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Environmental policies are often accompanied by exemptions for energy-intensive
and trade-exposed industrial firms to avoid leakage from regulated to unregulated
jurisdictions. This paper investigates the impact of a large electricity tax exemption
on production levels, employment, and input choices in the German manufacturing
industry. For two different policy designs, we show that exempted plants significantly
increase their electricity use. This effect is considerably larger under a notched ex-
emption policy, where passing an eligibility threshold yields infra-marginal benefits,
compared to a revised policy where these benefits have been largely removed. We de-
tect no significant impact of the exemptions on production levels, export shares, and
employment. Using counterfactual simulations, we document substantial distortive
effects of notched exemption policies when financial stakes are high and compliance
cost for firms are low.
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1. Introduction

In the absence of legally binding international agreements, many environmental regulations ap-

ply only in some jurisdictions, but not in others. Policy makers are concerned about incomplete

regulation as it can cause ‘leakage’ of industrial activity and emissions from regulated to unreg-

ulated jurisdictions, which may undermine the effectiveness of domestic environmental policies

(e.g., Fischer and Fox 2012; Fowlie and Reguant 2018). In practice, a widespread policy against

leakage is the exemption of the energy-intensive and trade-exposed (EITE) industry from energy

or carbon taxes.1 The introduction of energy tax exemptions in many industrialized countries,

such as France, Germany, Italy, and the United Kingdom, has triggered a controversial policy

debate. While proponents argue that exemptions are necessary to sustain domestic production

levels, critics worry that they might offset incentives for improving energy efficiency and lead

to higher energy uses (OECD, 2001, 2015).

This paper studies the impact of energy tax exemptions in the context of a large levy on

electricity, the German Renewable Energy Levy (REL). The REL was introduced to finance

renewable energies and accounted for roughly one third of the average industrial electricity

price in 2013. We use rich administrative data covering the universe of German manufacturing

plants to examine how production levels, employment, and the use of energy inputs were affected

by an exemption from the REL under two different policy designs. In the years 2003 to 2012,

exemptions were granted based on a notched policy design, where passing an eligibility threshold

reduced marginal prices and involved infra-marginal benefits two years later. A policy reform

in 2012 largely removed these infra-marginal benefits and expanded the eligibility criteria to

a larger group of plants. We contrast the effects of REL exemptions under both policies to

explore how differences in policy design influence production choices.

Our empirical approach consists of two quasi-experimental methods and counterfactual sim-

ulations based on a stylized structural production model. Both reduced-form identification

strategies exploit a distinct source of exogenous variation. First, to estimate the causal effects

under the notched policy design, we take advantage of the fact that eligibility for an exemption

was only granted to plants that used more than 10 gigawatt-hour (GWh) of electricity two

1The OECD Database on Policy Instruments for the Environment lists roughly 2,400 exemptions from envi-
ronmentally related taxes worldwide, from which some 1,900 exemptions apply to the private sector (OECD,
2020). Many of the exemptions apply to the transport and agriculture sectors, but energy tax exemptions
for EITE industries are no exception. In the United Kingdom, Belgium, and Finland, for example, they are
granted to manufacturing firms in EITE sectors. In France, Germany, the Netherlands, and Italy, they can
be claimed by EITE firms with an energy use above pre-defined eligibility thresholds.
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years earlier. We provide evidence that the severe financial crisis of 2008 and 2009 prevented

plants from potentially manipulating their electricity use in those years despite the notched

exemption schedule. This allows us to identify the effect of the exemptions in the years 2010

and 2011 based on a fuzzy regression discontinuity (RD) design for plants around the eligibility

threshold. This approach compares virtually identical plants that barely met or failed to meet

the eligibility threshold of 10 GWh of electricity consumption during the years of the financial

crisis to investigate how REL exemptions change plant-level production two years later, when

the short-lived financial and economic crisis had already ended in Germany.

Second, to identify the effects of an exemption after the 2012 policy change, we exploit the

fact that the eligibility threshold was reduced from 10 to 1 GWh of annual electricity consump-

tion. This reduction more than doubled the number of exempted plants in manufacturing from

roughly 700 to 1,700. We focus on the group of newly eligible plants and estimate the average

treatment effect for plants exempted in 2013 using a matching difference-in-differences (DiD)

estimator. This estimator exploits the longitudinal structure of our dataset and the rich infor-

mation it provides about plant characteristics. It compares how changes in outcomes for newly

exempted plants differ from changes in outcomes for a matched control group of non-exempt

plants that are very similar in terms of their observed characteristics.

We set up a model of production to put our empirical estimates in context. The model is

built to incorporate two stylized facts about the exemption and bunching behavior of firms.

First, under the notched exemption design, only few firms bunch above the eligibility threshold.

To rationalize such behavior, we allow for the presence of bunching cost. Second, we find that

on average only three out of four eligible plants decide to claim an exemption. Our model thus

considers compliance cost that may arise when claiming an exemption. Compliance cost may

occur because firms must hire independent accountants to verify their eligibility status and hand

in certified documentation about their energy-saving practices, for example.

We show that the parameters of the compliance cost distribution can be identified from the

exemption rates of eligible plants with different electricity use levels. Furthermore, we derive

that the bunching cost parameters are identified from the percentage of ‘bunchers’ below the

threshold and the electricity demand of the marginal bunching plant. Both statistics are not

directly observable, but can be estimated using methods from the bunching literature (e.g.

Almunia and Lopez-Rodriguez 2018; Kleven 2016).
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Our main reduced-form estimates show that the REL exemptions lead to significant increases

in electricity consumption under both policy designs. We find that exempted plants in the

reformed schedule increased their electricity consumption on average by approximately 3% in

2013. Yet, the effect sizes in 2010 and 2011 under the original (notched) schedule were about

one order of magnitude larger. By contrast, we do not find statistically significant impacts of

the REL exemption on competitiveness indicators such as sales, export share, or employment.

Results from the counterfactual simulations provide an explanation for the difference in effect

sizes. In particular, we find that inframarginal effects on electricity use from plants that bunch

above the eligibility threshold can amount to 27% in 2010. Beyond that, our results highlight

the importance of compliance cost and the stakes involved for understanding market behavior

under a notched design. While bunching was only of limited relevance in the years 2008 to 2011,

we show that it would have led to an increase in electricity use of about 1,000 GWh had the

REL levels increased to 2017 levels and compliance cost been absent. Furthermore, we find that

the presence of compliance cost reduces incentives for bunching, but also constitutes a major

cost component for firms, amounting to about 290-340 Mio. EUR in 2012 and 2013.

We conduct extensive robustness tests for our main findings and present supporting evidence

for the identifying assumptions of the reduced-form estimates. For the fuzzy RD design, we test

for selection around the eligibility threshold based on density tests to ensure that the financial

crisis prevented plants from manipulating their electricity consumption in the years 2008 and

2009. This finding is also supported by placebo treatment effect regressions that show no sign

of a discontinuity in baseline variables around the eligibility threshold prior to the exemption

year. We further test for different bandwidths and limit the sample to single-plant firms to

exclude the possibility of intra-firm spillovers that might arise if firms are partially exempted.

For our matching DiD approach, we provide evidence of common trends for several important

plant-level characteristics. We also test whether our results are robust to different propensity

score specifications and matching strategies. To investigate whether potential anticipation of

the policy reform or spillovers may matter, we condition on characteristics in the year prior to

its announcement and restrict our sample to single-plant firms. We also estimate a difference-in-

differences (DiD) model that only exploits variation in eligibility in response to the 2012 policy

reform for identification, thereby testing the robustness of our findings to a potential selection

on trends.
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This paper makes three main contributions. First, we contribute to the literature on incom-

plete environmental regulation. A growing strand of this literature has focused on the analysis of

policy instruments against leakage, including free allocation of pollution permits, output-based

rebates, and border tax adjustments (see for instance Fowlie, 2009; Fowlie et al., 2016; Martin

et al., 2014a; Bernard et al., 2007). A result from this literature is that exemptions of EITE

industrial plants are inferior to border tax adjustments or output-based rebates (e.g., Fowlie

et al. 2016; Böhringer et al. 2012). Yet, despite their shortcomings, exemptions from environ-

mental regulation for EITE plants are still used in practice and evidence on their performance

has remained scarce.

