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Abstract

We propose a set of tools for the efficient and robust Bayesian estimation of medium-

and large-scale DSGE models while accounting for the effective lower bound on nominal

interest rates. We combine a novel nonlinear recursive filter with a computationally effi-

cient piece-wise linear solution method and a state-of-the-art MCMC sampler. The filter

allows for fast likelihood approximations, in particular of models with large state spaces.

Using artificial data, we demonstrate that our methods accurately capture the true model

parameters even with very long lower bound episodes. We apply our approach to analyze

post-2008 US business cycle properties.
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1 Introduction

More than a decade ago, the Financial Crisis and the subsequent Great Recession did

not only wreak havoc on the US economy, but it also shook the macroeconomic profession

to the core. In response, theoretical approaches to enhance our understanding of these dra-

matic events quickly flourished in large numbers. However, only few attempts were made

to bring these models to the data. This is because the long-binding effective lower bound

(ELB) on nominal interest rates, that presents a formidable challenge for the empirical

evaluation of economic models: Conventional econometric methods are unable to handle

the non-linearity implied by an occasionally-binding constraint such as the ELB, and most

existing alternatives are highly demanding computationally.

In this paper, we offer a way forward by proposing a novel nonlinear Bayesian likeli-

hood approach that allows us to estimate even large-scale macroeconomic models while

accounting for the nonlinear effects of an occasionally-binding constraint (OBC). At the

heart of our approach lies the Ensemble Kalman filter (Evensen, 1994, 2009, EnKF). The

EnKF is an approximate Bayesian computation (ABC) algorithm that performs well even

for nonlinear, high-dimensional problems. We demonstrate that the EnKF can be applied

in the context of nonlinear DSGE models and delivers a good approximation of the model’s

likelihood. Importantly, although we apply the EnKF to the problem of estimating mod-

els with the ELB, it is potentially applicable to the large class of models with OBCs or

similar nonlinearities. The filter represents the distribution of states as an ensemble of par-

ticles, which is transmitted through time. Since consequently, each likelihood evaluation

requires a large amount of state-space evaluations, we pair the EnKF with the piecewise-

linear solution method developed in Boehl (2021) to solve for the ELB as an occasionally

binding constraint. This method provides the necessary, significant increase in computa-

tional speed compared to alternative algorithms. Further, to allow us to quickly sample

from – possibly bimodal – high-dimensional posterior distributions in parallel, we apply

the differential evolution Monte Carlo Markov chain method of Boehl (2022).

We apply this new set of tools to illustrate that analyzing the Great Recession through

the lens of models that have been calibrated or estimated only on pre-2008 data can gen-

erate misleading conclusions.1 These, in turn, may have mis-shaped our profession’s un-

1Prominent models that have been calibrated or estimated on pre-crisis data only to study the post-2008

dynamics include, e.g., Gertler and Karadi (2011); Christiano et al. (2014, 2015); Del Negro et al. (2015b);

Carlstrom et al. (2017). Others use post-2008 data, but ignore the ELB constraint (e.g., Kollmann et al.,

2016; Fratto and Uhlig, 2020). Recently, some researchers have accounted for both, post-2008 US data

and the ELB (e.g., Gust et al., 2017; Kulish et al., 2017; Cai et al., 2019; Cozzi et al., 2021)). Boehl et al.

(forthcoming) show that their model estimated to post-2008 data uncovers deflationary effects of quantitative

easing that are absent when estimating the model only on pre-crisis data.
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derstanding of the Great Recession. We estimate the canonical medium-scale model of

Smets and Wouters (2007) on a sample that extends to 2019, thereby also including the

exit from the ELB in our estimation. The results underline that including the observations

of the ELB period in the estimation has highly relevant implications on the business cycle

properties of the model. We compare the decomposition of macroeconomic dynamics de-

rived from the model estimated on the full sample with a decomposition of these dynamics

as implied by using pre-2008 data only. This exercise reveals that the sample choice sub-

stantially affects the quantitative contribution of the different driving forces in the model.

In the full sample, elevated risk premiums in household financing are the dominant driver

of the crisis. In contrast, the analysis based on pre-crisis data overstates the importance of

shocks to firms’ investment financing.

We provide an easy-to-use reference implementation of the set of methods presented

here: the Pydsge package. Pydsge is freely available and actively developed on Github.

Next to the solution method, the filter and estimation routines, we provide a model parser

similar to the one in Dynare and ample documentation to make our methods easily ac-

cessible.2 Combining these tools, we are able to estimate medium- to large scale DSGE

models with the ELB at very moderate computational costs.

To validate our set of tools, and to verify that it is able to recover a credible estimate of

the model parameters, we test it on a large artificial dataset. As the data generating process,

we use the full medium-scale model of Smets and Wouters (2007) that we estimate on US

data. We generate 100 artificial time series from simulating the model: 50 for which the

ELB is not binding at all, and 50 in which the ELB is binding for exactly 30 quarters.

This dataset allows for the comparison with a similar analysis of Atkinson et al. (2020),

who compare the performance of several nonlinear filters in the estimation of a small-

scale model.3 Across datasets, the resulting parameter estimates suggest that our tools are

indeed able to provide credible and precise parameter estimates at limited computational

costs.

The Ensemble Kalman Filter (EnKF), which we rely on for the approximation of the

model’s likelihood, is a recursive filter that is used extensively in meteorology, oceanogra-

phy and hydrology. It approximates the standard Kalman filter by representing the distri-

bution of the state as an ensemble of vectors. For each newly available observation, the en-

2The package can be found at github.com/gboehl/pydsge, documentation is located at pydsge.

readthedocs.io. It is written in the powerful open-source multi-purpose language Python. We like to

explicitly promote free and open software.
3The artificial data used by Atkinson et al. (2020) to evaluate their tools is generated by a calibrated

model that includes capital and sticky wages. The model they estimate abstracts from these features. This

allows them to additionally investigate the bias introduced by model-misspecification.
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semble members are updated by linear shifting instead of re-weighting (as with the particle

filter). It can hence be seen as a hybrid of the particle filter and the conventional Kalman

filter. The ensemble representation and shifting-based updates make the EnKF computa-

tionally feasible for models even with extremely high-dimensional state spaces. Although

under the hood, the EnKF implicitly assumes a linear Gaussian state-space model, it has

turned out to be remarkably robust to deviations from linearity as well as from Gaussianity,

even for applications with tens of millions of dimensions (Katzfuss et al., 2016).

Although used in in a wide range of applications, the EnKF – as pointed out by Katz-

fuss et al. (2016) – is remarkably unknown in the statistics and econometrics community.

Nott et al. (2012) show that the EnKF is a member of the broader class of approximate

Bayesian computational algorithms. Such methods primarily serve the purpose of ap-

proximating the posterior distribution of model parameters. Consequently, the filter was

successfully used for the Bayesian parameter inference of nonlinear models (Stroud and

Bengtsson, 2007; Frei and Künsch, 2012). The suitability of the EnKF for this purpose is

confirmed by our validation exercise on artificial data.

The shifting-based updating step of the EnKF avoids the degeneracy problem of re-

weighting-based algorithms such as the particle filter. The problem is that with a finite

number of particles, in the case of an sufficiently large model, the weights of all but one

particle may essentially become zero, leading to a poor approximation of the state distribu-

tion. Naturally, the larger the model, the more it is prone to degeneracy, requiring a rapidly

increasing number of particles due to the curse of dimensionality. This makes the use of

the particle filter computationally infeasible even for moderately large models.4 Another

advantage of the EnKF over the particle filter is that, if the initial state is sampled from a

low-discrepancy sequence5, the likelihood function is in fact continuous and contains no

sampling noise, which eases posterior sampling.

We further add to this literature a procedure of nonlinear path-adjustment, which ex-

tends the ensemble version of the Rauch-Tung-Striebel smoother (Rauch et al., 1965;

Raanes, 2016). This is necessary for counterfactual analysis, which requires the series

of shock innovations to fully respect the nonlinear transition function, while taking the

smoothed distribution of states into account. Additionally, we propose a method to com-

pute historic shock decompositions of models with occasionally binding constraints. Im-

portantly, the weighing scheme that we suggest results in decompositions that are condi-

4Notable applications of the particle filter, include Gust et al. (2017) with 1,500,000 particles for a down-

sized version of the model of Smets and Wouters (2007), Atkinson et al. (2020) with 40,000 particles for a

small-scale model, and Herbst and Schorfheide (2019).
5These are methods to construct a sample in such a way that, roughly speaking, it most perfectly repre-

sents a target distribution even for small samples.
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tionally linear and independent of any ordering effects of the shocks.

Our analysis of the post-2008 US macroeconomic dynamics confirms previous find-

ings of Gust et al. (2017) and Kulish et al. (2017), who consider a binding ELB within

comparable models but based on different methodology. This lends credence to our analy-

sis and suggests, in comparison with the fully nonlinear method of Gust et al. (2017), that

the loss of precision that might incur due to the use of a piecewise-linear solution method

is small.6

Related literature

The likelihood inference of nonlinear DSGE models is an active branch of the litera-

ture. Cuba-Borda et al. (2019), drawing on Fair and Taylor (1980), propose an inversion

filter (IVF) for the estimation of models with OBCs. In contrast to the EnKF, the IVF

abstracts from measurement errors and any uncertainty surrounding the initial state. This

creates a direct mapping between shocks and observables. The IVF then relies on root

finding methods to solve for a shock vector that satisfies the transition function for a given

vector of observables.7 We document that this approach may have limitations, that are

related to the invertibility of the transition function: in models with occasionally binding

constraints, for a given shock there may exist multiple spell durations which form an equi-

librium (see, e.g., Holden, 2017). Hence, the mapping from observables to shocks may not

be unique. In addition, in some cases, a mapping may exist but the root finding algorithm

may simply not converge.8 Using our artificial datasets, we show in Appendix D that this

issue can be very relevant: if the mapping is non-unique the IVF accepts any shock vector

that satisfies the transition function independently of how likely it is.9 Thus, the shock

vector picked by the IVF may crucially depend on the initial guess of the spell duration or

the root finding algorithm. This introduces noise into the likelihood function, which may

6This is in line with Atkinson et al. (2020), who compare piecewise-linear OBC solutions with fully

global methods. They acknowledge that the fully nonlinear solution entails some nice properties (e.g. cap-

turing the effects of aggregate uncertainty), but prefer the piecewise-linear solution as it allows for larger,

less misspecified models.
7Note, that the use of a root finding algorithm becomes necessary due to a lack of a closed-form solution

for linearized models with an occasionally binding constraint (Cuba-Borda et al., 2019; Atkinson et al.,

2020).
8A second concern is that ignoring the uncertainty regarding the initial state may introduce a bias into the

filter. In Appendix D, we compare the performance of the EnKF and the IVF in artificial datasets. Whereas

our findings suggest that in datasets without binding ELB the bias introduced by the IVF is moderate and

not systematic, ignoring uncertainty regarding initial states reduces the estimation accuracy. In comparison

with the EnKF, normalized root mean squared errors are on average 30% larger in estimations with the IVF.
9Note that by construction, Bayesian filters such as particle filter and EnKF will select shock vectors that

are likely given their covariance, uncertainty surrounding initial states and measurement errors.
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make sampling from the posterior distribution rather difficult.10

Recently, a small number of papers have estimated economic models with an endoge-

nously binding ELB. Gust et al. (2017) estimate a downsized and globally solved version of

the RANK model using the particle filter. While this is very impressive, it comes at a very

high computational cost. In addition, it requires excellent computational skills whereas re-

searchers can easily adopt the approach presented here using the Pydsge package. Aruoba

et al. (2021) provide a set of methods that alleviate some of the computational costs, in

particular by suggesting a conditional optimal particle filter that is optimized to deal with

models with OBCs. This approach has a number of advantages, especially as it allows to

capture precautionary behavior. However, it is still subject to the curse of dimensional-

ity and can, for the medium-scale model considered here, be expected to be considerably

slower than our approach.

