or Ter Braak (2006). This is because with each successful
adaptation step, the accepted proposal is an explicit linear combination of existing chains.
This is not problematic if only few adaptations are successful, since for nc > n the rank
of the ensemble is n. If however many chains are accepted after adaptation, it may occur
that the rank of the ensemble falls below n, which is undesirable. Consequently, after
each adaptation a check on the condition number of the ensemble is performed, and I
exclude estimations for which the ensemble rank falls below n. The results documented
in Appendix B suggests that a choice of nc ≥ 4n is advisable to maintain that the
ensemble has full rank.

The second finding in Appendix B is that the number of chains and the number of
iterations are close substitutes. Figure B.3 illustrates burn-in speed and convergence in
terms of the number of total function evaluations. For the chosen range of nc ∈ (4n, 10n)
it seems that no setup emerges which is to be strongly preferred. A larger number of
chains approximately compensates one-to-one for fewer iterations. This hints that not
the number of iterations is central, but the total number of function evaluations across
chains. This is an important finding because it suggests that estimations can be scaled
very well when parallelizing chains using computers with a larger number of processing
units.

5 Full estimation of HANK

To fully unfold the potential of ADEMC I use the sampler to estimate a full-blown
Heterogeneous-Agent New Keynesian (HANK) model with idiosyncratic portfolio choice.
Thereby I also include those parameters that change the models steady state and the
stationary distribution. Such HANK models are a relatively new class of models (see.
Gornemann et al. (2012) and Kaplan et al. (2018a)) that combine the New Keynesian
paradigm with household heterogeneity and incomplete markets. For example, this allows
to study the impact of economic inequality on macroeconomic aggregates and vice versa.

While the estimation of HANK models is pioneered by Winberry (2018), Bayer et al.
(2020, henceforth BBL) and Auclert et al. (2021), neither of these papers include the
micro parameters that change the model’s steady state into their estimation. The steady
state forms central attributes of the ergodic distribution of assets and income, and quali-
tatively and quantitatively determines the relevance of the novel channels exposed by this
class of models. Hence, these parameters are likely to crucially affect the macroeconomic
dynamics of this model. Additionally, all three papers use a first-order approximation
approach around the steady state, which lends another reason why the parameters that
affect the latter are of central interest. The reasons for excluding the steady state in BBL
and Auclert et al. (2021) is that calculating it involves finding a stationary distribution
such that all equilibrium conditions are satisfied, which is computationally expensive.
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Instead, both opt to calibrate the steady state and only estimate those parameters that
are invariant to the steady state.

Since finding the steady state and the stationary distribution for HANK is economi-
cally important, but computationally expensive – about 10 seconds for the implementa-
tion considered here – it is a perfect use case for ADEMC. To remain consistent with the
literature, and to keep the estimation results comparable, I only add a minor technical
innovation to the rest of the estimation procedure.

5.1 Model and Data

The model shares many features with the two-asset HANK model of Auclert et al.
(2021) and Kaplan et al. (2018b). I allow for two types of extensions: first, to ease
comparison I use the priors of Smets and Wouters (2007). Accordingly, some of the
functional forms (e.g. capital adjustment costs and Calvo pricing) are adapted from
there. Secondly, and also in the sprit of Smets and Wouters (2007), I extend the model
by several forms of inertia to allow for additional endogenous persistence in response to
aggregate shocks.8 I here discuss only those equations that deviate from Auclert et al.
(2021) and refer the interested reader to Appendix C for further details on the model.

Households supply labor and have access to a liquid and an illiquid asset. Importantly,
they face borrowing constraints on both assets, and adjustment costs on the illiquid asset.
Firms accumulate capital, and staggered price setting results in a conventional Phillips
curve. Adding price indexation with parameter ιp, inflation πt (in percentage points) is
determined by

πt − π̄ =
β

1 + βιp
(Etπt+1 − π̄) +

ιp
1 + βιp

(πt−1 − π̄) + κp

(
M̂Ct −

1

µ

)
+ ϵp,t, (12)

where π̄ is the steady state inflation. ϵp,t is assumed to follow an AR(1) process around

its zero and the slope of the Phillips curve is given by κp =
1−ζpβ

1+ιpβ

1−ζp
ζp

. Labor unions

also set nominal wages subject Calvo frictions, which gives rise to a Phillips curve for
wages. Adding wage indexation with parameter ιw, this yields