We add to this literature by evaluating a large exemption policy for EITE plants in the

German manufacturing sector. Our results confirm that exemptions for EITE plants are an

imperfect anti-leakage policy. In particular, we find no evidence that they increase the inter-

national competitiveness of exempted plants. Rather, they significantly influence fuel input

choices and lead to higher electricity uses. These results are robust across our two identification

strategies, which adds to their credibility. We thus provide evidence for an ongoing political

discussion on the effective design of exemptions, which has gained momentum after the recent

initiative of the European Union (EU) to introduce carbon tariffs at the EU border.2

Second, our paper contributes to the literature on the evaluation of environmental regulations

for industrial firms. One focus of this literature has been to investigate how emission markets,

carbon taxes, and the introduction of air pollution standards affect production in manufacturing

(see, e.g., Fowlie et al. 2012, Greenstone 2002, Greenstone et al. 2012, Martin et al. 2014b, as

well as Martin et al. 2016 and Dechezleprêtre and Sato 2017 for reviews.) Furthermore, Martin

et al. (2014b) estimate the effect of the climate change levy on production of manufacturing

plants in the UK, using plants that were exempted from the levy as control group.

Our evaluation goes beyond the previous studies by investigating how design features of the

exemption regime affect the behavior of market participants. We document that a substantial

share of eligible plants do not claim an exemption to avoid compliance cost from having to

comply with organizational requirements. We also find evidence of significant bunching cost

that prevented plants from strategically manipulating their electricity use under the notched

policy. Furthermore, we show that the overall response to an exemption is strongly affected

2https://www.consilium.europa.eu/en/press/press-releases/2022/03/15/carbon-border-adjustment-

mechanism-cbam-council-agrees-its-negotiating-mandate/.
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by the exemption design. The increase in electricity use for exempted plants is larger under

a notched tax design, compared to a policy design where notches have been largely removed.

In addition, we find that notched exemption designs may cause substantial bunching when

exemptions are high and compliance costs are low.

Third, we contribute to a literature on the effects of regulatory thresholds on firm behavior.

The influence of notched tax designs has been investigated in the context of corporate profit

taxes (e.g. Almunia and Lopez-Rodriguez, 2018), R&D investments (Chen et al., 2021), and la-

bor regulations (e.g. Garicano et al., 2016). As a common result, these studies find that notches

distort firms’ tax reporting, investment, and employment decisions, with negative welfare con-

sequences. Despite the fact that notched exemption designs for EITE industries are a common

policy instrument, it has remained an open question how they affect energy input use decisions

for industrial production. Furthermore, studies that explore the role of compliance cost under

notched tax schemes have remained scarce. One exception is Harju et al. (2019), who find that

substantial compliance cost prevent small businesses from increasing their gross value added

beyond a threshold for inclusion into the value added tax system.

We provide novel evidence how notched exemptions of production input taxes affect firm

behavior in the industry. In particular, we combine reduced-form policy evaluations with an

analysis of bunching behavior to estimate bunching and compliance cost, which we show to be

non-negligible. Our estimates imply that manipulating electricity use above eligibility thresholds

only becomes profitable when the stakes of an exemption are particularly high. Furthermore,

we document a nuanced interplay between exemption notches and compliance cost. On the one

hand, organizational requirements that cause compliance cost mitigate welfare-reducing rent-

seeking behavior from bunching. On the other hand, they impose non-negligible cost on firms,

with adverse welfare effects.

Beyond these three main contributions, we also relate to a literature that has investigated

the role of energy prices for industrial production. This literature has gained attention by

policy makers after the recent surge in energy prices. Previous studies have shown that higher

prices reduce energy use in manufacturing (Marin and Vona, 2021), but also modestly decrease

employment (e.g., Deschenes 2012, Commins et al. 2011), and co-determine the location of firms

(Kahn and Mansur, 2013). A novelty of our setting is that we can exploit large price variation

to identify price elasticities.
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The remainder of this paper is structured as follows. In Section 2, we describe the institutional

details of the REL exemptions and discuss how differences in policy design influence input

choices. Section 3 introduces our data and describes the assignment mechanism. The empirical

analysis is divided into three parts. In Section 4, we investigate the impact of REL exemptions

under the original policy design, while we evaluate their impact after the 2012 reform in Section

5. Section 6 describes how we estimate the production model and conduct counterfactual

analyses to highlight the efficiency and distributional implications of exemption policy designs.

Finally, Section 7 concludes.

2. Institutional background

2.1. REL exemptions and electricity prices

In 2000, the German Renewable Energy Act introduced one of the world’s most ambitious re-

newable energy support schemes. Its core element is the provision of generous feed-in tariffs

(FiTs) to producers of electricity from renewable sources. FiTs guarantee long-term investment

security by providing a fixed price per kilowatt-hour (kWh) of generated electricity above the

wholesale price of electricity.3 The introduction of FiTs triggered a rapid increase in the share

of renewable energy production from approximately 6% in 2000 to almost 30% in 2014. Conse-

quently, the policy has also led to rapidly rising annual subsidy costs, reaching 22 billion Euros

(EUR) in 2014 alone.

In Germany, FiT payments are financed by the Renewable Energy Levy (REL), a per kWh

surcharge on electricity prices that has to be paid by all households and businesses alike. Figure

1 displays the evolution of the REL together with the average industry electricity prices in

Germany between 2000 and 2017. In this period, average electricity prices for the industry

have risen substantially, from about 6 cents per kWh in 2000 to 17 cent per kWh in 2017. An

important role in this increase is played by the REL, which increased from 0.2 cents per kWh

in 2000 to 6.88 cents per kWh in 2017, accounting for more than a third of the average industry

electricity price in that year.

Rising electricity prices have spurred concerns about potential adverse effects to the inter-

national competitiveness of the German manufacturing industry. To limit such concerns, the

3We provide evidence on the evolution of FiT rates for the example of solar photovoltaic installations in Germany
together with the average electricity prices in Appendix Figure A.1. FiT policies are a key policy instrument
to support renewable energy deployment in most European countries and many other jurisdictions such as
Australia, California, and Ontario.
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Figure 1: Average Industry Electricity Prices in Germany

5.85

0.20

6.22

0.25

6.51

0.35

7.56

0.42

8.41

0.51

9.04

0.69

10.65

0.88

10.39

1.02

12.09

1.16

10.09

1.31

10.02

2.05

10.51

3.53

10.74

3.59

9.83

5.28

9.08

6.24

9.06

6.17

9.20

6.35

10.21

6.88

0
5

1
0

1
5

2
0

P
ri
c
e

, 
in

 C
e

n
t/
k
W

h

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Electricity price without RE levy RE levy

Notes: Average industry electricity prices (nominal, including taxes) in Germany for plants with an
annual electricity consumption between 0.16 GWh and 20 GWh (BDEW, 2022).

government has introduced exemptions from the REL for energy-intensive plants from 2003

onwards. Eligibility for an exemption is based on two threshold values: first, the total annual

electricity consumption of a plant and, second, the electricity intensity of the respective firm,

defined as the ratio of electricity cost to gross value added (GVA).

To be exempted, plants need to apply at the Federal Office for Economic Affairs and Export

Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA). In any given year, plants

apply by submitting verified information on their electricity use, electricity cost, and GVA in

the previous year. Since 2008, plants also have to prove that accredited external experts have

surveyed and assessed the energy consumption and energy saving potentials at the plant level.

Based on this information, BAFA grants eligible plants an exemption for the following year.