Kulish et al. (2017) suggest to circumvent the nonlinear filtering problem by treating

the expected durations of the ELB as parameters in their estimation. Conditional on that,

the estimated model is again linear. However, this approach may have limitations because

the MCMC procedure may not always be capable to deal with such a high dimensionality

of the parameter space. Additionally, introducing discrete parameters with potentially

non-smooth effects may add further difficulties to the sampling procedure. In practice,

these two points can potentially limit parameter identification. A similar approach is to

directly feed survey data on interest rate expectations into a model augmented by news

shocks and forecasting errors (see, e.g., Cai et al., 2019). As with the Kulish et al. (2017)

approach, this results in a (conditionally) linear model. However, both procedures cannot

capture the endogenous nonlinearity of the model, and the shocks implied by the filter may

actually imply different ELB durations than the ones initially imposed. This as well can

potentially distort the parameter estimates.11 In the context of the ELB, our methodology

presents an alternative approach that allows for an endogenous generation of ELB spell

durations. A powerful advantage of our approach is that it can be used in the context of

any occasionally binding constraint also when data on agents expectation on the duration

of the binding constraint is not available or not reliable. This can, for example, be relevant

in the context of downward nominal wage rigidities or financial constraints.

With the Extended Kalman filter (EKF, Smith et al., 1962; McElhoe, 1966) and the

Unscented Kalman Filter (UKF, Julier et al., 2000) further alternatives exist for cases in

10In our exercise, we employ samples, in which the ELB is binding for 30 periods. The acceptance ratio

soon drops to 1% and below, preventing us to obtain a reliable posterior sample.
11The discrepancies between simulated spell durations and durations as imposed during estimation are

exploited by Jones et al. (2018), who similar to Kulish et al. (2017), include the spell durations in the

sampling procedure. They label such discrepancies as forward guidance shocks.
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which the non-linearities are known to be rather mild. However, the EKF is known to eas-

ily diverge if nonlinearities become more severe, or if the time series of observables is very

volatile. The performance of the UKF hinges strongly on the quality of the parametriza-

tion of its Sigma points and can be prone to divergence as well. Compared to the UKF,

the EnKF does not rely on parameterized deterministic sampling techniques and is hence,

apart from the choice of the number of particles, parameter-free. We experimented with

both, the EKF and the UKF, and can confirm that both do not work well in the context of

nonlinear DSGE models, and can return noisy likelihood estimates.

Our finding that risk premium shocks have been the major drivers of the Great Reces-

sion confirms recent studies (e.g., Kulish et al., 2017; Cai et al., 2019). This shock can

be associated with the importance of household financing for the Great Recession, which

was stressed, e.g., by Mian and Sufi (2014, 2015) and Kehoe et al. (2020).12 Nevertheless,

a large share of the previous literature attempts to explain the Great Recession via distur-

bances and frictions associated to firms’ investment finance. This includes papers, which

directly discuss risks on the firms’ balance sheet such as, e.g., Christiano et al. (2014), and

extends as well to contributions that focus on vulnerabilities in the banking sector, which in

turn affect firm’s investment financing such as, e.g., Gertler and Karadi (2011); Carlstrom

et al. (2017). These papers often conduct their analysis by means of calibrated models,

or models estimated on pre-2008 data. Our results suggests that, rather than focussing

on firms’ investment, a closer investigation on the role of household financing might be

warranted.

We proceed as follows: Section 2 lays out the set of novel methods. Section 3 contains

the application of the approach on US data and the resulting interpretations of the Great

Recession through the lens of the estimated model with and without the use of post-crisis

data. In Section 4 we test our set of methods on artificial data, and discuss its accuracy.

Section 5 concludes.

2 Conceptual Framework

Data samples in which the ELB binds pose a host of technical challenges for the es-

timation of DSGE models. These are related to the solution, likelihood inference, and

posterior sampling of models in the presence of an occasionally binding constraint (OBC).

While methods to solve models with OBCs exists, and – likewise – nonlinear filters are

available, the combination of both is computationally very expensive for medium-scale

models. Hence, very few examples in the literature were able to follow this approach (e.g.,

12Fisher (2015) provides another interpretation of the shock as an economy-wide increase in the demand

for liquid or safe assets.
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Gust et al., 2017; Kulish et al., 2017).13

In this section, we summarize the set of novel methods that allow us to conduct the es-

timation of medium-scale models in the presence of an occasionally binding ELB. Next to

the EnKF, these include a piece-wise linear solution method by Boehl (2021) and, for pos-

terior sampling, the adaptive differential evolution Monte Carlo Markov chain (ADEMC)

method developed for DSGE models in Boehl (2022). The advantage of the solution

method over the widely used Occbin by Guerrieri and Iacoviello (2015) is its speed, as it

is based on closed form solutions and circumvents simulations on anticipated trajectories

and matrix inversions at runtime.14 The main advantage of the ADEMC sampling method,

which uses a large number of chains, is that they are self-tuning, easy to parallelize, and

robust against local maxima.

2.1 A method to deal with occasionally binding constraints efficiently

Throughout this paper, we apply the solution method for DSGE models with OBCs

that is presented in Boehl (2021). We refer to the original paper for details. The model is

linearized around its steady state balanced growth path and thereby implicitly detrended.

Respecting the ELB, the original model with variable vector yt ∈ R
ny and shock vector

εt ∈ R
nz can be represented as a piecewise linear model with

A

[
ct

st−1

]
+ b max

{
p

[
Etct+1

st

]
+ m

[
ct

st−1

]
, r̄

}
= Et

[
ct+1

st

]
, (1)

where

[
ct

st−1

]
is a re-ordering of

[
yt

εt

]
: st−1 contains all the (latent) state variables and the

current shocks, and ct contains all forward looking variables. A is the system matrix and r̄

is the minimum value of the constrained variable rt (which is the nominal interest rate for

our purpose). The constraint is included with rt = max

{
pEt

[
ct+1

st

]
+ m

[
ct

st−1

]
, r̄

}
. p and

m measure how rt is affected by other variables, and the vector b contains the effects of

rt onto all other variables. Then, denote by (k, l) ∈ N
+
0

the expected duration of the ELB

spell and the expected number of periods before the ELB binds.

It can be shown that the rational expectations solution to Equation (1) for the state s

periods ahead, (ct+s, st+s−1), can be expressed in terms of st−1 and the expectations on k and

13The estimation of DSGE models with a binding ELB was pioneered by work on small-scale NK models.

See, e.g., Keen et al. (2017); Aruoba et al. (2018, 2021); Plante et al. (2018).
14While in our application, we focus on the ELB constraint, in principle, the solution method can handle

multiple constraints at the same time.
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l as

Fs(l, k, st−1) =Amax{s−l,0}Âmin{l,s}

[
f (l, k, st−1)

st−1

]
+ (I − A)−1

(
I − Amax{s−l,0}

)
br̄, (2)

=Et

[
ct+s

st+s−1

]
, (3)

where Â = (I − bp)−1 (A + bm) and

f (l, k, st−1) =

{
ct : ΨAkÂ

[
ct

st−1

]
= −Ψ(I − A)−1(I − Ak)br̄

}
. (4)

Here, Ψ =
[
I −Ω

]
where Ω : ct = Ωst−1 represents the linear rational expectations

solution of the unconstrained system as given, e.g., in Blanchard and Kahn (1980).

Finding the equilibrium values of (l, k) must be done numerically. The crucial advan-

tage of the above representation over alternative methods such as Guerrieri and Iacoviello

(2015) is that the simulation of anticipated trajectories (and matrix inversions at runtime)

can be avoided when iterating over (l, k). This lends a reduction in computation time by a

factor of roughly 1,500, which is necessary for our application. Ultimately, the resulting

transition function is a nonlinear state-space representation.

2.2 Filter

The nonlinear filtering methodology, which we apply, is an adaptation of the Ensemble

Kalman Filter (Evensen, 1994, EnKF) for the general type of nonlinear problems faced in

macroeconomics. Denote a nonlinear hidden Markov-Model (HMM) by

xt =g(xt−1, εt) (5)

zt =h(xt) + νt (6)

with exogenous economic innovations εt ∼ N (0,Q) and measurement noise νt ∼ N (0,R).

g is the state-transition function, i.e. the function that assigns a set of (l, k) to a state-shock

combination (xt−1, εt). h is an observation function mapping from states to observables.

xt ∈ R
n can, depending on the definition of g and h, either be the full variable vector yt or

just the state vector st

Let Xt = [x1
t , · · · , x

N
t ] ∈ R

n×N be the ensemble at time t, which consists of N vectors

of the state. Further denote by (x̄t, Pt) the mean and the covariance matrix of the uncon-

ditional distribution of states for period t. Initialize the ensemble by drawing N samples

from the prior state distribution (not to be confused with the parameter priors in the context
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of the Bayesian inference of parameter values, that we discuss below)

X0
N
∼ N (x̄0, P0) . (7)

Importantly, this distribution reflects any uncertainty about the initial state of the econ-

omy prior the first observation. We use latin hypercube sampling (McKay et al., 2000)

to obtain X0. Such quasi-random low discrepancy series are a powerful tool to create

prototypical samples of a target distribution, that are (almost) independent of the random

seed (e.g., Niederreiter, 1988). During the estimations, we re-use the same underlying

low-discrepancy sequence for the initial states to guarantee that the likelihood function is

a smooth function over the parameter space.

Step 1: Predict

Predict the next (time-t) prior-ensemble Xt|t−1 by applying the transition function to

the posterior ensemble from last period. Use the observation function to obtain a prior

ensemble of observables:

Xt|t−1 = g(Xt−1|t−1, εt), (8)

Zt|t−1 = h(Xt|t−1) + νt, (9)

where εt and νt are each N realizations drawn from the respective distributions.

Step 2: Update

Denote by X̄t = Xt(IN−11⊺/N) the anomalies of the ensemble, i.e. the deviations from

the ensemble mean. Recall that the covariance matrix of the prior distribution at t is
X̄tX̄

⊺

t

N−1
.

The Kalman mechanism then yields an update-step of

Xt|t = Xt|t−1 + X̄t|t−1Z̄
⊺

t|t−1

(
Z̄t|t−1Z̄

⊺

t|t−1

)−1 (
zt1

⊺ − Zt|t−1

)
. (10)

The mechanism is similar to the unscented Kalman filter (UKF), developed by Julier

and Uhlmann (1997), but with a particle representation of the state distribution instead

of deterministic Sigma points, and statistical linearization instead of the unscented trans-

form. The advantage of the EnKF over the UKF is that its output does not depend on the

parametrization of the filter. Conceptionally the procedure suggested here can be seen as

a transposition of the EnKF.15

15Notationally both are equivalent. The regular EnKF assumes the size of the state spaces to be larger than

N, and accordingly the term
(
Z̄t|t−1Z̄

⊺

t|t−1

)
to be rank deficient. The mechanism then builds on the properties
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The likelihood at each iteration can then be determined by

Lt = φ

(
zt|z̄t,

ȲtȲ
⊺
t

N − 1
+ R

)
. (11)

Note that the calculation of the likelihood requires one prediction-updating loop for each

observation. Each prediction step in turn requires N state-space evaluations. For all esti-

mations and for the numerical analysis we use ensembles of N = 400 particles. For 120

observations, this would amount to 48,000 state-space evaluations – that is, calculations

of (l, k) – per likelihood evaluation. This underlines why we require the very fast OBC

solution method of Boehl (2021).16

Strictly speaking, the EnKF only delivers the exact likelihood in linear systems (Katz-

fuss et al., 2016), as each state distribution – and thereby the inference of the likelihood

– is based on a linear approximation around the ensemble mean.17 This stands in contrast

to the particle filter (PF), which can be shown to be an unbiased estimator also for non-

linear transition functions. Nonetheless, as we show in Section 4, the bias of the EnKF is

negligible in samples with a binding ELB. As an advantage over the PF, the EnKF avoids

degeneracy issues (see e.g. Binning and Maih, 2015), a problem which is commonly miti-

gated by assuming counterfactually high measurement errors (MEs). This bears the risk of

likelihood misspecification, where the misspecification error involved in PFs grows with

the size of the assumed MEs if the true DGP has no or only small MEs (see, Cuba-Borda

et al., 2019; Canova et al., 2020). In contrast, the EnKF can generally be used with very

small MEs, and variants exist that allow filtering and likelihood inference without MEs.