πw
t − π̄ =

β

1 + βιw

(
Etπ

w
t+1 − π̄

)
+

ιw
1 + βιw

(πw
t−1 − π̄)

+ κw

(
φN1+ν

t − (1− τt)wtNt

µw
t

∫
eitcit

−σdi

)
+ ϵw,t,

(13)

where ϵw,t as well follows an AR(1) process and κw = 1−ζwβ
1+ιwβ

1−ζw
ζw

. Monetary policy
follows a conventional monetary policy rule with inflation indexing when setting the
nominal interest rate rt:

rnt − rn = ρ
(
rnt−1 − rn

)
+ (1− ρ) [ϕπ (πt − π̄) + ϕy∆Yt] + ϵr,t, (14)

with ϵr,t as an exogenous AR(1) process for monetary policy surprises. Note that in order
to remain agnostic about the central bank’s welfare objective, a traditional measure of

8It is well known that endogenous persistence is a crucial feature to replicate the hump-shaped
empirical responses that are reported in the VAR literature.
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output gap is absent in this equation. The setup of capital adjustment costs is as in
Smets and Wouters (2007) and yields the following expressions for Tobin’s Q and the
firm’s investment decisions

Rt+1qt = (1− δ)Etqt+1 + αEt

{
Zt+1

Nt+1

Kt

1−α

M̂Ct+1

}
(15)

1 = exp(ϵi,t)qt

[
1− S

(
It

It−1

)
− S

′

(
It

It−1

)
It

It−1

]
+ Et

{
exp(ϵi,t+1)

qt+1

Rt+1

S
′

(
It+1

It

)(
It+1

It

)2
}

(16)

where Rt is the gross real interest rate, S(x) = 1

2S′′
(x − 1)2 is a quadratic adjustment

cost function and ϵi,t is an exogenous AR(1) process on the marginal productivity of
investment. Finally, labor income taxation is progressive with parameter Ξ, such that
after-tax labor income yjt is given by

yjt = ypjt
1−Ξ

+

∫
p(ejt)

(
ypjt − ypjt

1−Ξ
)
, (17)

with pretax income ypjt = (1− τt)wtNteit.
For the estimation, I use a subset of the data used in Boehl et al. (forthcoming),

which includes a standard setup for medium scale models: growth rates of consumption,
investment, output and wages, together with inflation, labor hours and the federal funds
rate. The data is at quarterly frequency and ranges from 1983:I to 2008:IV. Investment
and consumption time series are adjusted such that investment also includes durables
consumption as in Justiniano et al. (2010). Those seven observables are matched by
seven economic shocks: the two markup shocks, the monetary policy shock, a government
spending shock on Gt, a discount factor shock on βt and ϵi,t, which is a shock on the
marginal efficiency of investment. Further details can be found in Appendix D.

5.2 Estimation methodology

Model solution and likelihood inference is done following the methodology introduced
in Auclert et al. (2021).9 In brief, let yt be the time t vector of model variables (includ-
ing disaggregated variables) and let the sequence of first-order conditions and marking
clearing conditions, up to some distant point T periods in the future, be

F = {f(yt−1, yt, Etyt+1;x)}Tt=0
= 0, (18)

which depends on the parameter vector x. Denote by Yt ⊂ yt only the aggregated
variables and by Zt ⊂ yt those variables that are purely exogenous. The authors propose
a novel and computationally efficient procedure of finding the steady state Jacobian
matrix of F with respect to {Yt}Tt=0 and {Zt}Tt=0. These sequence-space Jacobians (SSJ)
can then be used to calculate impulse responses to aggregate shocks up to a first order
approximation. Notably, this works for the broad class of models for which it is not
required to explicitly keep track of any of the disaggregated distribution variables on a

9The authors provide their set of methods as a Python toolbox maintained at GitHub:
https://github.com/shade-econ/sequence-jacobian.
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global domain. Simulations are based on the sequence space rather than, as in BBL, the
state space. The authors show that the first-order sequence space representation can be
used directly for likelihood inference, without the need for using the Kalman filter (which
would require a state space representation). In their application, the authors are able to
re-use (parts of) the Jacobians depending on the types of parameters to be estimated. In
my application, each Jacobian has to be calculated from scratch due to the re-calculation
of the steady state.