Therefore, this procedure introduces a time gap of two years between the baseline period, i.e.

the year that determines eligibility, and the year for which the exemption is granted. The large

majority of exemptions are granted to plants in the manufacturing sector, on which we focus in

our analysis.

Under the original exemption scheme, medium-sized and large plants in the manufacturing

sector were eligible for REL exemptions if they used more than 10 GWh of electricity and if

the ratio of electricity cost to GVA at the firm level exceeded 15%. Exempted plants paid a

drastically reduced REL of 0.05 cents per kWh for all electricity consumption exceeding 10%

7



of their baseline use in the year determining eligibility. Very electricity-intensive plants with

an electricity consumption above 100 GWh and a ratio of electricity cost to GVA of more than

20% were fully exempted.

These exemption rules were revised as part of a large policy reform to modernize the Ger-

man FiT scheme, effective from 2013 onwards. This revision extended the eligibility criteria

for exemptions of manufacturing plants considerably by reducing the consumption threshold

from 10 GWh to 1 GWh of annual electricity use. It also marginally lowered the second eligi-

bility criterion concerning the ratio of electricity expenditure to GVA from 15% to 14%. As a

consequence, the number of exempted plants increased from 683 in 2012 to 1,663 in 2013 (see

Appendix Table A.2). While the number of eligible plants in manufacturing increased signifi-

cantly, the total amount of electricity exempted from the REL remained virtually unchanged by

the policy reform. This is mainly due to the fact that large firms in the water supply, recycling,

construction, and public transportation sectors were no longer eligible for an exemption after

2012.4 Newly eligible plants applied broadly in the first year of its implementation, indicating

that they have been aware of the reformed REL exemption rules. This is also supported by a

sharp increase in application and rejection rates.5

In addition to lowering the eligibility thresholds, the reform affected the REL payment sched-

ule for exempted plants as follows. While all plants pay the full REL for the first GWh of

electricity use, exempted plants pay a reduced rate of 10% of the levy for any additional elec-

tricity consumption between 1 and 10 GWh, and 1% for the consumption above 10 GWh. In the

next subsection, we give details on how the financial incentives for plants changed in response

to the policy reform.

2.2. Incentives under both REL exemption designs

Figure 2 plots the original exemption schedule (Panel a) and the revised schedule after the

policy reform (Panel b), where Tnt and T ext denote the total REL payment for non-exempted

and exempted plants, respectively. Under the original policy design (Panel a), plants can be

exempted in period t if they consumed more than 10 GWh of electricity in the baseline period

t−2, indicated by the vertical dashed line, where xt denotes electricity consumption in period t.

4The reform expanded the total amount of exempted electricity by only 3.5% (3.4 terawatt-hours (TWh) in
2013). This contributed to a negligible increase of 0.04 Euro-cents / kWh to the REL in 2013. Source: BAFA
(2013).

5While the rejection rate reported by BAFA typically ranged between 4 and 10% prior to 2013, it increased
to 19% in 2013 (BAFA, 2013). Data on plant applications and rejections are only available at the aggregate
level.

8



Figure 2: REL payment schedules for exempted plants

(a) REL exemption schedule prior to 2013
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policy designs. The thick lines plot the REL payment in period t as a function of the input use in period t − 2
(assuming, for simplicity, that xt = xt−2 and that passing the eligibility threshold leads to an exemption).

For simplicity, we consider a plant that also passes the second eligibility criterion on electricity

intensity at the firm level.

An exemption under the original policy design has two main implications. First, it reduces

marginal electricity prices, as indicated by the change in the slope of the REL payment function,

which is flatter for T ext . Second, it implies infra-marginal benefits as an exemption applies for all

electricity consumed in excess of 10% of the baseline consumption. To illustrate this, consider

a plant that consumes exactly 10 GWh of electricity in period t − 2. If the plant consumed

slightly less in t − 2, it would not benefit from an exemption and would face REL payments

of Tnt in period t. With an electricity use of at least 10 GWh in period t − 2, it passes the

eligibility threshold and can get exempted in period t. An exemption reduces the total REL

payment in period t by the amount Tnt − T ext . This infra-marginal benefit generates incentives

for plants to locate above the exemption eligibility threshold. Exemption schedules that offer

such infra-marginal benefits are typically referred to as notched tax designs (see for instance

Kleven, 2016; Sallee and Slemrod, 2012). We use this terminology when we refer to the original

REL exemption design.

As shown in Panel (b) of Figure 2, the reform of the REL exemption rules largely eliminated

the tax notch for plants close to the new eligibility threshold of 1 GWh. Only the marginal

REL payments change at this point, providing little incentives for plants to expand electricity

use in order to reach eligibility.
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2.3. Production input choices and policy design

To understand the potential impact of REL exemptions on electricity use under both policy

designs, we develop a stylized model of production in the spirit of Lucas (1978) and Almunia

and Lopez-Rodriguez (2018). Let the profit of a (single-plant) firm be given by:

π = ψy(x, z)− qz − px− T (x),

where x represents the main production input, electricity, z is a composite input good, and

y(·) is a production function that is strictly continuous, increasing, and quasi-concave. Firms

have heterogeneous productivity, denoted by parameter ψ ∈
[
ψ, ψ̄

]
, which is assumed to be

distributed in the population of firms with a (continuous) density function g(·) and cumulative

density function G(·). Firms purchase the inputs x and z on competitive factor markets at

prices p and q, respectively, and sell their output on a competitive output market at a price

normalized to one.

While the composite input z is untaxed, the government implements a notched tax schedule

T (x) for the input x, defined as follows:

T (x) =







tx− V (ψ,C) if x ≥ x̂

tx if x < x̂,

where t denotes a per-unit tax rate of x and V (ψ,C) denotes the net value of a tax exemption

that a firm with productivity ψ and compliance cost C obtains when its input use exceeds a

predefined threshold value x̂ in the current period.

The net value of an exemption can be written as V (ψ,C) = A(ψ)−C, where A(ψ) denotes the

financial value from an exemption and C denotes the compliance cost from obtaining it, which we

assume to be distributed in the population of firms with a density function f(·) and cumulative

density function F (·). In our setting, A(ψ) corresponds to the present value of being exempted

from the tax two years later in response to passing the electricity use eligibility threshold

today. This value increases in ψ as more productive firms use more electricity and hence profit

more from an exemption. Furthermore, compliance cost C arise because firms have to hand in

certification from accountants that they meet the eligibility criteria and documentation about

their energy management practices, for example.

When firms deviate from their optimal production path in order to become eligible for an

exemption two years later, they face bunching cost. Bunching cost represent the profit loss from
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deviating from the optimal production path. Hence, they are non-negative and an increasing

function of the distance between the threshold value x̂ and the firms’ counterfactual input choice

in the absence of the notch, xc.

In Appendix Section B, we derive three main outcomes of the model. First, a firm with

an electricity use below the eligibility threshold, xc(ψ) < x̂, manipulates its electricity use to

become eligible if and only if:

A(ψ)− C ≥ κ(ψ), (1)

where κ(ψ) = κ(x̂−xc(ψ)) is the bunching cost for a firm with productivity ψ and counterfactual

electricity demand xc(ψ) in the absence of a notch. Second, an eligible firm with xc(ψ) > x̂

applies for an exemption if and only if the present value of an exemption exceeds the compliance

cost:

A(ψ) ≥ C. (2)

Third, the impact of a tax exemption under the notched design can be decomposed as follows:

∂x∗

∂tex
= MPR+ BR, (3)

where MPR denotes the marginal price response by all exempted plants from a reduction of

electricity prices and BR denotes a net bunching response. The net bunching response corre-

sponds to the incremental increase in electricity use by plants below the eligibility threshold

that choose to bunch only after electricity prices decrease.6

Hence, the model yields three theoretical predictions on firm’s electricity input use under the

notched policy design. First, bunching above the eligibility threshold occurs only if the value of

an exemption A(ψ) exceeds the cost of manipulating the input variable. As REL exemptions

have increased over time, we expect to see less bunching in years when the REL has been modest.