More importantly, however, the EnKF enables us to estimate large-scale nonlinear sys-

tems, for which an estimation with particle filter is too costly. This facilitates the estima-

tion of models with a rich set of features and helps to avoid the model-misspecification that

may be the price for using smaller models, which the PF can estimate in an acceptable time

frame. As Atkinson et al. (2020) highlight, in practice this type of model misspecification

turns out to be far more severe.

of the pseudoinverse (the latter provides a least squares solution to a system of linear equations), which is

used instead of the regular matrix inverse.
16The number of particles is chosen to minimize the standard deviation of the likelihood approximation

across random seeds. For the estimations in this paper, an average likelihood evaluation then takes a bit less

than two seconds.
17For linear systems the EnKF gives results identical to the standard Kalman Filter.
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2.3 Smoothing and iterative path-adjusting

For economic analysis we are also interested in the series of shocks, {εt}
T−1
t=0 , that fully

recovers the mode of the smoothened states. The econometric process of using all avail-

able information on all estimates is called smoothing. For this purpose, we extend the

Rauch-Tung-Striebel smoother (Rauch et al., 1965) in its ensemble formulation similar to

Raanes (2016).

Denote by T the period of the last available observation and update each ensemble

according to the backwards recursion18

Xt|T = Xt|t + X̄t|tX̄
+
t+1|t

[
Xt+1|T − Xt+1|t

]
. (13)

This creates a series
{
Xt|T

}T

t=0 of representatives of the distributions of states at each

point in time, reflecting all the available information. We now want to ensure that the mode

of the distribution fully reflects the nonlinearity of the transition function while retaining

a reasonably good approximation of the full distribution. We call this process nonlinear

path-adjustment. It is important that the smoothened distributions are targeted instead

of, e.g., just the distributions of observables and shocks. Only when the full smoothened

distributions are targeted it can be maintained that all available information from the ob-

servables is taken into account. This procedure implicitly assumes that the smoothened

distributions approximate the actual transition function sufficiently well and only minor

adjustments remain necessary. Since in general there are (many) more states than exoge-

nous shocks, the fitting problem is underdefined and matching precision will depend on

the size of the relative (co)variance of each variable. Small observation errors lead to small

variances around observable states and tight fitting during path-adjustment while loosely

identified states grant more leeway.

Initialize the algorithm with x̂0 = E
{
X0|T

}
(the mean vector over the ensemble mem-

bers), define Pt|T = Cov{Xt|T } and for each period t recursively find

ε̂t = arg max
ε

{
log f

(
g(x̂t−1, ε)|x̄t|T , Pt|T

)}
, (14)

x̂t =g(x̂t−1, ε̂t), (15)

which can be done using standard iterative methods.

18Although it is formally correct that

X̄t|tX̄
⊺

t+1|t

(
X̄t+1|tX̄

⊺

t+1|t

)+
= X̄t|tX̄

+
t+1|t, (12)

the implementation using the LHS of this equation is numerically more stable when using standard imple-

mentations of the pseudo-inverse based on the SVD.
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The resulting series of x̂t corresponds to the estimated mode given the initial mean and

approximated covariances and is completely recoverable by ε̂t. Naturally, it represents

the nonlinearity of the transition function while taking all available information into ac-

count. Since the deviation between mode x̂t and mean x̄t is in general marginal, we refer

to {x̂t, Pt}
T
t=0 as the path-adjusted smoothed distributions.19

2.4 Posterior sampling

For posterior sampling we apply the adaptive differential evolution ensemble Monte

Carlo Markov chain method (ADEMC) developed in Boehl (2022), which builds on ter

Braak (2006). The ADEMC method is a member of the class of ensemble MCMC meth-

ods which, instead of relying on a single or small number of state-dependent chains (as

e.g. in the random walk Metropolis-Hastings algorithm, RWMH), uses a large number of

chains (also called the ”ensemble”, but in the context of posterior sampling). While, e.g.,

the conventional RWMH generates new proposals using a multivariate normal jump distri-

bution centered at the iterate, the differential evolution algorithm generates new proposals

for each chain by adding to the current point a fraction of the difference of two randomly

chosen chains from the ensemble. Thus, the proposal density is endogenous and adapts to

each updating step, thereby yielding a high speed of convergence. At the same time, the

use of many chains ensures a broad search over the parameter space.20

As shown in Boehl (2022), the main advantage of ADEMC is that it is self-tuning, easy

to parallelize, and relatively robust against local maxima, which allows to use it to sample

from potentially bimodal distributions. ADEMC explicitly renders any posterior mode

search prior to sampling (as with RWMH) unnecessary because the algorithm itself is

based on a heuristic global optimizer (i.e., the differential evolution method). The sampler

even works well if large regions of the parameter space do not have a likelihood due to

indeterminacy or explosive dynamics. The fact that ADEMC is easy to parallelize is very

useful because, even when using the methodology above, the evaluation of the likelihood

function is computationally expensive. Hence, ADEMC allows us to further reduce the

computational burden considerably. For each estimation, we initialize an ensemble of 200

particles with the prior distribution and run 2500 iterations. Of these, we keep 500 as a

representation of the posterior distribution. Thus, the posterior is represented by a sample

19Unfortunately the adjustment step can not be done during the filtering stage already. Iterative adjust-

ment before the prediction step, would bias the transition of the covariance. Likewise, adjusting after the

prediction step will require the repeating the prediction and updating step leading to a potentially infinite

loop. See e.g. Ungarala (2012) for details.
20ter Braak (2006) provides a well-written introduction into the DE-MCMC and a comprehensive com-

parison to the conventional RWMH. Similar ensemble methods have been extensively applied in particular

in astrophysics (see, e.g., Foreman-Mackey et al., 2013).
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of 200x500 = 100,000 parameter vectors. All estimations are conducted on a machine with

40 Intel Xeon E5 CPUs (3.10GHz) and 32 GB RAM and take about 3 hours in average.21

3 Business Cycle Dynamics and the Effective Lower Bound

In this section, we use a standard medium-scale model to analyze the business cycle

dynamics at the ELB. We start with a brief look at the employed structural framework,

followed by a discussion the data and the empirical treatment of the effective lower bound.

We then discuss the parameter estimates and present the main implications of the estimated

model for the dynamics of the great recession. Finally, we show that the additional post-

2008 data points are crucial for the interpretation of the data, and lead to significantly

different model dynamics compared to the model estimated on pre-crisis data only.

3.1 Model

In our analysis, we employ the canonical medium-scale framework by Smets and

Wouters (2007) as a data generating process and use it to interpret the Great Recession.

Following Del Negro and Schorfheide (2013), we detrend all nonstationary variables by

Zt = eγt+ 1
1−α

z̃t , (16)

where, γ is the steady-state growth rate of the economy and α is the output share of capital.

z̃t is the linearly detrended log productivity process that follows the autoregressive law of

motion z̃t = ρz̃zt−1 + σzϵz. For zt, the growth rate of technology in deviations from γ, it

holds that zt =
1

1−α
(ρz−1)̃zt+

1
1−α

σzϵz. We take into account the fact that the central bank is

constrained in its interest rate policy by a zero lower bound (ELB) on the nominal interest

rate. Therefore, in the linear model, it is that

rt = max{r̄, rn
t }, (17)

with r̄ being the lower bound value. Whenever the policy rate is away from the constraint,

it corresponds to the notional rate, rn
t , which, as in Smets and Wouters (2007), follows the

feedback rule

rn
t = ρrn

t−1 + (1 − ρ)
(
ϕππt + ϕỹyt

)
+ ϕdy∆ỹt + vr,t. (18)

Here, πt is the inflation rate, ỹt is the output gap and ∆ỹt = ỹt − ỹt−1 its growth rate. Param-

eter ρ expresses an interest rate smoothing motive by the central bank. ϕπ, ϕy and ϕdy are

21Paralellization scales almost linearly, implying that one of the estimations presented here would take

about 30 hours on a common quad-core PC.
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feedback coefficients. The stochastic process vr,t follows an AR(1) process. Whenever the

economy is at the ELB, the design of the central bank’s policy rule allows agents to form

expectations on when the notional rate will re-enter positive territory. That is, the design

of the central bank’s policy rule combined with the state of the economy governs agents

expectations of the duration of the ELB spell. In addition to this systematic component of

forward guidance, the innovation vr,t alters the path of the notional rate and, at the ELB

in effect alters the expected duration of the lower bound spell. It can hence be viewed as

a forward guidance shock whenever the economy is at the ELB.22 As the model is well

known, we delegate a short description and the full set of linearized equilibrium conditions

to Appendix B.

3.2 Data and Priors

For the quantitative analysis of the Great Recession and its aftermath, we use data

from 1964:Q1 to 2019:Q4. Thereby we also capture the exit from the ELB at the end of

2015. The inclusion of the ELB period in the sample employed in the estimation matters

for the model-implied interpretation of the Great Recession. To show this, we additionally

consider a pre-crisis sample in our analysis, which extends from 1964:Q1 to 2008:Q4.

We estimate the model on seven observables. Those are real GDP growth, real con-

sumption growth, real investment growth, labor hours, the log change of the GDP deflator,

real wage growth, and the Federal Funds Rate.

The measurement equations that relate the model variables to our data series are

Real GDP growth = γ + (yt − yt−1 + zt), (19)

Real consumption growth = γ + (ct − ct−1 + zt), (20)

Real investment growth = γ + (it − it−1 + zt), (21)

Real wage growth = γ + (wt − wt−1 + zt), (22)

Labor hours = l + lt, (23)

Inflation = π + πt, (24)

Federal funds rate = 100

(
π

βγ−σc
− 1

)
+ rt. (25)

22Carlstrom et al. (2015) and Del Negro et al. (2015a) raise the issue of the ’forward guidance puzzle’.

De Graeve et al. (2014) in turn argue that forward guidance policies can generate realistic effects, if they are

conditioned on the state of the econonmy. This is the case in the model at hand. In addition, Kulish et al.

(2017) argue that a large, negative, and persistent risk premium shock runs counter to the effects of forward

guidance. As we discuss below as in their case, we find these types shocks to be major drivers of the Great

Recession.
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The construction of the observables is mostly standard and delegated to Appendix A.

Consistent with the detrending of nonstationary variables, the growth rate of technology,

zt in deviations from its steady state enters the measurement equations.

Notably, we set the empirical lower bound of the nominal interest rate within the model

to 0.05% quarterly. Setting it exactly to zero would imply that the ELB never binds in our

estimations, as the observed series for the FFR stays strictly above zero. The value is

chosen such that the ELB is considered binding throughout the period from 2009:Q1 to

2015:Q4. For the observable Federal Funds Rate we cut off any value below 0.05. This

maintains that any observable value is also in the domain of model.23

We assume small measurement errors for all variables with a variance that is 0.01 times

the variance of the respective series. Since the Federal Funds rate is directly observable

we divide the measurement error variance here again by 100. Hence, the observables are

de facto matched perfectly.

In the calibration of some parameters and the choice of the priors for the estimation

of the others we mostly adopt the choices of Smets and Wouters (2007). An exception is

our prior for γ. Here, we follow Kulish et al. (2017). Importantly, they opt for a tighter

prior for this parameter than Smets and Wouters (2007). Arguably the economy deviated

strongly and persistently from its steady state during the Great Recession. In order to

dampen the data’s pull of the parameter down to the sample mean, we prefer the tight

prior as well.24

3.3 Parameter estimates

The summary statistics of the posteriors for the structural parameters for the two main

samples are presented in Table 1. We present estimates for the full sample and a pre-crisis

sample without the post-crisis data. The latter is comparable to Smets and Wouters (2007).