The steady state ȳ must satisfy

f(ȳ, ȳ, ȳ;x) = 0. (19)

Given a guess for the steady state values of aggregated variables Ȳ , the stationary distri-
bution of idiosyncratic variables can be found by finding the stationary decision rules via
backward iteration, and finding the stationary distribution via forward iteration. Hence,
there exists a known mapping Ȳ → ȳ, and finding Ȳ can be done using conventional root
finding methods. Often, the size of this root finding problem can further be reduced to
only searching a subset K̄ ⊂ Ȳ since Ȳ can be expressed in terms of K̄. Still, finding ȳ
is relatively time consuming and must be repeated for any parameter draw x.10

5.3 Estimation results

As usual, some parameters are fixed prior to the estimation. Those parameters,
most of which configuring the technical setup of the estimation (e.g. the number of grid
points), can be found in table C.4 in Appendix C. All other parameters are estimated
using the priors presented in the first three columns in tables 1 and 2, which follow the
specification of Smets and Wouters (2007). Exceptions are the portfolio adjustment cost
parameter χ0, tax progressively parameter Ξ, and the standard deviation of the AR(1)
process for idiosyncratic labor productivity σe, which are specific to the HANK model.
I opt for flat priors for these parameters.

For the estimation I run an ADEMC ensemble with a total of 288 chains11 for 2500
iterations. The ensemble converges to the high-density region of the posterior after
about 800 iterations. The estimation takes 111 hours on a machine with 48 cores. See
figures E.4 to E.9 in Appendix E for graphical illustrations of the convergence of the
chains over time, and the posterior distribution. Tables 1 and 2 show summary statistics
of the posterior distribution.

This paper focusses on the properties of the ADEMC sampler instead of the par-
ticular economic dynamics of the HANK model. Hence, I deem an in-debt analysis of
the economic implications of the estimated model out of the scope of this paper and
leave it as a promising endeavour for future research. However, the comparison of the
parameter estimates from the HANK model with those of Smets and Wouters (2007) –
for a somewhat smaller sample – reveals some surprising differences.12

10For any numerical root finding method a good initial guess is crucial, and so it is for finding the
steady state. For bad initial guesses, the root search may either diverge, crash because it is causing
numerical errors when solving for the stationary distribution, or simply take up a very long time. The
former is problematic because it prohibits to calculate the likelihood also for cases in which a likelihood
actually exists. In practice, I use the steady state values for the prior mean as the initial guess, which
causes about 2/3 of all parameter vectors sampled from the prior distribution to be accepted.

11The number is the number of available CPUs (48) times 6.
12The estimation of Smets and Wouters (2007) is replicated in Appendix A.
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Prior Posterior

distribution mean std. mean std. mode

σ intertemporal elasticity of substitution normal 1.500 0.375 1.809 0.254 2.162
ϕ Frisch elasticity normal 2.000 0.750 1.926 0.781 1.688
ζp Calvo parameter for price setting beta 0.500 0.100 0.594 0.072 0.562
ζw Calvo parameter of wage setting beta 0.500 0.100 0.414 0.092 0.457
ιp price inertia beta 0.500 0.150 0.316 0.151 0.368
ιw wage inertia beta 0.500 0.150 0.333 0.174 0.317
S′′ derivative capital adjustment costs gamma 4.000 2.000 3.221 1.842 2.538
φπ monetary policy coefficient inflation gamma 1.500 0.250 2.281 0.315 2.122
φy monetary policy coefficient output gamma 0.125 0.050 0.236 0.092 0.238
ρ monetary policy persistence beta 0.750 0.100 0.646 0.079 0.644
ȳ trend output normal 0.400 0.100 0.442 0.033 0.445
n̄ steady state labor hours normal 0.000 2.000 -0.914 2.582 -0.580
π∗ inflation target gamma 0.625 0.100 0.570 0.077 0.614
i∗ steady state nominal interest rate gamma 1.250 0.100 1.196 0.125 1.281