Furthermore, bunching may not occur at all when the sum of compliance and bunching cost is

prohibitively high. Second, eligible firms may choose not to apply for an exemption if it involves

compliance cost that exceed the value of an exemption. As the value of an exemption increases

in plants’ electricity use, we thus expect that the exemption rate among eligible firms increases

in their electricity use. Third, our model predicts that an exemption increases the input use

more under a notched exemption design than under a policy design where the notch is not

present. This prediction follows from observing that eliminating the tax notch also eliminates

6Firms below the threshold in period t can nonetheless obtain an exemption in that period if their electricity
use two years earlier had exceeded the threshold.
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the net bunching response, which enters additively into Equation (3). We test these predictions

in the following empirical sections of this paper.

3. Data

Our empirical analyses are based on a rich administrative dataset on the German manufacturing

industry for the period 2007 to 2017 (AFiD, Amtliche Firmendaten in Deutschland). The

dataset is administered by the research data centers of the Statistical Offices of the Federal States

and covers the universe of plants from the manufacturing sector with more than 20 employees. It

contains around 40,000 observations per year and includes a variety of plant-level characteristics,

such as sales, exports, number of employees, as well as average wage levels. It also comprises

detailed plant-level information on 14 different energy inputs, including electricity, gas, coal,

and oil. Based on this information, we calculate CO2 emissions using annual average emission

coefficients of the respective fuel types from the German environmental agency (UBA, 2018a).7

In addition, AFiD provides information on total energy cost and gross value added at the

firm level for a representative sample of firms. We complement this data with information on

electricity cost at the firm level, which are available for the same representative sample, but

only at four-year intervals (2006, 2010, 2014). To calculate the ratio of electricity cost to GVA

for all firms and years, we interpolate the data based on firm-level electricity prices and the

quantity of electricity purchases, which we observe annually (see Appendix Section D).

We link our data with the full list of plants that are exempted from paying the REL. These

data is available for the years 2010 to 2013 from the Federal Office for Economic Affairs and

Export Control (BAFA). To match this dataset to AFiD, we rely on Bureau van Dijk identifiers,

tax identification numbers, and official municipality identifiers. This procedure allows us to

match about 95% of exempted plants to the AFiD company register. From these, we only

keep plants in manufacturing. We also ensure that we can uniquely identify exemptions at the

plant-level and that exempted plants do not violate eligibility criteria according to our data.

7For electricity, we rely on the average carbon factor of the German electricity fuel mix in each year. Using
data from ENTSO-E (available from 2015), we confirm that the average and marginal emission factors in
Germany are comparable. We find an average marginal emission factor of 555 grams CO2/kWh of electricity
production in 2015, while the German environmental agency (UBA) lists an average of 575 grams CO2/kWh
(not considering imports and exports in both cases). UBA lists comparable values of 550 grams CO2/kWh
for the average emission factor in 2010-11. The high carbon emission intensity of electricity generation in
Germany is mainly due to the large share of coal and lignite plants that can be both infra-marginal and
marginal (the price-setting technology).
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Table 1: Summary statistics, 2013

Not exempt REL exempt: 1-10 GWh REL exempt: all

VARIABLE Mean Std. dev. Obs. Mean Std. dev. Obs. Mean Std. dev. Obs.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Plant-level data
Economic covariates
Sales, in million e 31.06 131.99 41,026 29.53 116.54 655 84.76 233.51 1,815

Export share (of sales) 0.21 0.26 41,052 0.21 0.25 659 0.27 0.29 1,820
Number of employees 137 617 40,471 78 99 664 180 288 1,817
Investments, in million e 1.22 15.05 41,020 0.76 4.01 652 2.32 7.49 1,890
Avg. wage per employee, thd. e 34.01 13.65 40,471 33.95 10.39 664 38.7 15.23 1,817

Energy-related covariates
Electricity use, in GWh 3.56 47.51 40,224 5.34 3.53 660 46.03 151.45 1,805
Electricity use (2011), in GWh 3.64 45.21 38,251 5.24 2.75 673 55.57 186.99 1,574
Other energy use , in GWh 15.23 618.82 41,269 10.42 22.15 660 124.53 741.48 1,850
Own electricity generation, in % 0.09 0.28 42,578 0.09 0.29 673 0.11 0.32 1,952
Electricity share in total energy 0.5 0.26 40,223 0.59 0.31 660 0.55 0.31 1,805
Gas share in total energy 0.31 0.3 40,728 0.29 0.31 660 0.29 0.31 1,822
Oil share in total energy 0.13 0.24 40,728 0.05 0.14 660 0.05 0.14 1,822
Coal share in total energy 0 0.06 40,728 0.01 0.08 660 0.02 0.12 1,822
Renewable share in total energy 0.05 0.17 40,728 0.06 0.19 660 0.09 0.22 1,822
Total CO2 emissions, in 1,000 t 5,377 180,836 41,272 4,896 4,960 660 50,185 228,659 1,850
Direct CO2 emissions, in 1,000 t 3,713 175,362 41,272 1,828 4,287 660 25,507 194,130 1,850

Firm-level data
Number of plants per firm 1.17 1.57 36,826 1.22 0.96 530 1.43 1.24 1,376
Gross value added, in million e 25.68 264.62 14,755 44.25 610.88 255 43.77 356.69 853
Total energy cost, in million e 1.67 14.91 14,754 1.52 2.78 255 10.46 24.25 853
Total electricity cost, in million e 0.42 4.55 36,560 1.07 6.19 530 5.77 23.37 1,374
Electricity cost intensity, in % 0.04 0.08 36,177 0.25 0.2 524 0.28 0.24 1,363

Notes: Descriptive statistics for the group of exempted and non-exempted plants for the year 2013.
Columns 1-3 refer to all non-exempted plants, while Columns 4-6 refer to the group of newly exempted
plants in 2013 (1-10 GWh annual electricity consumption). Columns 7-9 relate to all REL exempted
plants in 2013, independent of their size. Electricity cost intensity defined as total electricity cost over
gross value added at the firm level. Source: Research Data Centers of the Federal Statistical Offices and
the Statistical Offices of the Länder: AFiD Panel Manufacturing Plants, AFiD Module Energy Use, and
Cost Structure Survey, 2007-2017, own calculations.

These criteria are fulfilled by 91 to 95% of the matched plants in the years 2010 to 2013, which

we then use for our analyses.

Table 1 presents summary statistics for three main groups of plants for the year 2013. The

first group (Columns 1 to 3) comprises plants that were not exempted from paying the REL.

On average, plants in that group have 137 employees and sales of about 31 million EUR. The

second group (Columns 4 to 6) focuses on the group of small and medium-sized energy-intensive

plants that consumed between 1 and 10 GWh of electricity and were newly eligible for the REL

exemption in 2013. While the number of employees and sales are slightly smaller than for the

non-exempted plants (78 and 30 Mio. EUR, respectively), these plants use considerably more

electricity on average (5.3 GWh vs. 3.6 GWh). The third group (Columns 7 to 9) captures all

plants that were exempted in 2013, including those that had been exempted prior to the policy

change. This group comprises medium and large manufacturing plants with 180 employees and
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85 Mio. EUR of sales on average. The average electricity consumption in that group exceeds 46

GWh, which reflects the presence of some heavy electricity users. The table further highlights

that the fuel energy mix used in the German manufacturing industry is dominated by electricity

and natural gas and roughly similar for the three groups of plants.

When comparing figures for electricity use in 2013 to their counterparts in 2011, we find an

increase for the group of newly REL exempted plants from 5.2 GWh in 2011 to 5.3 GWh in

2013 (Column 4). On the other hand, we see a decrease for non-exempted plants (Column

1) and the group of all REL exempted plants (Column 7). This observation provides first

suggestive evidence that the REL exemption might lead to higher electricity consumption.