While overall, the estimates are well within the range of values previously presented in the

literature, there are some crucial differences between the estimates across samples.

We find that the coefficient of relative risk aversion σc is slightly above unity in the

full sample whereas its mean is higher in the pre-crisis sample (1.5). Similarly, Kulish et

al. (2017), who also include the last decade in their estimation, find σc to be close to unity,

similar as in our pre-crisis sample. A value of σc close to one mutes the effect of variations

in labor hours on consumption via the Euler equation, which is introduced through the

nonseperabilities in preferences. The reduction of this channel prevents the strong drop in

23The lower bound for the quarterly nominal rate is r̄ = −100( π
βγ−σc − 1) + 0.05, where π is gross inflation

and the parameters γ and σc denote the steady state growth rate and the coefficient of relative risk aversion,

respectively.
24For wider priors we confirm unrealistically low estimates of the trend growth rate.
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Prior Posterior

1964–2019 1964–2008

distribution mean sd/df mean sd mode mean sd mode

σc normal 1.500 0.375 1.156 0.121 1.023 1.500 0.150 1.539

σl normal 2.000 0.750 3.333 0.416 3.490 2.411 0.471 2.468

βtpr gamma 0.250 0.100 0.147 0.044 0.146 0.148 0.045 0.175

h beta 0.700 0.100 0.635 0.042 0.667 0.590 0.054 0.560

S ′′ normal 4.000 1.500 5.140 0.637 5.574 4.435 0.890 4.444

ιp beta 0.500 0.150 0.657 0.058 0.651 0.425 0.109 0.395

ιw beta 0.500 0.150 0.528 0.092 0.586 0.493 0.106 0.582

α normal 0.300 0.050 0.173 0.015 0.157 0.213 0.017 0.222

ζp beta 0.500 0.100 0.904 0.016 0.900 0.714 0.042 0.670

ζw beta 0.500 0.100 0.817 0.018 0.823 0.773 0.051 0.743

Φp normal 1.250 0.125 1.440 0.058 1.412 1.591 0.067 1.629

ψ beta 0.500 0.150 0.502 0.077 0.460 0.617 0.083 0.685

ϕπ normal 1.500 0.250 2.190 0.128 2.198 1.958 0.164 1.987

ϕy normal 0.125 0.050 0.173 0.018 0.194 0.072 0.029 0.054

ϕdy normal 0.125 0.050 0.254 0.018 0.258 0.250 0.023 0.263

ρ beta 0.750 0.100 0.870 0.012 0.876 0.820 0.027 0.804

ρr beta 0.500 0.200 0.098 0.039 0.111 0.192 0.068 0.231

ρg beta 0.500 0.200 0.949 0.017 0.939 0.972 0.010 0.968

ρz beta 0.500 0.200 0.985 0.002 0.985 0.968 0.009 0.965

ρu beta 0.500 0.200 0.836 0.022 0.845 0.499 0.141 0.486

ρp beta 0.500 0.200 0.167 0.059 0.160 0.808 0.127 0.882

ρw beta 0.500 0.200 0.990 0.003 0.986 0.936 0.030 0.942

ρi beta 0.500 0.200 0.651 0.038 0.637 0.822 0.053 0.844

σg inv.gamma 0.100 2.000 0.467 0.023 0.469 0.496 0.025 0.495

σu inv.gamma 0.100 2.000 0.574 0.070 0.586 1.088 0.339 0.972

σz inv.gamma 0.100 2.000 0.437 0.027 0.467 0.395 0.025 0.381

σr inv.gamma 0.100 2.000 0.197 0.010 0.200 0.223 0.012 0.223

σp inv.gamma 0.100 2.000 0.143 0.010 0.135 0.119 0.012 0.110

σw inv.gamma 0.100 2.000 0.340 0.016 0.338 0.258 0.021 0.274

σi inv.gamma 0.100 2.000 0.387 0.030 0.386 0.365 0.033 0.350

µp beta 0.500 0.200 0.140 0.077 0.077 0.646 0.129 0.706

µw beta 0.500 0.200 0.968 0.005 0.966 0.851 0.064 0.850

ρgz normal 0.500 0.250 1.316 0.089 1.299 1.394 0.100 1.386

γ normal 0.440 0.050 0.351 0.013 0.346 0.402 0.017 0.399

l normal 0.000 2.000 3.257 0.760 2.711 1.653 0.849 1.266

π gamma 0.625 0.100 0.936 0.097 0.986 0.973 0.084 0.979

Table 1: Estimation results for the samples: 1964–2019, 1964–2008
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labor hours during the crisis to exert an excessive downwards pull on consumption.

Another difference lies in the estimate of the slope of the Phillips Curve. The pre-

crisis estimate of ζp = 0.714 is close to the value in the estimation by Smets and Wouters

(2007). In contrast, the Calvo parameter of ζp = 0.904 in the full sample supports the

general notion that the Phillips Curve has flattened in the last decades. This finding is

corroborated by estimates of Kulish et al. (2017).

Importantly, the persistence of structural shocks appears to have changed over the last

decades. Again, the estimates of these parameters for the pre-crisis sample are well aligned

with the results by Smets and Wouters (2007). In contrast, in the full sample, which in-

cludes the ELB episode, the risk premium shock display a substantially higher persistence.

This points to the increased importance of risk premium shocks in the Great Recession. In

turn, the persistence of shock to the marginal efficiency of investment, ρi and that of the

price markup shock, ρp are estimated to be lower in the full sample than in the pre-crisis

sample. Lastly, the inclusion of the Great Recession lowers the trend growth rate of the

economy, γ.

Overall, these results are broadly in line with the findings of the previous work that

estimates versions of this model as well for the sample with the ELB period as in the pre-

crisis sample. This lends credence to the results generated with the novel set of methods.

3.4 The Great Recession Through the Lens of the model

In the context of the estimated model, risk premiums shocks ϵu
t are the most prominent

driver of the joint dynamics of key variables following the financial crisis. Figure 1 illus-

trates the dominant role of this shock for macroeconomic dynamics following the Great

Recession.25 It presents the historical shock decompositions of key variables during the

Great Recession based on estimates using the full sample. From 2009 on, persistently el-

evated risk premiums account for almost the entire drop of aggregate consumption, weigh

on aggregate investment and inflation, and consequently are responsible for the long du-

ration of the ELB spell for the nominal interest rate. Christiano et al. (2015) label this

shock consumption wedge contrasting it with the financial wedge that is captured by the

MEI shocks in our analysis. Smets and Wouters (2007) compare the effects of the shock to

those of disturbances to net worth of entrepreneurs in a model with financial frictions as in

Bernanke et al. (1999). Fisher (2015) offers a structural interpretation of the risk premium

shock as a shock to the demand for safe and liquid assets. Each of these interpretations

share the notion that the risk premium shock is a short cut for capturing some financial

25The dominant role of risk premium shocks is corroborated by the generalized forecast error variance

decomposition. It accounts for roughly half of the variation of output and 60 percent of the variation of the

notional rate.
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disturbances, which makes its prominent role in the Great Recession plausible.

However, high risk premiums cannot fully account for the sharp drop in investment

during the Great Recession. While recessionary risk premium shocks do trigger a simul-

taneous downturn of consumption and investment, they fail to match the drop differential

of these components, creating the need for an extra driver to make up for the missing de-

cline in investment. In the case at hand, the initial decline of investment is triggered by

recessionary MEI shocks, ϵ i
t , which at the trough account for roughly half of the collapse

in investment.

Similarly, the decline of inflation during the Great Recession can only partly be at-

tributed to the increase in risk premiums. The estimated flat Phillips Curve prevents the

decline in real activity from generating substantial deflation. It requires price markup

shocks, ϵ
p
t , to account for the high-frequency movements of inflation in the sample and

account for the dip in inflation during the Great Recession. The only modest decrease

in inflation triggered a debate on the missing disinflation puzzle. Christiano et al. (2015)

attribute some inflationary pressure to a persistent decline in productivity relative to its

pre-recession trend. In contrast, in our estimation, which abstracts from a separate TFP-

specific trend, the technology process, zt, is consistently measured to be positive. In addi-

tion, Christiano et al. (2015) as well as Gilchrist et al. (2017) ascribe the missing inflation

to higher refinancing costs of firms. We cannot confirm within the model that MEI shocks,

which increase the firms’ cost of investments, raise inflation. Instead, in our analysis and

similar to Del Negro et al. (2015b), the estimate of a flat Phillips Curve is responsible for

the lack of a steep decline in inflation. We view the reliance on disparate exogenous drivers

for the explanation of the dynamics of key variables at the height of the Great Recession

as a failure of the canonical model to ascribe this event to a common source and to provide

a joint propagation mechanism.

The long duration of the ELB is largely interpreted by our estimation as an endogenous

response of the central bank to the deterioration of fundamentals via the Taylor rule, rather

than to an active lower-for-longer policy.26 Figure 2 shows the dynamics and the distribu-

tion of the expected duration of the ELB spell over the sample. Although we do not target,

nor use any prior information on the actual expectations of market participants on the du-

ration of the ELB, they are broadly comparable to the average expected durations reported

by the Blue Chip Financial Forecast and the Federal Reserve Bank of New York’s Survey

26In principle, our specification of the shadow rate allows us to interpret monetary policy shocks at the

ELB as forward guidance shocks. However, in the absence of additional data input such as, e.g., term premi-

ums, we find substantial uncertainty surrounding our estimate of the shadow rate. For this reason we abstain

from any statement regarding the effects of such policy. For a discussion of the effects of unconventional

monetary policy, see Boehl et al. (forthcoming).
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of Primary Dealers. The lower panels of Figure 2 show the distributions of expected ELB

durations at different points in time. In 2009:Q1, most of the probability mass lies on a

duration of 8 quarters, which is between the 75th and 90th percentile of the distribution

implied by survey data. For 2011:Q1, where our mean expected duration of six quarters

slightly exceeds the mean implied by the Primary Dealer Survey, our estimation allots a

considerable probability mass to lower expected durations and the survey mean is within

the credible set of the estimation. In the first quarters of 2012 and 2013, for which survey

data shows expected durations of ten to eleven quarters, our estimates allots most of the

probability mass to seven or six quarters, which still implies a substantial role of the ELB.

Whereas the Fed exited the ELB in 2015:Q4, our mean estimates of the expected du-

rations remain positive until 2017:Q1. At the same time, the uncertainty surrounding our

estimates increases strongly with the 90% credible set including values of k slightly above

zero. The reason is that in the linear model, the output gap and the inflation rate are still

far below the detrended balanced growth path, giving rise to very low interest rates via the

monetary policy rule (see Figure 1). Hence, expectations of the ELB duration are driven

by the model-implied large and persistently negative output gap after the Great Recession

and the low inflation rate.27 Although agents observe the FFR to climb above the ELB,

they interpret this as a contractionary monetary policy shock and expect the FFR to return

to the ELB in the very near future.

The resulting estimated average expected durations are higher than those by Gust et al.

(2017), who obtain an average ELB spell of merely 3.5 quarters. A potential reason for

the difference in the resulting expected durations might be the treatment of the ELB in the

estimation. As mentioned in Section 3.2, we set the empirical ELB to 0.05% quarterly,

whereas Gust et al. (2017) choose exactly zero percent. This may be problematic as the

Federal Funds Rate never actually went all the way down to zero. In theory, their model

is hence capable of matching the observables without forcing the model to the zero lower

bound.28

Kulish et al. (2017) use the survey data to construct priors on expected durations, which

they estimate directly. While this procedure poses a challenge for parameter identification

by substantially extending the dimensionality of the parameter space, it helps to match the

27 The finding of such a large, enduring output gap is is neither exclusive for the US data nor for estimated

DSGE models. E.g., the OECD reports consistently negative output gaps for all years between the Global

Financial Crisis and the Corona pandemic for most of its member states (OECD, 2021).
28From this angle it is surprising that in their smoothed state estimates, they hit the ELB at all. We

suspect that this is due to the assumption of relatively large observation errors, which is often necessary

when employing the particle filter (see e.g. Atkinson et al., 2020). Their measurement errors variances are

assumed to at least 10% of the variance of data sample, which is a full magnitude higher than our assumed

measurement errors, and even three magnitudes for the Federal Funds Rate.
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observed dynamics of the expectations over the years at the ELB. Despite the differences

between our ELB durations and that of Kulish et al. (2017), the similarities of the results

regarding parameter estimates as well as the dominant role of the risk premium shock

show that our approach of an endogenous generation of ELB expectations presents a valid

alternative. A key feature of the set of tools presented in this paper is that it does not

rely on data on the expectations of the binding constraint’s duration. This is a powerful

advantage when reliable data on the duration of any occasionally binding constraint that a

researcher wants to include in its model is not available.