χ0 portfolio adjustment costs (scale) gamma 0.250 0.200 0.110 0.133 0.012
Ξ tax progressivity beta 0.200 0.100 0.109 0.079 0.106
σe standard deviation of labor productivity normal 1.500 0.500 1.407 0.608 0.906

Table 1: Estimation results for HANK: model parameters

In HANK, the inverse elasticity of substitution, σ, is relatively large. This stands in
contrast to the estimate of SW, and even stronger contradicts findings documented in
Boehl and Strobel (2022b,a) for US data until 2019 of values close-to or below one. Po-
tentially, this could be due to the fact that the precautionary motive is more emphasized
in HANK due to the assumption of incomplete financial markets. Similar as in SW, the
Frisch elasticity of labor supply φ is estimated significantly above its prior mean.

A remarkable finding is that, in the HANK model both the price and the wage Phillips
curve are identified to be comparably steep, i.e. the Calvo adjustment probabilities ζp
and ζw are estimated to be relatively low. This stands in contrast to many more recent
estimates which find rather large values for these parameters, which result in a very
flat Phillips curve. While this effect may come from different data samples, it calls
for further investigation. The relatively lower estimate of S′′ may indicate that capital
adjustment costs play a smaller role in the HANK model, which may be due to the
fact that in the HANK model, portfolio adjustment represent a additional friction that
actively influences the capital investment decision. The other parameters in table 1,
which govern the monetary policy rule and the steady state values of the observables,
are well-aligned with the original estimates in SW. This may likely be the case because
the parameters are identified independently of the model’s setup of the household sector.

The estimate of χ0 is below its prior, suggesting a somewhat less accentuated role
of the households’ portfolio choice problem. The estimate of the standard deviation of
the idiosyncratic labor productivity is close to its prior value. Lastly, the estimates of
the parameters that govern the exogenous autoregressive processes are much in line with
conventional estimates, where technology, government spending and investment specific
shocks have a high autocorrelation.
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Prior Posterior

distribution mean std. mean std. mode

ρz AR coefficient technology shock beta 0.500 0.200 0.951 0.046 0.956
ρr AR coefficient MP shock beta 0.500 0.200 0.599 0.120 0.604
ρg AR coefficient gov. spending shock beta 0.500 0.200 0.982 0.068 0.999
ρw AR coefficient wage MU shock beta 0.500 0.200 0.960 0.093 0.986
ρp AR coefficient price MU shock beta 0.500 0.200 0.903 0.085 0.936
ρi AR coefficient investment shock beta 0.500 0.200 0.764 0.210 0.860
ρβ AR coefficient interest wedge shock beta 0.500 0.200 0.968 0.054 0.945
σz standard dev. technology shock inv.gamma 0.100 0.250 0.227 0.070 0.234
σr standard dev. MP shock inv.gamma 0.100 0.250 0.389 0.221 0.346
σg standard dev. gov. spending shock inv.gamma 0.100 0.250 0.233 0.037 0.214
σw standard dev. wage MU shock inv.gamma 0.100 0.250 2.385 0.836 2.404
σp standard dev. price MU shock inv.gamma 0.100 0.250 0.209 0.071 0.212
σi standard dev. investment shock inv.gamma 0.100 0.250 1.022 0.483 1.222
σβ standard dev. interest wedge shock inv.gamma 0.100 0.250 0.045 0.073 0.059

Table 2: Estimation results for HANK: parameters of exogenous processes

6 Conclusion

This paper develops an adaptive differential evolution Monte Carlo Marcov chain
(ADEMC) method. Such ensemble MCMC methods have in common that they are
running a large number of chains, and the proposal density is generated endogenously
from the state of all chains, thereby automatically adapting to the shape of the current
estimate of the posterior distribution. The separation of parameter space and proposal
space guarantees that the proposal density respects the bounds of prior distribution,
which results in significantly higher acceptance fractions and, consequently, higher sam-
pling efficiency. An adaptation stage leads to faster burn-in times to the high density
region of the posterior. I show that ADEMC is easy to parallelize, where the number
of iterations required until convergence decreases almost one-to-one with the number of
chains. This makes the method easily scalable for large-scale problems. I further docu-
ment good performance for bimodal distributions, as long as the two modes are not too
far apart.