For completeness, we present the summary statistics for our pooled sample 2007-2017 in the

Appendix (Table A.1).

3.1. Stylized facts about bunching and exemption behavior

We continue by evaluating firms’ bunching behavior, i.e., the extent to which plants strategi-

cally manipulated their electricity consumption to become eligible for the REL exemptions two

years later. If the cost to manipulate electricity uses were prohibitively high, we would expect

to see a distribution of baseline electricity consumption that is continuous around the eligibility

threshold. Otherwise, we would anticipate bunching with a higher density of plants above the

threshold.

To test for a discontinuity in the density function, we use a test proposed by McCrary (2008)

for the years 2007 to 2013.8 The test statistics from Table 2 demonstrate that bunching was rare

despite the economic incentives created by the tax notch. We detect a statistically significant

discontinuity only for 2010, when the notched exemption design was still in place and the REL

had risen considerably to 2.05 ct per kWh.

For the years prior to 2010, we do not find any evidence of bunching, which can be explained

by two factors. First, the REL was relatively low at 1-1.3 ct. per kWh so that there was

less incentive for bunching than in 2010, when the REL doubled to 2 ct. per kWh. Second,

the years 2008 and 2009 coincided with the financial crisis which had an unparalleled impact

on German manufacturing. During such times of extreme economic uncertainty it may have

been much more difficult to manipulate electricity consumption in order to reach the threshold

8The McCrary (2008) test statistic for the years 2014-2017 does not show any signs of bunching behavior under
the reformed schedule with a statistic of (standard errors in parentheses) -0.066 (0.121), -0.108 (0.114), 0.159
(0.137), and -0.052 (0.110), respectively. For visual inspection, we plot the distribution of plants around the
10 GWh threshold for individual years in Appendix Figure A.3.
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Table 2: Bunching behavior and RE levy exemptions over time

(1) (2) (3) (4) (5) (6) (7)

Year 2007 2008 2009 2010 2011 2012 2013

McCrary test statistic 0.016 0.010 0.004 0.324∗∗∗ -0.029 0.120 -0.016
(0.133) (0.111) (0.108) (0.139) (0.119) (0.122) (0.130)

# of exempted plants - - - 549 579 697 1,574
Exempted eligible plants - - - 72% 76% 75% 65%

REL, in ct/kWh 1.03 1.16 1.32 2.05 3.53 3.59 5.28
Notch present in t+ 2 yes yes yes yes no no no

Notes: Test statistics from McCrary’s test of continuity (McCrary, 2008) for electricity use at the 10 GWh
threshold, using default bandwidths calculations (approximately 4 GWh). As the heavy right skew in
the electricity consumption distribution challenges convergence, plants with an electricity consumption of
more than 20 or less than 1 GWh are excluded. Standard errors in parentheses. Eligibility is determined
based on electricity use and (imputed) electricity cost to GVA. Exemption shares are available only after
2009. Source: AFiD Panel, own calculations.

level of electricity use, compared to times with more predictable economic activity. In 2009,

for example, GVA in the manufacturing sector plummeted by 19% and many firms resorted to

short-term working arrangements for their employees.

For the years after 2010, we again do not detect any sign of strategic manipulations of

electricity use. This finding is in line with the change in exemption rules that was announced

in the summer of 2011 and effectively eliminated the incentive to bunch above the 10 GWh

eligibility threshold. The evolution of bunching behavior thus supports the prediction by our

model that bunching to reach eligibility under a notched schedule occurs only when benefits of

an exemption are sufficiently large (Equation 1).

Table 2 also shows that not all eligible plants apply for an exemption. In 2010, the first year

covered by our exemption data, only about three out of four (72%) of eligible plants claimed

an exemption. This percentage increases to about 75% in the two following years. In 2013, the

total number of exempted plants in our sample increases to more than 1,500 in response to the

reduction in eligibility criteria and the exemption rate rates declined slightly.

To test whether plants are more likely to claim an exemption when the value of an exemption

is higher, Figure 4 plots the exemption rates among eligible plants in 2012 against their baseline

consumption two years earlier. Plants with baseline electricity use of less than 10 GWh are not

eligible and thus have exemption rates of zero. Among the eligible plants, only about 35% with

an electricity use just above the 10 GWh threshold claim an exemption. Yet, the percentage

increases almost to 100% for plants with an annual electricity use of about 360 GWh. This
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Figure 4: Exemption shares among the eligible by baseline electricity consumption
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Notes: Exemption shares are estimated as the sample average in bins and plotted at the bin midpoints
(upper bound of the highest bin: 500 GWh). Dotted lines denote 95% confidence intervals (standard
errors clustered at the plant level).

finding supports the conjecture that firms make a trade-off between the financial benefits of an

exemption and the compliance cost associated with its use.

The idea that firm-level barriers such as compliance cost influence exemption decisions is

further supported by results from a linear probability model that we estimate for plants that

became newly eligible in 2013. Regressing plants’ exemption status on plant-level characteristics,

we show that the probability of an exemption for eligible plants increases by 40 percentage

points when at least one plant of the same firm had been exempted previously, holding plant-

level characteristics such as electricity use and cost intensity constant (see Appendix Table A.4,

Column 3). Consistent with the eligibility rules, we also find that higher baseline electricity

consumption and higher electricity cost intensity are statistically significant predictors for an

exemption.

4. REL exemptions under the notched policy design

Our first program evaluation focuses on the impact of REL exemptions under the original,

notched tax design. Our goal is to estimate the effect of the REL exemption on energy input

choices and competitiveness indicators for German manufacturing plants. Throughout our

analysis, we follow the potential outcomes framework (Rubin, 1974; Splawa-Neyman et al.,
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1990) and define Dit as a treatment indicator that equals one if plant i in year t is exempted

and zero otherwise. The potential outcome of plant i in case of treatment is denoted by Yit(1),

while Yit(0) denotes the potential outcome in case the plant is not treated, i.e. continues to pay

the full REL. We are interested in estimating the average treatment effect on the treated (ATT),

given by ATT = E[Yit(1)− Yit(0) | Dit = 1], where E[·] denotes the expectation operator.

4.1. Econometric strategy

To overcome the fundamental problem of a missing counterfactual, we conduct a regression

discontinuity (RD) analysis. The central idea of a RD design is to take advantage of institutional

rules that determine the treatment eligibility based on whether a so-called running variable Ri

exceeds a cutoff value c. In our example, Ri corresponds to the baseline electricity use and c

represents the cutoff value of 10 GWh. As REL exemptions are only granted to plants above the

10 GWh threshold that have applied for the exemption and pass the second eligibility criterion,

the design of this policy qualifies for a fuzzy RD, in which the probability of treatment jumps

at the threshold (Imbens and Lemieux, 2008).

If plants only imprecisely control the running variable Ri, observations on either side of the

cutoff are similar in both observable and unobservable characteristics. This local randomization

can then be exploited to estimate a local average treatment effects for ‘compliers’ at the cutoff

(Lee and Lemieux, 2010), i.e. for plants that are exempted in response to barely passing the

10 GWh threshold. As RD designs closely mimic a randomized experiment, they allow us to

estimate treatment effects with a particularly high degree of internal validity. For example, RD

designs are robust to business cycle and factor price developments, since they would equally

affect the plants marginally above and below the threshold.

The fuzzy RD approach builds on three main identifying assumptions. First, the treatment

probability needs to jump at the cutoff value c, an assumption that can be easily verified in

the data. Second, passing the threshold is assumed to affect treatment probabilities for all

plants in the same direction, so that no plant would be more likely to receive treatment if it lost

eligibility, which is very plausible in our empirical setting. Third, the conditional expectations of

the potential outcomes, E(Yi(j)|Ri) for j ∈ {0, 1}, are assumed to be continuous at the cutoff.