3.5 The Merits of Using Post-Crisis Data in the Estimation

Accounting for the ELB in the estimation of a DSGE model is non-trivial (c.f. sub-

section 2). Thus, many model-driven analyses of the macroeconomic dynamics during the

crisis are based on models that are calibrated or estimated on pre-ELB data only (see, e.g.,

Chen et al., 2012; Christiano et al., 2014, 2015; Del Negro et al., 2015b; Carlstrom et al.,

2017). This approach has generated prominent results that shape our understanding of the

Great Recession, the role of financial frictions or the effects of unconventional monetary

policy. In this subsection, we illustrate that omitting the ELB period can yield misleading

implications.

Figure 3 shows the historical shock decomposition of key variables in the Great Reces-

sion, but based on the model estimated on the pre-crisis sample without the ELB period.

Compared to the full sample, the importance of disturbances to the firms investment de-

cision is highly overtaxed, thereby pointing to such disturbances as a major explanation

for the Great Recession. Indeed, and likely consequentially, many studies focus in their

explanation of the Great Recession on frictions that affect firms’ investment financing.29

To a good part, this difference in the interpretation of the Great Recession can be traced

back to the difference in the estimates of the persistence parameters of risk premium shocks

and MEI shocks. Figure 4 illustrates that in the full sample, the effects of risk premium

shocks are far more persistent. Additionally, it shows that the fall of investment relative to

the decline in consumption in the face of this shock is far less pronounced when the model

is estimated on the pre-crisis sample. This is largely due to the difference in the estimates

of the coefficient of relative risk aversion, σc. In the full sample estimate, its posterior

mean is close to unity. In the pre-crisis estimate it is at 1.5.

Already in the full sample estimate, the risk premium shock cannot fully match the

drop differential of consumption and investment that was observed in the Great Recession.

A risk premium shock that would have triggered a collapse in investment as observed in

2009, would have caused an excessive fall in consumption. For the coefficient of relative

29See, e.g. Gertler and Karadi (2011); Carlstrom et al. (2017) or Christiano et al. (2014).
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risk aversion, as it results from the pre-crisis estimate, this drawback is exacerbated. For

values of σc larger than one, the decline in labor hours exerts an additional downwards

pull on consumption through the non-separabilities in the utility function. In turn, the

additional drag on consumption implies that for a given decline of output that is caused by

a risk premium shock, the decline of investment is reduced. Therefore, the drop differential

between investment and consumption becomes even smaller and makes it less likely that

risk premium shocks can account for the Great Recession.

In contrast, Figure 5 shows that MEI shocks become more attractive when post-2008

data is omitted from the estimation. In the model estimated on the full sample, a negative

MEI shock initially increases consumption: by lowering aggregate demand, MEI shocks

weigh on the policy interest rate, which in turn stimulates consumption on impact. This

negative co-movement of consumption and investment is at odds with the observed dy-

namics in the Great Recession. In the pre-crisis sample, however, both consumption and

investment decline with a negative MEI shock. Again, this can be traced back to the dif-

ference in the estimate of σc. In the pre-crisis sample, the higher value of σc strengthens

the non-separabilities between labor and consumption. This implies that the decline in

labor induces a drop in consumption as well. Notably, the pre-crisis estimate of σc is

very close to the prior mean and it is hard to reject that this estimate is a matter of poor

identification. On the contrary, the full sample estimate of this parameter is almost two

standard deviations distant from the prior mean, which suggests that the value is driven

by the data. Hence, through the lens of our pre-crisis estimates, MEI shocks – and other

financial wedge type of shocks which share similar properties – appear more attractive

than they are when including post-2008 data in the estimation.

In summary, the account of the Great Recession offered by our exercise based on the

pre-crisis sample differs sharply from the interpretation based on the full sample. Here,

elevated risk premiums play a dominant role for business cycles. Apart from the question,

which modeling choices prove to be the best fit to capture the events of the recent decade,

the exercise in this section highlights the importance of making use of post-2008 data,

when analyzing macroeconomic dynamics during this time.
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Figure 1: Historical Shock Decomposition of the Great Recession using the model estimated on the full

sample from 1964–2019. Consumption and Investment: percentage deviations from their steady state growth

path. Inflation and (shadow) interest rate: percentage points deviation from steady state. The decomposition

in the bottom panel is made with respect to the shadow interest rate (dashed line), which corresponds to the

notional interest rate rn
t . Note: Means over 250 simulations drawn from the posterior. The contribution of

each shock is normalized as in Appendix C.
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Figure 2: Estimated expected ELB durations based on the benchmark estimation. Bars in the top panel

mark the mean estimate. The shaded area represents 90% credible sets reflecting parameter and filtering

uncertainty. The lower panels show histograms of the distribution of ELB durations. The last bar to the right

marks the probability of a duration of 10 or more quarters.
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Figure 3: Historical Shock Decomposition of the Great Recession using the model estimated on the sample

w/o ELB period from 1964–2008. Consumption and Investment: percentage deviations from their steady

state growth path. Inflation and (shadow) interest rate: percentage points deviation from steady state. The

decomposition in the bottom panel is made with respect to the shadow interest rate (dashed line), which

corresponds to the notional interest rate rn
t . Note: Means over 250 simulations drawn from the posterior.

The contribution of each shock is normalized as in Appendix C.
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4 Estimation Accuracy

In this section, we test the estimation performance and accuracy of our set of tools

on artificial data. To ease comparison, we closely follow Atkinson et al. (2020, hence-

forth ART). The authors compare the estimation performance of a fully nonlinear solution

combined with the particle filter, and the piece-wise solution method of Guerrieri and Ia-

coviello (2015) in conjunction with the inversion filter (IVF) of Cuba-Borda et al. (2019).

Their results are obtained for a small-scale DSGE model with a relatively small number of

parameters and only two endogenous states (interest rate inertia and consumption). They

conclude that the advantages of the fully nonlinear solution (including agents that take ag-

gregate uncertainty into account) are small and outweighed by the benefits of using much

faster methods such as OccBin with the IVF, which enables the researcher to estimating

richer and hence less mis-specified models.

As in ART, we simulate a large set of artificial datasets to test our set of tools. Other

than ART, we use the medium-scale model introduced in Section 3.1 as the data generating

process (DGP) and set the parameters of the DGP to the posterior mean from the estimation

in the previous section (cf. Table 1). Also different than ART, we abstract from the effects

of model misspecification: the estimated model and the DGP are the same model. Each

dataset spans over 240 quarters, of which we omit the first 120 quarters. We then take the

first 50 datasets in which the ELB is not binding at all, and the first 50 sets in which the

ELB is successively binding for exactly 30 quarters.30 As documented by the first columns

in Table 2 and in line with ART we also set the prior mean to the true parameter values to

eliminate potential biases that are orthogonal to the filtering methodology.31 The standard

deviations of the prior distribution are exactly as before, which reflect the original priors

of SW. Note that for the ensemble-MCMC sampling procedure this also implies that we

initialize the estimation around the true parameter values, which implies that any deviation

in the parameter estimates must come from filtering bias.

To measure the accuracy of parameter estimates we use normalized root-mean squared

errors (NRMSE) as in ART. For parameter j, the error is the difference between the poste-

rior mean estimate for dataset k, θ̂ j,k and the true parameter θ j. For the number of datasets

30While datasets in which the ELB is not binding occur quite frequently, sets in which the ELB is binding

for exactly 30 periods are quite rare events. To obtain 50 of these datasets, we need a total number of almost

one million draws.
31Sole exceptions are the priors of ρz, ρg, ρw and µw, which we set to 0.9 since sampling from a Beta

distribution with a mean close to one poses difficulties.
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N the measure is given by

NRMSE j =
1

θ j

√√
1

N

N∑

k=1

(
θ̂ j,k − θ j

)2
, (26)

which normalizes the standard root-mean square error by the true parameter θ j to remove

scale differences.

Table 2 presents the results of our accuracy check. Overall, we find the means of the

simulations to be closely aligned with the true parameter values. This suggests that the

EnKF indeed approximates the true likelihood very well. The results do not indicate any

severe bias in either direction. As discussed in Section 2, the EnKF is an exact Bayesian

filter for linear models and replicated the exact results of the linear Kalman filter. We

can use this fact to determine parameters that are likely to be generally badly identified

from the estimations where the model is actually linear. Examples are ρr, ρp or µp, which

display slightly elevated NRMSE. It turns out that exactly these parameters are not very

well identified in the nonlinear estimation, while all others display NRMSEs in a similar

range as for the linear estimation.

We also go one step ahead and benchmark the EnKF against the filter of Cuba-Borda

et al. (2019) in Appendix D. We repeat the exact same setup as above and use the same

datasets. As argued in the introduction, the IVF has two potential shortcomings: it ignores

uncertainty about the initial states, and the inverse of the transition function may either

not exist, or not be unique. Regarding the first problem we find that the IVF still delivers

acceptable parameter estimates for the datasets in which the ELB is not binding, however

with a considerably larger dispersion in mean estimates (NRMSEs are about 30% larger

than with the EnKF). This suggests that ignoring the uncertainty about the initial states

does indeed cause a loss on estimation accuracy.

However, The more severe problem seems to be the non-uniqueness of the transition

function once we allow for a binding ELB. We document that for the datasets in which

the ELB is binding for 30 subsequent periods, the estimate of the likelihood is very noisy.

We conclude that this renders sampling from the posterior distribution hardly possible for

our medium scale model. Note that, given the size of the state space of the model, it is

cumbersome to also benchmark against the particle filter with a fully nonlinear solution.