I apply ADEMC to estimate novel HANK models, thereby being the first to include
the micro parameters which govern the households’ problem and give rise to the en-
dogenous distribution of assets. To retain focus of this paper, I abstain from a detailed
analysis of the estimated model, and do not put the resulting parameter estimates in
relation to estimates e.g. from the micro data. This is an promising endeavour for future
research.
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Appendix A Posterior distribution of the estimation of the Smets-Wouters

model

Prior Posterior

distribution mean std./df mean sd. mode

σc normal 1.500 0.375 1.361 0.136 1.443
σl normal 2.000 0.750 1.958 0.578 1.614
βtpr gamma 0.250 0.100 0.136 0.052 0.132
h beta 0.700 0.100 0.706 0.050 0.664
S′′ normal 4.000 1.500 5.471 1.093 4.637
ιp beta 0.500 0.150 0.229 0.105 0.244
ιw beta 0.500 0.150 0.582 0.137 0.556
α normal 0.300 0.050 0.182 0.018 0.188
ζp beta 0.500 0.100 0.646 0.060 0.647
ζw beta 0.500 0.100 0.725 0.066 0.706
Φp normal 1.250 0.125 1.578 0.075 1.537
ψ beta 0.500 0.150 0.560 0.120 0.540
ϕπ normal 1.500 0.250 2.066 0.174 2.026
ϕy normal 0.125 0.050 0.093 0.023 0.073
ϕdy normal 0.125 0.050 0.229 0.027 0.238
ρ beta 0.750 0.100 0.812 0.025 0.824

ρr beta 0.500 0.200 0.118 0.062 0.080
ρg beta 0.500 0.200 0.983 0.008 0.984
ρz beta 0.500 0.200 0.964 0.011 0.963
ρu beta 0.500 0.200 0.235 0.126 0.166
ρp beta 0.500 0.200 0.898 0.099 0.892
ρw beta 0.500 0.200 0.976 0.027 0.980
ρi beta 0.500 0.200 0.730 0.067 0.774
µp beta 0.500 0.200 0.693 0.141 0.677
µw beta 0.500 0.200 0.883 0.059 0.884
ρgz normal 0.500 0.250 0.505 0.089 0.475
σg inv.gamma 0.100 2.000 0.530 0.032 0.517
σu inv.gamma 0.100 2.000 1.905 0.457 1.708
σz inv.gamma 0.100 2.000 0.459 0.029 0.471
σr inv.gamma 0.100 2.000 0.243 0.015 0.228
σp inv.gamma 0.100 2.000 0.139 0.020 0.130
σw inv.gamma 0.100 2.000 0.251 0.023 0.245
σi inv.gamma 0.100 2.000 0.456 0.066 0.432
γ normal 0.400 0.100 0.418 0.020 0.415

l normal 0.000 2.000 0.969 1.141 2.142
π gamma 0.625 0.100 0.665 0.104 0.722

Table A.3: SW estimation. The inverse gamma distribution is parameterized in terms of degrees of
freedom as in dynare.
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Appendix B Benchmarking against the number of chains

Figure B.3: The progress of the likelihood of several ensembles with different numbers nc of chains for
the model of Smets and Wouters (2007). Note that for each ensemble each individual chain is plottet.

Figure B.3 shows several estimations using different multiples of the number of pa-
rameters nθ as the number of chains, starting with nc/nθ = 2, which is the minimum
suggested by Foreman-Mackey et al. (2013). The red dashed line marks the highest value
of the posterior density that is found across all ensembles and chains. Note that, in order
to directly compare computational efficient, the x-axis of the figure does not show the
number of iterations ni but the number of total function evaluations, which is ni × nc.
The figure suggests that no measurable tradeoff exists.