This assumption reflects the idea that plants have only imprecise control over the running

variable. If manipulation was possible, plants that benefit the most from the exemption would

select above the threshold and the conditional expectations of potential outcomes would be
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discontinuous at the cutoff. To circumvent such concerns, we focus on the baseline years 2008

and 2009 during which the financial crisis led to unprecedented cuts in production levels, which

made manipulation of the running variable very costly for firms.

Under these identifying assumptions, the ATT for compliers at the cutoff, which we denote

as ATTRD, is defined by the following expression (see Imbens and Lemieux, 2008):

ATTRD =
limǫ↓0E(Yi|Ri = c+ ǫ)− limǫ↑0E(Yi|Ri = c+ ǫ)

limǫ↓0E(Ti|Ri = c+ ǫ)− limǫ↑0E(Ti|Ri = c+ ǫ)
, (4)

which represents the discontinuity in the outcome variable at the threshold, divided by the

discontinuity in the treatment probability. In a setting where the group of treated plants

consists exclusively of compliers, as in our case, the estimated treatment effect corresponds to

the ATT at the cutoff (Battistin and Rettore, 2008).

The ATTRD can be estimated by replacing the conditional expectations from Equation (4)

by sample counterparts, using either parametric or nonparametric techniques. As proposed by

Hahn et al. (2001), we estimate conditional expectations of the outcome variable by local linear

regressions. This method fits linear regressions separately at each side of the threshold, using

only observations within a certain bandwidth and weighting them by a kernel function. To

decrease sampling variability, extensions of RD designs allow for the inclusion of explanatory

variables that are predetermined relative to the running variable Ri (Lee and Lemieux 2010,

Calonico et al. 2019). Given the limited number of plants at the threshold and to improve

statistical power, we pool the observations for both outcome years 2010 and 2011 and cluster

standard errors at the firm level to account for potential serial correlation in the error terms.

In addition, we further control for lagged outcome variables (in period t − 3) in our fuzzy

RD regressions. Following Calonico et al. (2014) and Calonico et al. (2019), we determine

bandwidths using a fully data-driven selection procedure that minimizes the mean squared

error (MSE) of the estimator. In the main specification, we employ a triangular kernel. As

conventional nonparametric local polynomial estimators tend to over-reject the null hypothesis

of no treatment effect, we conduct inference based on robust bias-adjusted confidence intervals

that have better coverage rates in finite samples (Calonico et al., 2014).

Discussion of identifying assumptions

In line with the discussion in Section 2.3, a key concern for the validity of the fuzzy RD design

is the fact that plants may increase their electricity consumption in the baseline years above the
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eligibility threshold of 10 GWh to benefit from the exemption two years later. Such selection

could violate the core identifying assumption, continuity of conditional expectations at the

threshold.

As shown by our model, plants will select above the threshold only when it is economically

beneficial to do so. In particular, a sufficient condition for plants not to select above the

threshold is that the bunching and compliance costs for the exemption exceed its benefits

(Equation 1). In our context, the profitability of bunching hinges on the magnitude of the

bunching cost. As electricity use is highly output-dependent in manufacturing, manipulating

it to reach eligibility was much more costly in the years of the financial crisis, 2008 and 2009,

compared to times with predictable economic activity. The notion that bunching cost were

prohibitively high in the years 2008 and 2009 is supported by the absence of any evidence for

bunching in those years (see Table 2 and Appendix Figure A.5).

Our identification strategy to use times of extraordinary economic circumstances during base-

line years may ensure continuity of conditional expectations at the threshold, but could introduce

other challenges. First, if the crisis persisted until the outcome years, the external validity of

our estimates for non-crisis years might be limited. We argue that this is likely not a problem

in our context as the financial crisis was short-lived in Germany and led to a quick rebound of

economic activity by 2010. Second, if sectors that experienced a fast recovery after the crisis

were over-represented on one side of the threshold, our estimates might be biased. Such changes

in the sectoral composition may only have little influence on the total number of firms above

and below the threshold. Hence, they could be difficult to detect by testing for a discontinuity

in the aggregate electricity use distribution. In Appendix Table G.2, we show that the sectoral

composition in the baseline years is indistinguishable above and below the 10 GWh threshold,

which alleviates such concerns.

4.2. Main results

We turn to the estimation of treatment effects for all outcome variables next. To improve

the precision of the fuzzy RD estimates, our preferred specification excludes all firms with an

energy cost to GVA ratio below 15%. We also present results for a second specification where

we additionally exclude all firms with a low (imputed) electricity cost to GVA ratio. To keep

the majority of all treated plant despite the measurement error in electricity cost, we drop firms

with an electricity cost to GVA ratio below 10% rather than 15%. This specification excludes
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Figure 5: Electricity use in 2010 and 2011 versus base period
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Notes: Electricity consumption in the years 2010 and 2011 correspond to averages within 0.5 GWh bins
of electricity consumption two years prior. The lines represent fitted values from third order polynomials,
estimated separately for both sides of the threshold. Source: AFiD Panel, own calculations.

further firms that cannot be eligible and thus yields a larger jump in the treatment probability

at the threshold (from 0 to about 28% rather than 18%, see first-stage results reported in Table

3 as well as Appendix Figure A.6).9 For both specifications, we drop as outliers the 1% of

observations with the highest or lowest relative changes in electricity consumption between the

baseline period (2008 and 2009) and the outcome years (2010 and 2011). We also drop plants

with own electricity generation capacities because electricity from own-generation facilities is

not subject to the REL.

Figure 5 presents first graphical evidence on the effect of the REL exemption on electricity use

for our main sample, firms with an energy cost to GVA of at least 15%. It plots the electricity

consumption in the years of an exemption against the electricity consumption in the baseline

period that determines eligibility, superimposing fitted lines from third order polynomials. The

figure shows that plants that slightly exceed the eligibility threshold in the baseline period

consume more electricity than those slightly below that threshold two years later. As plants

above and below the threshold have virtually identical characteristics, and only differ in their

probability of receiving the exemption, this finding indicates that REL exemptions increase

plants’ electricity use.

9The results when excluding all firms with an electricity cost ratio to GVA of less than 15% produce the same
qualitative findings, but smaller point estimates (Columns 5 and 6 of Appendix Table G.1). However, about
100 treated plants are lost, which makes it difficult to compare these estimates.
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Table 3: Results Fuzzy RD Estimates (at the Cutoff)

Main sample energy cost/GVA >.15 elect. cost/GVA >.10

ATTRD SE ATTRD SE
(1) (2) (3) (4)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 3.156∗∗ 1.402 1.885 1.279
Log electricity consumption 0.578∗ 0.307 0.32 0.195
Log electricity purchase 0.617∗ 0.372 0.313∗ 0.185
Log fossil fuel consumption −0.119 0.507 0.137 0.429

Share of total energy mix:
Electricity [%] 0.123 0.12 −0.024 0.073
Fossil fuel [%] −0.186∗ 0.101 −0.041 0.059

Panel B: CO2 emissions
Log CO2, direct −0.082 0.492 0.18 0.443
Log CO2, total 0.614∗ 0.355 0.259 0.242

Panel C: Competitiveness indicators
Log employment 0.152 0.173 0.076 0.119
Log sales 0.374 0.288 0.212 0.191
Export share −0.118 0.074 −0.028 0.056
Log investment 0.774 1.239 0.142 0.949
✶(investment > 0) −0.166 0.186 −0.100 0.170
✶(investment machinery > 0) −0.113 0.164 −0.17 0.132
# of observations 39,202 5,608
# of exempted plants 497 481
First-stage 0.176 0.284

Notes: Columns 1 and 2 limit the sample to all energy intensive firms with an energy cost to GVA
ratio above 15% in 2008 and 2009. Columns 3 and 4 further limit the sample further to firms with
an electricity cost to GVA ratio above 10%. Own electricity producers are omitted from the sample.
Number of observations and exempted plants refer to the total number of observations (plants) in the
sample, independent of the bandwidth. Each cell represents a separate estimation, based on the MSE-
optimal bandwidth selector (Calonico et al., 2019). Standard errors clustered at the firm level. * p<.1,
** p<.05, and *** p<.01. Source: AFiD Panel, own calculations.