The potential disadvantages of the particle filter are, however, already documented in ART

and Cuba-Borda et al. (2019).
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Prior No ELB ELB binding for 30 periods

type mean std mean NRMSE HDP: 5% 95% mean NRMSE HDP: 5% 95%

σc normal 1.156 0.375 1.219 0.618 1.086 1.321 1.207 0.602 1.046 1.322

σl normal 3.333 0.750 3.366 0.357 3.067 3.585 3.252 0.589 2.712 3.591

βtpr gamma 0.147 0.100 0.154 1.295 0.107 0.184 0.140 1.390 0.088 0.179

h beta 0.635 0.100 0.608 0.405 0.573 0.651 0.628 0.332 0.573 0.660

S ′′ normal 5.140 1.500 5.147 0.555 4.533 5.815 5.574 0.918 4.829 6.505

ιp beta 0.657 0.150 0.674 0.516 0.596 0.746 0.708 0.750 0.635 0.777

ιw beta 0.528 0.150 0.532 0.481 0.477 0.578 0.521 0.825 0.413 0.612

α normal 0.173 0.050 0.162 0.712 0.140 0.181 0.156 0.864 0.141 0.179

ζp beta 0.904 0.100 0.896 0.178 0.861 0.928 0.905 0.120 0.878 0.929

ζw beta 0.817 0.100 0.817 0.241 0.776 0.863 0.811 0.239 0.768 0.862

Φp normal 1.440 0.125 1.468 0.275 1.397 1.548 1.472 0.260 1.376 1.520

ψ beta 0.502 0.150 0.498 0.689 0.406 0.566 0.475 0.875 0.404 0.595

ϕπ normal 2.190 0.250 2.225 0.235 2.115 2.323 2.352 0.696 2.121 2.564

ϕy normal 0.173 0.050 0.177 0.785 0.151 0.205 0.202 1.649 0.157 0.244

ϕdy normal 0.254 0.050 0.261 0.540 0.235 0.294 0.235 0.898 0.187 0.269

ρ beta 0.870 0.100 0.866 0.173 0.835 0.902 0.863 0.208 0.824 0.898

ρr beta 0.098 0.200 0.102 4.534 0.028 0.180 0.090 4.252 0.029 0.172

ρg beta 0.900 0.200 0.936 0.340 0.896 0.969 0.930 0.321 0.891 0.963

ρz beta 0.900 0.200 0.983 0.657 0.972 0.995 0.980 0.642 0.967 0.995

ρu beta 0.836 0.200 0.836 0.294 0.775 0.890 0.874 0.380 0.840 0.922

ρp beta 0.167 0.200 0.143 2.014 0.080 0.211 0.146 1.881 0.084 0.197

ρw beta 0.900 0.200 0.952 0.465 0.894 0.980 0.956 0.505 0.930 0.989

ρi beta 0.651 0.200 0.654 0.655 0.583 0.771 0.665 0.561 0.579 0.731

µ p beta 0.140 0.200 0.104 2.434 0.054 0.154 0.120 2.128 0.068 0.174

µ w beta 0.900 0.200 0.946 0.403 0.912 0.975 0.934 0.367 0.907 0.968

ρgz normal 1.316 0.250 1.313 0.443 1.214 1.473 1.303 0.531 1.197 1.459

σg IG 0.467 0.250 0.454 0.428 0.415 0.489 0.458 0.457 0.414 0.506

σu IG 0.574 0.250 0.564 0.876 0.448 0.691 0.536 0.876 0.453 0.642

σz IG 0.437 0.250 0.385 1.010 0.343 0.450 0.360 1.391 0.284 0.398

σr IG 0.197 0.250 0.195 0.552 0.173 0.220 0.186 0.697 0.166 0.208

σp IG 0.143 0.250 0.139 0.713 0.110 0.156 0.139 0.787 0.116 0.162

σw IG 0.340 0.250 0.347 0.533 0.303 0.383 0.337 0.553 0.282 0.374

σi IG 0.387 0.250 0.388 0.721 0.327 0.437 0.375 0.744 0.317 0.434

γ normal 0.351 0.050 0.350 0.357 0.327 0.384 0.352 0.418 0.311 0.378

l normal 3.257 2.000 3.157 1.283 2.150 4.019 3.645 1.638 2.410 4.542

π gamma 0.936 0.100 0.953 0.243 0.909 1.001 0.904 0.359 0.844 0.956

Table 2: Estimation results for our set of methods across 50 artificial datasets in which the ELB is not binding

at all (center columns) and binding for 30 subsequent periods (right columns).
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5 Conclusion

This paper proposes a set of tools for the efficient and robust Bayesian estimation of

medium- and large-scale DSGE models with occasionally binding constraints. It combines

a novel nonlinear recursive filter with a piece-wise linear solution method for models with

OBCs and a state-of-the art MCMC sampler that allows for an easy in-parallel sampling

from high dimensional posterior distributions. Our discussion of the novel methods is

accompanied by an accessible reference implementation: the Pydsge package. We validate

our methods on artificial data in which the ELB is binding for a prolonged time. Our toolkit

can easily be extended to the estimation of larger models with OBCs, as e.g. in Boehl et

al. (forthcoming).

A further advantage of the methods presented here is that they enable researchers to

estimate models with occasionally binding constraint even in the absence of reliable data

on the expected duration of the binding constraint. We illustrate this along the example

of the Great Recession in the US and the long-binding ELB on nominal interest rates.

Our approach to endogenize the ELB durations generates similar parameter estimates and

historical shock decompositions as previous papers that use external survey data on expec-

tations of the ELB durations. This lends additional credence to our methods.

We find that post-2008 dynamics are dominated by elevated risk premiums on house-

hold borrowing rates, in line with the importance of increased mortgage rates in the finan-

cial crisis. In contrast, we find that using pre-crisis-only estimates to analyze the post-2008

period yields the misleading conclusion that shocks to the cost of investment were a main

driver for the Great Recession and the US economy’s post-2008 trajectory. This result

is a cautionary tale that should discourage from empirically investigating on the Great

Recession with models tuned to match the pre-2008 experience.
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Appendix (For Online-Publication)

Appendix A Data

Our measurement equations contain the following variables:

• GDP: ln(GDP/GDPDEF/CNP16OV)*100

• CONS: ln((PCEC)/GDPDEF/CNP16OV)*100

• INV: ln((FPI)/GDPDEF/CNP16OV)*100

• LAB: ln((AWHNONAG*CE16OV)/CNP16OV)*100

• INFL: ln(GDPDEF)

• WAGE: ln(COMPNFB/GDPDEF)*100

• FFR: FEDFUNDS/4

For GDP, CONS, INV, INFL and WAGE we use the log changes in our measurement

equations. We demean LAB in our measurement equation.

Data sources:

• GDP: Gross Domestic Product, Billions of Dollars, Quarterly, Seasonally Adjusted

Annual Rate, FRED

• GDPDEF: Gross Domestic Product: Implicit Price Deflator, Index 2012=100, Quar-

terly, Seasonally Adjusted, FRED

• PCEC: Personal Consumption Expenditures, Billions of Dollars, Quarterly, Season-

ally Adjusted Annual Rate, FRED

• FPI: Fixed Private Investment, Billions of Dollars, Quarterly, Seasonally Adjusted

Annual Rate, FRED

• AWHNONAG: Average Weekly Hours of Production and Nonsupervisory Employ-

ees: Total private, Hours, Quarterly, Seasonally Adjusted, FRED.

• CE16OV: Civilian Employment Level, Thousands of Persons, Seasonally Adjusted,

FRED.
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• CNP16OV: trailing MA(5) of the Civilian Noninstitutional Population, Thousands

of Persons, Quarterly, Not Seasonally Adjusted, FRED.

• COMPNFB, Nonfarm Business Sector: Compensation Per Hour, Index 2012=100,

Quarterly, Seasonally Adjusted, FRED

• FEDFUNDS: Effective Federal Funds Rate, Percent, FRED.

Appendix B Model Descriptions

We adopt the framework by Smets and Wouters (2007) as a baseline model to interpret

the Great Recession. Following Del Negro and Schorfheide (2013), we detrend all nonsta-

tionary variables by Zt = eγt+ 1
1−α

z̃t , where, γ is the steady-state growth rate of the economy

and α is the output share of capital. z̃t is the linearly detrended log productivity process

that follows the autoregressive law of motion z̃t = ρz̃zt−1 + σzϵz. For zt, the growth rate of

technology in deviations from γ, it holds that zt =
1

1−α
(ρz − 1)̃zt +

1
1−α

σzϵz.

Labor is differentiated by unions with monopoly power that face nominal rigidities for

their wage setting process. Intermediate good producers employ labor and capital services

and sell their goods to final goods firms. Final good firms are monopolistically competitive

and face nominal rigidities as in . The model further allows for exogenous government

spending and features a monetary authority that sets the short-term nominal interest rate

according to a monetary policy rule.

This subsection briefly presents the linearized equilibrium conditions. A detailed

derivation of the linearized equations is discussed e.g. in the appendix to Smets and

Wouters (2007). All variables in this section are expressed as a log-deviation from their

respective steady state values. The consumption Euler equation of the households is given

by

ct =
h/γ

(1 + h/γ)
(ct−1 − zt) +

1

1 + h/γ
Et[ct+1 + zt+1] +

(σc − 1)(WhL/C)

σc(1 + h/γ)
(lt − Et[lt+1])

−
(1 − h/γ)

(1 + h/γ)σc

(rt − Et[πt+1] + ut),

(B.1)

where ct is consumption, and lt is their supply of labor. Parameters h, σc and σl are,

respectively, the degree of external habit formation in consumption, the coefficient of rela-

tive risk aversion, and the inverse of the Frisch elasticity. γ denotes the steady-state growth

rate of the economy. rt is the nominal interest rate, πt is the inflation rate, and ut is an ex-

ogenous risk premium shock, which drives a wedge between the lending/savings rate and

the riskless real rate.
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Equation (B.2) is the linearized relationship between investment and the relative price

of capital,

it =
1

1 + β
[(it−1 − zt] +

β

1 + β
Et[it+1 + zt+1] +

1

(1 + β)γ2S ′′
qt + vi,t. (B.2)

Here, it denotes investment in physical capital and qt is the price of capital. It holds that

β = βγ(1−σc) where β is the households’ discount factor. Investment is subject to adjust-

ment costs, which are governed by S ′′, the steady-state value of the second derivative of

the investment adjustment cost function, and an exogenous process, vi,t. While Smets and

Wouters (2007) interpret ei,t as an investment specific technology disturbance, Justiniano

et al. (2011) stress that this shock can as well be viewed as a reduced-form way of cap-

turing financial frictions, as it drives a wedge between aggregate savings and aggregate

investment. We henceforth refer to this disturbance as a shock on the marginal efficiency

of investment (MEI).

The accumulation equation of physical capital is given by

kt = (1 − δ)/γ(kt−1 − zt) + (1 − (1 − δ)/γ)it + (1 − (1 − δ)/γ)(1 + β)γ2S ′′vi,t, (B.3)

where k denotes physical capital, and parameter δ is the depreciation rate. The following

Equation (B.4) is the no-arbitrage condition between the rental rate of capital, rk
t , and the

riskless real rate:

rt − Et[πt+1] + ut =
rk

rk + (1 − δ)
Et[r

k
t+1] +

(1 − δ)

rk + (1 − δ)
Et[qt+1] − qt. (B.4)

As the use of physical capital in production is subject to utilization costs, which in turn can

be expressed as a function of the rental rate on capital, the relation between the effectively

used amount of capital kt and the physical capital stock is

kt =
1 − ψ

ψ
rk

t + kt−1, (B.5)

where ψ ∈ (0, 1) is the parameter governing the costs of capital utilization. Equation (B.6)

is the aggregate production function

yt = Φ(αkt + (1 − α)lt + zt) + (Φ − 1)
1

1 − α
z̃t. (B.6)

Intermediate good firms employ labor and capital services. Let zt be the exogenous process

of total factor productivity. Parameter α is the elasticity of output with respect to capital
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and Φ enters the production function due to the assumption of a fixed cost in production.

Real marginal costs for producing firms, mct, can be written as

mct = wt − zt + α(lt − kt). (B.7)

wt denotes the real wage, which are set by labor unions. Furthermore, cost minimization

for intermediate good producers results in condition (B.8):

kt = wt − rk
t + lt. (B.8)

The aggregate resource constraint (B.9) contains an exogenous demand shifter, gt, which

comprises exogenous variations in government spending and net exports, as well as the

resource costs of capital utilization:

yt =
G

Y
gt +

C

Y
ct +

I

Y
it +

RkK

Y

1 − ψ

ψ
rk

t +
1

1 − α
z̃t.. (B.9)

Final good producers are assumed to have monopoly power and face nominal rigidities

as in Calvo (1983) when setting their prices. This gives rise to a New Keynesian Phillips

Curve (NKPC) of the form

πt =
β

1 + ıpβ
Etπt+1 +

ıp

1 + ıpβ
πt−1 +

(1 − ζpβ)(1 − ζp)

(1 + βıp)ζp((Φ − 1)ϵp + 1)
mct + vp,t. (B.10)

Here, ζp is the probability that a firm cannot update its price in any given period. In

addition to Calvo pricing, we assume partial price indexation, governed by the parameter

ıp. The Phillips Curve is hence both, forward and backward looking. ϵp denotes the

curvature of the Kimball (1995) aggregator for final goods. Due to the Kimball aggregator,

the sensitivity of inflation to fluctuations in marginal cost is affected by the market power

of firms, represented by the steady state price markup, Φ−1.32 Furthermore, the curvature

of the Kimball aggregator affects the adjustment of prices to marginal cost as the higher ϵp,

the higher is the degree of strategic complementarity in price setting, dampening the price

adjustment to shocks. The last term in the NKPC, vp,t, represents exogenous fluctuations

in the price markup.