Appendix C Details on the HANK model

This part of the model is by large adopted from Auclert et al. (2021).

Appendix C.1 Households

The Bellman equation of households is given by

Vt(eit, lit−1, ait−1) = max
cit,bit,ait

{
c1−σ
it

1− σ
− φ

N1+ν
t

1 + ν
+ βEtVt+1(eit+1, bit+1, ait)

}
(C.1)
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such that

cit + ait + bit =
(1− τt)wtNt∫
P (ejt)e

1−Ξ

jt dj
e1−Ξ

it + (1 + rat )ait−1 + (1 + rbt )bit−1 − Φt(ait, ait−1),

(C.2)

ait ≥ 0, (C.3)

bit ≥ b̄, (C.4)

where Φt(·) is the portfolio adjustment cost function

Φt(ait, ait−1) =
χ1

χ2

∣∣∣∣
ait − (1 + rat )ait−1

(1 + rat )ait−1 + χ0

∣∣∣∣
χ2

[(1 + rat )ait−1 + χ0], (C.5)

with χ0, chi1 > 0 and χ2 > 1. Individual labor productivity eit is assumed to follow a
random walk process with coefficient ρe and a standard deviation of the innovations of
σe
t , which is by itself assumed to follow an exogenous AR(1) process on an aggregate

level.

Appendix C.2 Financial market

No arbitrage at the financial market requires that

1 + Etrt+1 =
1 + it

1 + Etπt+1

=
Et[dt+1 + pt+1]

pt
= 1 + EtR

a
t+1 = 1 + Etr

b
t+1 + ω, (C.6)

with ω the parameter governing the cost for liquidity transformation charged by the
financial intermediary. Ex-post returns are subject to surprise inflation and capital gains

1 + rt =
1 + it−1

1 + π
= 1 + rbt + ω (C.7)

and

1 + rat = Θp

(
dt + pt
pt−1

)
+ (1−Θp)(1 + rt), (C.8)

where Θp denotes the share of equity in the illiquid portfolio.

Appendix C.3 Firms

Firms have a production function

yjt = F (kjt−1, njt) = kαjt−1n
1−α
jt (C.9)

and aggregat marginal costs are given by

M̂Ct = wt/FN (·), (C.10)

which enter the Phillips curve (12). Aggregate investment is given by

It = Kt − (1− δ)Kt−1 + S

(
It
It−1

)
, (C.11)
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Parameter Value Target

β time preference parameter – r∗

χ1 portfolio adj. cost scale – B = 1.04Y
b̄ borrowing constraint 0
ρe autocorrelation of earnings 0.966
ν disutility of labor – N = 1
µp steady state markup – p+Bg = 14Y
µw steady state wage markup 1.1
Z TFP 0.468 Y = 1
α captial share 0.33 K = 10Y
ω steady state liquidity premium 0.1
G steady state government spending 0.2
Bg bond supply 2.8
ne points for Markov chain of e 3
nb points for liquid asset grid 25
na points for illiquid asset grid 35

Table C.4: Parameters fixed for the estimation of HANK.

with the quadradic capital adjustment cost function S(x) = 1

2S′′
(x− 1)2 as given in the

main body, and δ > 0 the parameter for capital depreciation. Dividents are defined as

dt = Yt − wt − It − ψt. (C.12)

Tobin’s Q and the capital investiment decisions follow equations (15) and (16) from the
main body.

Appendix C.4 Market clearning

The optimality condition for labor unions is (13) and the monetary policy rule is
given by (14). Balanced budget requires

τtwtNt = rtB
g +Gt, (C.13)

and market clearing requires

Yt =

∫
citdi+Gt + It + ψt + ωbitdi, (C.14)

pt +Bg =

∫
ait + bitdi. (C.15)

Appendix C.5 Fixed parameters

The parameters that are not estimated are set as in table C.4.
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Appendix D Data

The following measurement equations are used for the HANK estimation:

Real GDP growth = γ + (yt − yt−1),

Real consumption growth = γ + (ct − ct−1),

Real investment growth = γ + (it − it−1),

Real wage growth = γ + (wt − wt−1),

Labor hours = n+ nt,

Inflation = π + πt,

Federal funds rate = 100

(
π

βγ−σc
− 1

)
+ rt,

The observables are constructed as follows:

• GDP: ln(GDP/GDPDEF/CNP16OV ma)*100

• CONS: ln( (PCEC-PCEDG) / GDPDEF / CNP16OV ma)*100

• INV: ln( (GPDI+PCEDG) / GDPDEF / CNP16OV ma)*100

• LAB: ln(13*AWHNONAG * CE16OV / CNP16OV ma)*100

• INFL: ln(GDPDEF)*100

• WAGE: ln(COMPNFB / GDPDEF)*100

• FFR: FEDFUNDS/4

Due to artificial dynamics in the civilian noninstitutional population series that arise
from irregular updating (Edge et al., 2013), we use a 4-quarter trailing moving average,
denoted CNP16OV ma, to calculate per capita variables. We take log changes for GDP,
CONS, INV and WAGE in our measurement equations. Data for the GZ spread is
downloaded from the Federal Reserves Board.13 Data for the 10-year equivalents of the
Fed’s SOMA Treasury security holdings are extracted from the Domestic Open Market
Reports published by the New York Fed.14 All other data is downloaded from the FRED
database of the St. Louis Fed, with the above mnemonics representing:

• GDP: GDP - Gross Domestic Product, Billions of Dollars, Quarterly, Seasonally
Adjusted Annual Rate, FRED

• GDPDEF: Gross Domestic Product: Implicit Price Deflator , Index 2012=100,
Quarterly, Seasonally Adjusted , FRED

13See https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/files/ebp_csv.csv.
14We collected the data for the SOMA Domestic Securities Holdings in Ten-Year Equivalents from the

Open Market Reports, downloaded from https://www.newyorkfed.org/markets/annual_reports.
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• CNP16OV: Civilian noninstitutional population, Thousands of Persons, Quarterly,
Seasonally Adjusted, FRED

• CNP16OV ma: a four-quarter trailing average of CNP16OV

• PCEC: Personal Consumption Expenditures, Billions of Dollars, Quarterly, Sea-
sonally Adjusted Annual Rate, FRED

• PCEDG: Personal Consumption Expenditures: Durable Goods, Billions of Dollars,
Quarterly, Seasonally Adjusted Annual Rate, FRED

• GPDI: Gross Private Domestic Investment, Billions of Dollars, Quarterly, Season-
ally Adjusted Annual Rate, FRED

• AWHNONAG: Average Weekly Hours of Production and Nonsupervisory Employ-
ees: Total private, Hours, Quarterly, Seasonally Adjusted, FRED

• CE16OV: Employment Level, Thousands of Persons, Quarterly, Seasonally Ad-
justed, FRED

• COMPNFB, Nonfarm Business Sector: Compensation Per Hour, Index 2012=100,
Quarterly, Seasonally Adjusted, FRED

• FEDFUNDS: Effective Federal Funds Rate, Percent, FRED

Appendix E Details on the estimation of HANK
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Figure E.4: Traceplots of the 200 ADEMC chains. The left panel shows a KDE of the parameter
distribution. The right displays the trace of each of the chains over time.
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Figure E.5: Traceplots of the 200 ADEMC chains. The left panel shows a KDE of the parameter
distribution. The right displays the trace of each of the chains over time.
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Figure E.6: Traceplots of the 200 ADEMC chains. The left panel shows a KDE of the parameter
distribution. The right displays the trace of each of the chains over time.
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Figure E.7: Traceplots of the 200 ADEMC chains. The left panel shows a KDE of the parameter
distribution. The right displays the trace of each of the chains over time.
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Figure E.8: Traceplots of the 200 ADEMC chains. The left panel shows a KDE of the parameter
distribution. The right displays the trace of each of the chains over time.
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Figure E.9: Traceplots of the 200 ADEMC chains. The left panel shows a KDE of the parameter
distribution. The right displays the trace of each of the chains over time.
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