The fuzzy RD estimates in Table 3 show that REL exemptions increased electricity consump-

tion on average by approximately 3.1 GWh for exempted plants, an effect that is statistically

significant at the 5% level. More specifically, and given the local nature of the RD design, this

effect implies that compliers at the cutoff, i.e. exempted plants that consumed around 10 GWh

during 2008 and 2009, increase their electricity consumption in 2010 and 2011 by about one

third of their baseline consumption. The results for logged electricity use show that the average

relative increase is even larger, yet imprecisely estimated, and amounts to 78%.10

To investigate the channels that underlie the large increase in electricity use, we test whether

plants reduced their consumption of other fuels, which could explain part of the large observed

increase in electricity consumption. These results are shown in Panel A of Table 3. We do not

10Because log differences are large, we convert them to relative treatment effects by calculating %∆y = 100 ×

(expβ − 1). A larger relative increase arises when plants with low counterfactual electricity use respond more
strongly than plants with high use. This pattern is consistent with large inframarginal bunching effects of
plants that would otherwise not have reached eligibility for an exemption in t+ 2.
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find direct evidence of fuel switching, as shown by the negative, yet statistically insignificant

point estimate on (log of) fossil fuel consumption. Yet, when analyzing the shares of different

fuels in total energy use, we detect that the REL exemption significantly decreased the share

of fossil fuels, while increasing the electricity share by a similar magnitude. These findings

show that the positive effect on electricity use cannot be explained by a mere scale effect,

i.e., an increase in production levels based on the current input mix, which should leave fuel

shares largely unaffected. Rather, it supports the fact that REL exemptions increase the use of

electricity.

To investigate how the increase in energy consumption translates into carbon emissions, we

report two measures of CO2 emissions in Panel B of Table 3. The first measure corresponds

to direct CO2 emissions that stem from on-site fuel consumption (log CO2, direct). The sec-

ond measure also takes into account the indirect emissions embodied in the use of electricity

purchased from utilities (log CO2, total). Our results show that the increase in electricity con-

sumption led to a surge in total CO2 emissions by almost 85% (evaluating the point estimate

of 0.614 as relative treatment effects), which is statistically significant at the 10% level. By

contrast, we do not find any evidence that direct emissions changed. These findings closely

mirror our result of a strong increase in the use of electricity, which is associated with a high

average carbon emission factor of about 550 g C02 per kWh in the years 2010-2011 in Germany

(UBA, 2018b).11

Furthermore, plants may be able to expand their competitive position and expand their

production, leading to larger electricity use. In this case, we would expect to see an increase

in sales and employment, which we investigate in Panel C of Table 3. Yet, we do not find

any statistically significant impacts of the exemption on any of the variables, which does not

allow us to draw strong conclusions about the extent to which higher electricity consumption

has been used for productive purposes. In addition, we show that the REL exemptions did not

trigger additional investment in machinery or otherwise, which speaks against an expansion of

production capacities in response to the exemption that might lead to long-run effects.

11As electricity generation in Germany is covered by the European Union Emissions Trading Scheme (EU ETS),
an increase in total emissions by the manufacturing plants does not necessarily imply that emissions at the
economy-level have increased as well. Yet, in response to low permit prices during the end of Phase 2 of the
EU ETS (2010-2012) and the beginning of Phase 3 (2013-2020), the European Union has decided to introduce
a market stability mechanism and to withdraw excessive permits from the market from 2024 onwards (e.g.,
Perino 2018). An increase in the demand for emission permits prior to that year reduces the amount of
excessive permits that are withdrawn. Hence, total carbon emission may have actually increased in response
to the exemption policy.
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We then estimate the treatment effects for the sample of plants that have an (imputed)

electricity cost to GVA of at least 10%. As shown in Column 3 of Table 3, our main estimates

are smaller than those presented in Column 1, yet remain large in absolute terms. We estimate

an average increase in electricity use by about 1.9 GWh at the threshold and an log difference

of 0.32, which translates into an average relative effect of approximately 38%. Yet, both effects

are not statistically significant at conventional levels (p-values: 0.14 and 0.10, respectively).

One reason for our large point estimates under a notched design is that REL exemptions

reduce electricity and thus bunching cost. Hence, they may lead to additional inframarginal

responses by plants that manipulate their electricity use in order to reach eligibility for an

exemption two years later, as discussed in Section 2.2. As a result of the sizeable standard

errors, our fuzzy RD approach does not allow us to determine effect sizes with precision. Rather,

we use our structural model to test the plausibility of their magnitude of the bunching response

in Section 6.

4.3. Robustness

To investigate the validity of our fuzzy RD approach, we first provide supportive evidence for

two important identifying assumptions: the stable unit treatment value assumption (SUTVA)

and the assumption of local randomization around the eligibility threshold. SUTVA requires

the absence of treatment spillovers to non-exempted plants. In our context, SUTVA might be

violated for two reasons. First, as plants interact on product and factor markets, exemptions

might trigger general equilibrium effects that also influence non-exempted plants. However,

general equilibrium effects are unlikely to be substantial in our context, as the only variation

in exemptions stems from a limited number of plants that change eligibility status during the

study period. In addition, we do not find any significant effects on competitiveness indicators

for treated plants, which further reduces concerns about such spillovers. Second, multi-plant

firms might shift production from non-exempted plants to exempted plants. We test for the

presence of such intra-firm spillovers by restricting our analysis to single-plant firms. As the

first column of Appendix Table G.1 shows, the point estimates for electricity and fuel variables

remain comparable to the main results. However, the estimates lose some of their statistical

significance, which is likely due to the smaller sample size.

The identifying assumption of local randomization implies that all variables measured in the

base period are balanced around the cutoff. As a consequence, placebo fuzzy RD regressions
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on baseline variables should not indicate any discontinuity at the cutoff. This provides us

with a powerful test to check whether plants were able to select above the eligibility threshold

during the financial crisis. Column 3 of Appendix Table G.1 shows that we do not detect any

statistically significant effect for variables determined prior to the exemption. This evidence

supports local randomization and also speaks against the concern that the financial crisis affected

plants above the threshold differently than plants below the threshold. In that case, we would

expect to observe a discontinuity at the threshold for covariates related to these shocks (e.g.

sales or employment).

Furthermore, we show that our findings are similar when we include own electricity producers,

yet estimated with less precision (Appendix Table G.3). We also find that our results are robust

to the choice of the bandwidth used in the estimation, as documented in Appendix E.1.

5. REL exemptions under the revised policy design

In a next step, we investigate the impact of REL exemptions after the 2012 reform that elimi-

nated the tax notch and considerably expanded the group of plants eligible for exemptions. We

focus on the impact of the REL exemption under the revised policy in the first year after its

implementation in 2013 based on a matching difference-in-differences (DiD) approach that al-

lows us to compare newly exempted plants to highly similar control plants that share a common

economic history. In addition, we exploit the availability of outcome data for the years 2014 to

2017 and estimate the intention-to-treat effects in those years.