While final good producers set prices on the good market, wages are set by labor

unions. Unions bundle labor services from households and offer them to firms with a

32Note that in equilibrium, the steady state price markup is tied to the fixed cost parameter by a zero profit

condition.
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markup over the frictionless wage, wh
t , which reads

wh
t =

1

(1 − h)
(ct − h/γct−1 + h/γzt.) + σllt. (B.11)

As with price setting, we assume that the nominal rigidities in the wage setting process are

of the Calvo type, and include partial wage indexation. The wage Phillips curve thus is

wt =
1

1 + βγ
(wt−1 − zt + ıwπt−1) +

βγ

1 + βγ
Et[wt+1 + zt+1 + πt+1] −

1 + ıwβγ

1 + βγ
πt

+
(1 − ζwβγ)(1 − ζw)

(1 + βγ)ζw((λw − 1)ϵw + 1)
(wh

t − wt) + vw,t.

(B.12)

The term wh
t − wt is the inverse of the wage markup. Analogous to equation (B.10), the

terms λw and ϵw are the steady state wage markup and the curvature of the Kimball aggre-

gator for labor services, respectively. The term vw,t represents exogenous variations in the

wage markup.

We take into account the fact that the central bank is constrained in its interest rate

policy by a zero lower bound (ELB) on the nominal interest rate. Therefore, in the linear

model, it is that

rt = max{r̄, rn
t } (B.13)

with r̄ being the lower bound value. Whenever the policy rate is away from the constraint,

it corresponds to the notional rate, rn
t , which follows the feedback rule

rn
t = ρrn

t−1 + (1 − ρ)
(
ϕππt + ϕỹyt

)
+ ϕdy∆ỹt + vr,t. (B.14)

Here, ỹt is the output gap and ∆ỹt = ỹt − ỹt−1 its growth rate. Parameter ρ expresses an

interest rate smoothing motive by the central bank. ϕπ, ϕy and ϕdy are feedback coeffi-

cients. When the economy is away from the ELB, the stochastic process vr,t represents a

regular interest rate shock. When the nominal interest rate is zero, however, vr,t may not

directly affect the level of the nominal interest rate. However, through the persistence of

the stochastic process that drives vr,t, it affects the expected path of the notional rate and

can therefore alter the expected duration of the lower bound spell. It can hence be viewed

as a forward guidance shock whenever the economy is at the ELB.
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Finally, the stochastic drivers in our model are the following seven processes:

ut =ρuut−1 + ϵ
u
t , (B.15)

zt =ρzzt−1 + ϵ
z
t , (B.16)

gt =ρggt−1 + ϵ
g
t + ρgzϵ

z
t , (B.17)

vr,t =ρrvr,t−1 + ϵ
r
t , (B.18)

vi,t =ρivi,t−1 + ϵ
i
t , (B.19)

vp,t =ρpvp,t−1 + ϵ
p
t − µpϵ

p

t−1
, (B.20)

vw,t =ρwvw,t−1 + ϵ
w
t − µwϵ

w
t−1, (B.21)

(B.22)

where ϵk
t

iid
∼ N(0, σ2

k
) for all k = {r, i, p,w}, and likewise for {ut, zt, gt}.

Appendix C Normalization of historic shock decompositions for models with OBCs

We are interested in quantifying the contribution of a each type of shock to the se-

quence of model variables. Such quantification is called the historic shock decomposition

(HSD). If the model feature one or several occasionally binding constraints (OBCs), the

model is nonlinear and the HSD is generally not unique. To illustrate this, imagine a de-

flationary MEI shock εi
t and a risk premium shock ut, which together cause the ELB to

bind. Assume that each, the MEI shock and the risk premium shock alone are insuffi-

ciently strong to force the ELB to hold. Then, the effect of ut conditional on the realization

of εi
t will have a different dynamic effect than just ut taken alone, and it is unclear which

value to assign to ut within the context of a HSD. This appendix offers a way to quantify

the historic shock contributions in models with OBCs.

More precisely, we are interested in the sequence of vectors

{
ht,z

}T

0 (C.1)

where z ∈ {1, 2, · · · , nz} is in the set of all nz types of shocks and where each ht,z is the

cumulative dynamic contribution of type-z shocks to time-t model variables yt. ht,z is

hence recursive. By definition, εt = (ε1
t , ε

2
t , · · · , ε

nz

t ) is the vector of all nz shocks in the

model at time t. We require for each period t that

nz∑

z=1

ht,z = yt (C.2)
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and at least that

{ht,z = 0 ∧ ht−1,z = 0 ⇐⇒ εz
t = 0} ∀z = 1, 2, · · · , nz (C.3)

i.e. that any zero shock has a zero net contribution to the HSD. Further, we require the

HSD to be unique and the attributions to each shock to be proportional.

We propose a normalization method for historic shock decomposition that is specific

to models with OBCs. Importantly, the normalization is such that the result is independent

of any ordering effects. For convenience, let us repeat Equation (2) from the main body:

Fs(l, k, st−1) =Nmax{s−l,0}N̂min{l,s}

[
f (l, k, st−1)

st−1

]
+ (I − N)−1

(
I − Nmax{s−l,0}

)
br̄, (C.4)

=Et

[
ct+s

st+s−1

]
, (C.5)

where N̂ = (I − bp)−1 (N + bm) and

f (l, k, st−1) =

{
ct : ΨNkN̂

[
ct

st−1

]
= −Ψ(I − N)−1(I − Nk)br̄

}
. (C.6)

Define latent states net of shocks as s̃t−1 and remember that the state vector consist of latent

states and current shocks, wt−1 = (s̃t−1, εt)
⊺. Take as given the time sequence of smoothed

shocks {εt}
T
0 that fully reproduces {yt}

T
0 . This implies that we also have obtained the se-

quence of all {l, k}. The law-of-motion from period t to t + 1 is then given by F1(l, k, st−1),

i.e. Fs(·) for s = 1. From Equation (C.6), f (l, k, st−1) can be decomposed in a coefficient

matrix f̄w(l, k) that is to be pre-multiplied to st−1, and a constant vector f̄c(k) that only

depends on k. To ease notation, define both such that st−1 is returned:

[
f (l, k, st−1)

st−1

]
= f̄w(l, k)st−1 + f̄c(l, k), (C.7)

That means the bottom part of f̄w(l, k) is a (ny + nz) dimensional identity matrix and the

bottom part of f̄c(k) is a (ny + nz) × 1 zero vector.
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From this we can rewrite F1(·) as

Et(ct+1, st)
⊺ = (C.8)

F1(l, k, st−1) =Nmax{1−l,0}N̂min{l,1}

(
f̄w(l, k)

[
s̃t−1

εt

]
+ f̄c(k)

)

+(I − N)−1
(
I − Nmax{s−l,0}

)
br̄,

(C.9)

where we are more explicit about the shocks.

Denote by Iz the nz-dimensional identity matrix and by I
nz

z its z-th column. For each z

we define ht,z by the recursion

(xt+1,z,ht,z)
⊺ = (C.10)

F1(l, k,ht−1,z, ε
z
t ) =Nmax{1−l,0}N̂min{l,1} f̄w(l, k)

[
ht−1,z

I
nz

z ε
z
t

]

+ωt,zN
max{1−l,0}N̂min{l,1} f̄c(k)

+ωt,z(I − N)−1
(
I − Nmax{s−l,0}

)
br̄,

(C.11)

where, from the linearity of the first two terms at the RHS, it is easy to show that Condition

(C.2) is satisfied as long as
∑n

z ωt,z = 1 ∀t. 33

The first terms of the RHS of (C.11) is the recursion of ht,z, and also attributes the

effects of the current shock to ht,z. For the two other terms the remaining task is to assign

weights ωt,z such that Condition (C.3) is satisfied.

Define

ωt,z =

bNmax{1−l,0}N̂min{l,1} f̄w(l, k)

[
ht−1,z

I
nz

z ε
z
t

]

bNmax{1−l,0}N̂min{l,1} f̄w(l, k)

[
s̃t−1

εt

] , (C.12)

i.e. set ωt,z proportional to the relative contribution of εz
t to the constraint value rt.

Intuitively, this acknowledges that the values of {l, k} depend on the magnitude of the

scalar rt relative to r̄. The deeper below rt is of r̄, the longer the constraint will bind, and

the higher is k (note that the constant term will be zero for any l > 0). If the contribution

of εz
t to a negative rt is large, then the respective weight ωt,z of the constant terms in (C.11)

attributed to εz
t will be high, and vice versa.

For our application with the ELB this means that the weight of constant terms for each

33Additionally, note that xt+1,z is the time-t decomposition of controls.
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shock is proportional to the contribution of the shock to the total level of the shadow rate.

Further note that by (C.2)

nz∑

z

{
Nmax{1−l,0}N̂min{l,1} f̄w(l, k)

[
ht−1,z

I
nz

z ε
z
t

]}
= Nmax{1−l,0}N̂min{l,1} f̄w(l, k)

[
s̃t−1

εt

]
, (C.13)

and hence
∑

e ωt,e = 1, i.e. the weights sum up to unity.

Finally, acknowledge that for ht−1,z = 0 and εz
t = 0 we have

F1(l, k, 0, 0) =ωt,zN
max{1−l,0}N̂min{l,1} f̄c(k)

+ ωt,z(I − N)−1
(
I − Nmax{s−l,0}

)
br̄,

=(0, 0),

(C.14)

which follows from the fact that ωt,z = 0 whenever ht−1,z and εz
t both are zero. This shows

that Condition (C.3) is also satisfied.

Appendix D The inversion filter of Guerrieri and Iacoviello (2017)

A natural benchmark for the EnKF is the inversion filter (IVF, henceforth), which

was first suggested in Guerrieri and Iacoviello (2017) for the estimation of a model with

occasionally binding constraints (OBCs). The filter was initially proposed by Fair and

Taylor (1980) as a simple device for likelihood inference of nonlinear models. Two recent

papers (Cuba-Borda et al., 2019; Atkinson et al., 2020) discuss its performance for models

with the ELB. The filter is implemented in the most recent version of Dynare (Dynare 5.0).

For convenience we here repeat equations 5 and 6 from the main body of the text,

where we denote a nonlinear hidden Markov-Model (HMM) by

xt =g(xt−1, εt), (D.1)

zt =h(xt) + νt, (D.2)

with exogenous economic innovations εt ∼ N (0,Q) and measurement errors νt ∼ N (0,R).

Given xt−1 and in the absence of measurement errors, (D.1) and (D.2) imply a direct map-

ping fIVF : εt → zt with fIVF = h ◦ g. Invertibility of fIVF implies a mapping f −1
IVF

: zt → εt

from observables to shocks. In other words, if the initial state x0 is known, the “hidden”-

property of the HMM becomes irrelevant. Proposition 1 gives a formal statement of the

filter.

Proposition 1. Iff
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a) x0 is known with certainty,

b) fIVF is invertible (and thereby, f −1
IVF is unique), and

c) there is no measurement error (R = 0z×z),

then for any time series data {zt}
T
t=1

we can use f −1
IVF to find a series of shocks {εt}

T
t=1

that

perfectly explains the data. The unbiased likelihood of the model is then given by

log (p(y1:T )) = −
Tnz

2
log(2π) −

T

2
log(det(Q) −

1

2

T∑

t=1

ε′t Q
−1εt +

T∑

t=1

log

(∣∣∣∣∣det
∂εt

∂zt

∣∣∣∣∣
)
. (D.3)

Proof. See Appendix A.2.1 in Guerrieri and Iacoviello (2017). While no formal proof is

provided, this claim is easy to verify. ■

For the linearized model with the occasionally binding ELB, there exists no known

closed form expression for fIVF (and, hence, not for its inverse). As in Guerrieri and Ia-

coviello (2017); Cuba-Borda et al. (2019); Atkinson et al. (2020) we instead use a standard

root finding algorithm to find a shock εt that satisfies fIVF for a given zt.
34 Additionally, as

suggested by Guerrieri and Iacoviello (2017) we set ϵr = 0 whenever the observed FFR

approaches zero to avoid underdeterminancy.35 Lastly, we can find the determinant of the

Jacobian of εt wrt. zt by acknowledging that log

(∣∣∣∣det ∂εt

∂zt

∣∣∣∣
)
= − log

(∣∣∣∣det ∂zt

∂εt

∣∣∣∣
)

where ∂zt

∂εt
is a

direct byproduct of evaluating f .

In practical applications, x0 (that is, the initial state) is unobservable. This clearly

violates the necessary conditions in Proposition 1 and hence biases the estimate of the

likelihood. That may or may not be a serious problem in the context of a Bayesian estima-

tion. The applications considered in Cuba-Borda et al. (2019); Atkinson et al. (2020) all

feature small scale models with only few endogenous steady states. In these models, the

bias is likely to be rather limited.

We test the extent of this bias in the standard medium-scale model. For this purpose,

we use the set of artificial data in which the ELB is not binding. Since trivially, the inverse

(almost always) exists for a linear transition function, using data in which the ELB is

not binding circumvents the second problem of the IVF, which is that fIVF may not be

invertible. This helps us to single out the effects that only stem from ignoring uncertainty

about the initial state at t = 0.

34We use the “hybr” method implemented in Pythons Scipy library, which uses MINPAKS hybrd and hy-

brj routines. These are established and well tested routines used as a backend for many high level languages.

As a practical matter, we let the log-likelihood be −∞ if the root finding algorithm does not converge.
35Note that this is a limitation of the filter – a Bayesian filter can determine εt even if nε > nz.
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Figure D.6: Likelihood evaluations for an artificial dataset without binding ELB. For each panel, all pa-

rameters are set to the prior mean while one parameter is varied within one standard deviation of its prior

distribution (x-axis). Left y-axis: likelihood evaluations with the IVF; right y-axis: likelihood evaluations

with the EnKF and the KF.

In the first exercise, we use the same prior as in Section 4 and evaluate the likelihood

around the prior mean for the IVF, the KF and the EnKF in one of the artificial datasets

in which the ELB is not binding (note that the prior means are the true parameters of

the DGP). The result is shown in Figure D.6. In each of the panels, we vary exactly one

parameter within the range of one standard deviation of its prior distribution (from -1 to

1), while leaving all others at the prior mean (zero, at the x-axis). Overall, there is a

considerable difference in scale between IVF (left-axis) and EnKF (right axis). At the

same time, apart from one exception (ζp) the EnKF matches the KF (also right y-axis) up

to a constant. Still, IVF and (En)KF suggest similar positions of the maximum of the

(marginal) likelihood function. A notable exception is σc, where the IVF suggests a lower

mode than KF and EnKF.

Secondly, we repeat the exercise from Section 4 using artificial data in which the ELB

is not binding. Table D.3 shows the resulting The parameter estimates. Similar as with

the EnKF, the means over all 50 simulations are relatively close to the true parameters of

the DGP (which are also the prior mean). This suggests that the IVF is not systematically
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Prior EnKF no ELB IVF no ELB

type mean std mean NRMSE HDP: 5% 95% mean NRMSE HDP: 5% 95%

σc normal 1.156 0.375 1.219 0.618 1.086 1.321 1.231 0.962 1.051 1.450

σl normal 3.333 0.750 3.366 0.357 3.067 3.585 3.277 0.566 2.888 3.731

βtpr gamma 0.147 0.100 0.154 1.295 0.107 0.184 0.179 3.910 0.078 0.306

h beta 0.635 0.100 0.608 0.405 0.573 0.651 0.626 0.358 0.583 0.682

S ′′ normal 5.140 1.500 5.147 0.555 4.533 5.815 5.359 0.704 4.671 6.074

ιp beta 0.657 0.150 0.674 0.516 0.596 0.746 0.680 0.845 0.554 0.760

ιw beta 0.528 0.150 0.532 0.481 0.477 0.578 0.526 0.621 0.458 0.596

α normal 0.173 0.050 0.162 0.712 0.140 0.181 0.158 0.882 0.131 0.181

ζp beta 0.904 0.100 0.896 0.178 0.861 0.928 0.916 0.263 0.862 0.967

ζw beta 0.817 0.100 0.817 0.241 0.776 0.863 0.823 0.285 0.789 0.895

Φp normal 1.440 0.125 1.468 0.275 1.397 1.548 1.446 0.261 1.331 1.516

ψ beta 0.502 0.150 0.498 0.689 0.406 0.566 0.483 1.103 0.358 0.593

ϕπ normal 2.190 0.250 2.225 0.235 2.115 2.323 2.232 0.325 2.134 2.417

ϕy normal 0.173 0.050 0.177 0.785 0.151 0.205 0.164 1.122 0.127 0.209

ϕdy normal 0.254 0.050 0.261 0.540 0.235 0.294 0.259 0.622 0.218 0.286

ρ beta 0.870 0.100 0.866 0.173 0.835 0.902 0.875 0.210 0.836 0.915

ρr beta 0.098 0.200 0.102 4.534 0.028 0.180 0.115 4.285 0.038 0.192

ρg beta 0.900 0.200 0.936 0.340 0.896 0.969 0.960 0.505 0.923 0.998

ρz beta 0.900 0.200 0.983 0.657 0.972 0.995 0.988 0.691 0.974 0.998

ρu beta 0.836 0.200 0.836 0.294 0.775 0.890 0.832 0.284 0.772 0.879

ρp beta 0.167 0.200 0.143 2.014 0.080 0.211 0.168 2.082 0.097 0.246

ρw beta 0.900 0.200 0.952 0.465 0.894 0.980 0.960 0.609 0.913 0.996

ρi beta 0.651 0.200 0.654 0.655 0.583 0.771 0.717 1.044 0.636 0.858

µ p beta 0.140 0.200 0.104 2.434 0.054 0.154 0.126 2.112 0.065 0.192

µ w beta 0.900 0.200 0.946 0.403 0.912 0.975 0.924 0.508 0.871 0.976

ρgz normal 1.316 0.250 1.313 0.443 1.214 1.473 1.290 0.443 1.171 1.400

σg IG 0.467 0.250 0.454 0.428 0.415 0.489 0.471 0.376 0.434 0.503

σu IG 0.574 0.250 0.564 0.876 0.448 0.691 0.601 0.944 0.502 0.739

σz IG 0.437 0.250 0.385 1.010 0.343 0.450 0.443 0.481 0.405 0.492

σr IG 0.197 0.250 0.195 0.552 0.173 0.220 0.207 0.683 0.180 0.238

σp IG 0.143 0.250 0.139 0.713 0.110 0.156 0.144 0.748 0.115 0.167

σw IG 0.340 0.250 0.347 0.533 0.303 0.383 0.330 0.586 0.291 0.372

σi IG 0.387 0.250 0.388 0.721 0.327 0.437 0.362 0.829 0.300 0.416

γ normal 0.351 0.050 0.350 0.357 0.327 0.384 0.351 0.467 0.305 0.381

l normal 3.257 2.000 3.157 1.283 2.150 4.019 2.624 5.666 -1.189 6.143

π gamma 0.936 0.100 0.953 0.243 0.909 1.001 1.029 1.505 0.804 1.342

Table D.3: Comparison of the EnKF with results obtained using the IVF, using 50 artificial datasets in which

the ELB is not binding.
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biased in any direction. However, a comparison of normalized root-mean squared errors

(NRMSEs) indicates that ignoring uncertainty about the initial states does indeed have

impact on estimation accuracy. NRMSEs for the IVF are on average 30.2% larger, with

extreme cases such as βtpr and l in which they are more than three times larger.

Our second concern regards the invertibility of fIVF. As argued above, the mapping is

clearly (almost always) invertible if it is linear. However, it is hard to argue that for any

zt, there is a unique εt that satisfies fIVF for a given xt−1. The reason is that given εt, there

are potentially multiple sets of spell durations that form a valid equilibrium (see especially

Holden (2017) but also, e.g., Carlstrom et al. (2015)). Hence, if g is possibly not unique

this implies that fIVF is not unique, in turn suggesting that there is no unique mapping

zt → εt. An additional point is that fIVF may even not exist or the root finding algorithm

may simply not converge. We find that these issues are very relevant in practice. Note

that a Bayesian filter works the other way around: shocks are drawn according to their

distribution and then passed through the transition function. The procedure selects those

shocks that are most likely given their covariance, uncertainty about previous states, and

measurement noise. In contrast, the IVF will accept any εt that satisfies fIVF, independent

of how likely it is. If there are several spell durations that form an equilibrium, εt may

crucially depend on the initial guess for the spell duration, the initial guess for the root

finding procedure, or both.

We find that when replicating the exercise from Section 4 for the IVF with the data in

which the ELB binds for 30 subsequent periods, the acceptance rate soon drops down to

1% and below. Consequently, we were unable to obtain a reliable posterior sample since

the sampler does not move away from the initial ensemble. When examining the problem,

we noted a very high dispersion of the likelihood, even if we initialized all chains very

close to the true parameter values. This indeed suggests that the estimate of the likelihood

is quite noisy. Figure D.7 repeats the exercise from Figure D.6 but with an artificial dataset

in which the ELB binds for 30 subsequent periods. Since the transition function is now

(at times) nonlinear, the estimates from EnKF and KF are not equal. The noisiness of the

likelihood estimate for the IVF varies across parameters, but is clearly large enough to

make proper sampling from the posterior distribution impossible. Note, that the selection

of εt is a crucial difference to the EnKF the KF (and, for that matter, also to the particle

filter): the Bayesian filters will propose those shocks that are likely given the state at period

t. Respectively, the filter will ex-post reject those shock vectors εt which are very unlikely.
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Figure D.7: Likelihood evaluations given for an artificial dataset where the ELB binds for 30 subsequent

quarters. For each panel, all parameters are set to the prior mean while one parameter is varied within one

standard deviation of its prior distribution (x-axis). Left y-axis: likelihood evaluations with the IVF; right

y-axis: likelihood evaluations with the EnKF and the KF.

Appendix E The shape of the posterior distribution

The figures in this section show the 200 chains used for the estimation of the bench-

mark model. We have a total of 2500 samples, of which we keep the last 500. That means

that the posterior contains 500×200 = 100, 000 parameter draws. See Boehl (2022) for de-

tails on the adaptive differential evolution Monte Carlo Marcov chain (ADEMC) method

we use for posterior sampling. For each model, we run a total of 2500 iterations, of which

we keep the last 500. That means that the posterior contains 500 × 200 = 100, 000 param-

eter draws. We check for convergence using the method of integrated autocorrelation time

with a window size of c = 50, as suggested by Goodman and Weare (2010). Note that it

is not trivial to find a sufficient statistics for convergence since the samples in the chain

are not independent. The figures strongly suggest that the estimation is converged from

iteration 2000 onwards.
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Figure E.8: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the benchmark

model. The left panel shows a KDE of the parameter distribution. The right displays the trace of each of the

chains over time.

Figure E.9: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the benchmark

model. The left panel shows a KDE of the parameter distribution. The right displays the trace of each of the

chains over time.
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Figure E.10: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the benchmark

model. The left panel shows a KDE of the parameter distribution. The right displays the trace of each of the

chains over time.

Figure E.11: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the benchmark

model. The left panel shows a KDE of the parameter distribution. The right displays the trace of each of the

chains over time.
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Figure E.12: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the benchmark

model. The left panel shows a KDE of the parameter distribution. The right displays the trace of each of the

chains over time.

Figure E.13: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the benchmark

model. The left panel shows a KDE of the parameter distribution. The right displays the trace of each of the

chains over time.
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Figure E.14: Traceplots of the 200 ADEMC chains for selected parameters. Estimation of the benchmark

model. The left panel shows a KDE of the parameter distribution. The right displays the trace of each of the

chains over time.

54