5.1. Econometric strategy

The matching DiD approach allows us to exploit both the longitudinal structure of our dataset

and to use the rich information on plant-level characteristics. In this setting the ATT can be

expressed as follows:

ATTDiD =
1

N1

∑

iǫI1






(Yit(1)− Yi0(0))−

∑

kǫI0

WN0,N1
(i, k)(Ykt(0)− Yk0(0))






, (5)

where Yit refers to the outcome of plant i in the outcome year, t = 2013 and Yi0 represents the

outcome variable in the base year (2011), determining treatment status. I1 denotes the set of

N1 exempted plants, while I0 and N0 refer to the control group. Furthermore, the term WN0,N1

with
∑

kǫI0
WN0,N1

(i, k) = 1 determines the weighting of counterfactual observation k.
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The validity of the matching DiD estimator depends on three main identifying assumptions:

conditional independence, overlapping support, and SUTVA (Heckman et al., 1997). First,

conditional independence requires that the (counterfactual) change in the outcome variable in

the absence of treatment, Yit(0)−Yi0(0), is independent of the treatment status, conditional on a

set of covariates Xit. This identifying assumption is weaker than the common trend assumption

from standard DiD models as it only has to hold for a subset of control plants that are similar to

treated plants in terms of observable plant characteristics. Second, overlapping support requires

that the support of the distribution of the conditioning covariates in the control group overlaps

with the respective support for the treatment group. This ensures that, for every treated plant,

we can find a similar control plant that serves as counterfactual. This assumption can easily

be verified graphically and is met in our setting (see Appendix Figure G.3). Third, SUTVA

requires that potential outcomes at one plant are independent of the treatment status of other

plants. We provide indirect evidence in the next subsection that both SUTVA and conditional

independence are credible assumptions in our empirical setting.

For the matching DiD estimation, we restrict our sample to manufacturing plants with an

annual electricity consumption in the base year 2011 between 1 and 10 GWh. These are the

plants that pass the electricity use threshold after the 2012 reform, but not before. We also drop

as outliers the 1% of observations with the highest or lowest relative changes in the electricity

consumption to sales ratio between the baseline period and the outcome year. Furthermore, we

windsorize the main balancing variables electricity use, gas use, electricity share in total energy,

sales, export share, and employees at the 1st and 99th percentile.

We then employ propensity score matching to construct a control group of non-exempted

plants that closely match treated plants in terms of pre-treatment covariates for the year 2011.

This procedure ensures that control plants have a similar size and electricity intensity as treated

plants. To do so, we perform strict matching within the 2-digit economic sector (ISIC Rev. 4)

based on the following pre-determined variables that directly influence the treatment status and

plants’ potential outcomes in 2013: electricity cost to GVA (and lags thereof), log of sales and

log of employment. Including lagged values for the electricity cost to GVA share for up to three

years prior to 2011, helps us to match treated and control plants that share a similar economic

history. Including further covariates ensures that matching takes into account factors related

to firm size that are independent of electricity intensity. As a robustness check, we also employ

a minimum specification in which we match within economic subsectors and condition only on
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energy (electricity) cost to GVA in the base period 2011. Our results are robust to the choice

of the variables included in the propensity score, yet, balancing improves through the inclusion

of additional covariates.12

For matching, we use different algorithms based on nearest neighbor (NN) matching, NN

matching with caliper and replacement, and one-to-many matching with caliper and replace-

ment. Using caliper matching ensures that the characteristics of all nearest neighbors are close

to those of the treated plants. Following Rosenbaum and Rubin (1985), we set the caliper to

25% of the standard deviation of the estimated propensity score. To obtain consistent estimates

for the standard errors, we conduct post-matching inference as suggested by Abadie and Spiess

(2022).

Discussion of identifying assumptions

Conditional independence requires that changes in outcome variables are independent of the

treatment status, conditional on covariates. This assumption is equivalent to the common

trends assumption of the standard DiD model and is particularly plausible when conditioning

on a set of covariates that affect both treatment assignment and potential outcomes. While

untestable in principle, the assumption is more plausible if outcome trends are parallel prior to

the policy intervention. For the years 2007 to 2017, Figure 7 plots the evolution of key outcome

variables, which we demean with respect to the year 2011. These graphs provide visual evidence

that the trends of treated and matched control plants are parallel in the years leading up to the

REL exemption. We also observe parallel pre-trends for variables which we did not specifically

include in our propensity score specification, such as export share or natural gas consumption.

These findings imply that our specification balances treated and control plants in terms of

other covariates that might otherwise confound our estimates, as well as potentially unobserved

ones. The common trends assumption is also supported by t-tests, which do not show any

statistically significant differences in trends for the treatment and control group prior to 2011,

with the exemption of small differences in the trend from 2010 and 2009 to 2011 for electricity

share in total energy (for details, see Appendix Table G.5).

Similar to the fuzzy RD design, SUTVA assumes that only treated plants are affected by the

treatment. To exclude the possibility of intra-firm spillovers, we estimate our main treatment

12If selection into treatment is affected by both transitory and permanent shocks, simulations by Chabé-Ferret
(2017) show the possibility of bias and advise to match on covariates from several years and to implement a
symmetric difference-in-differences design. By conditioning on several pre-treatment years and analyzing first
differences, we implement both recommendations in our preferred specification.
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Figure 7: Common trends: Main Matching Specification

Notes: Analysis of parallel pre-treatment trends for treated plants (REL exempted in 2013) and matched
control plants based on nearest neighbor matching. The figure plots growth rate of the respective variables
with respect to 2011, the year determining treatment status together with 95% confidence intervals. The
vertical lines indicate baseline year 2011 and the main outcome year 2013.

effect using only the subset of single-plant firms. Another concern might be that the exemption

of additional plants can lead to a higher levy for the remaining contributors as the REL is

constructed to raise a pre-determined level of public funds. However, while the 2012 reform

increased the number of exempted plants in manufacturing, it removed exemptions for some

energy-intensive sectors outside of manufacturing, such as water supply, recycling, and public

transportation, which nearly offset the total amount of newly exempted electricity. In addition,

spillovers through competition in factor and product markets may be relevant in case exempted

firms could strongly improve their competitiveness, which is ultimately an empirical question.

We test for these effects formally in the next subsection. As for the RD design, we do not find

any short-term competitiveness impacts of the exemptions, which mitigates such concerns.
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Table 4: Results Matching DiD Estimates

Main sample all plants 5-10 GWh

ATTDiD SE ATTDiD SE
∆ 2013-2011 (1) (2) (3) (4)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 0.092∗ 0.055 0.334∗∗ 0.145
Log electricity consumption 0.028∗∗ 0.012 0.062∗∗ 0.024
Log electricity purchase 0.037∗∗∗ 0.012 0.061∗∗∗ 0.023
Log fossil fuel consumption −0.055 0.04 −0.041 0.044

Share of total energy mix:
Electricity [%] 0.004 0.005 0.007 0.007
Fossil fuel [%] −0.008 0.005 −0.016∗∗ 0.007

Panel B: CO2 emissions
Log CO2, direct −0.036 0.039 −0.016 0.043
Log CO2, total 0.017 0.013 0.042∗ 0.022

Panel C: Competitiveness indicators
Log employment 0.007 0.012 0.021 0.017
Log sales 0.008 0.015 0.016 0.025
Export share −0.002 0.005 0.015 0.011
Log investment 0.031 0.139 −0.287 0.196
✶(investment > 0) −0.031 0.022 −0.022 0.032
✶(investment machinery > 0) 0.026 0.02 0.015 0.032
# of observations 702 270
# of treated plants 351 135

Notes: Outcome variables defined in differences 2013-2011. The table presents the ATTDiD and standard
errors (SE) from nearest neighbor (NN) matching without replacement following Specification (5). The
sample is limited to plants that report in both the treatment year and the base year. Inference follows
Abadie and Spiess (2022). * p<.1, ** p<.05, and *** p<.01.

5.2. Main results

Table 4 presents the results for the ATTDiD, using the main propensity score specification

and one-to-one nearest neighbor (NN) matching. Column 1 reports the ATTDiD for the group

of plants consuming between 1-10 GWh electricity in the base period, Column 3 limits the

sample to plants that consume between 5-10 GWh in the baseline period. These plants are more

comparable to the plants around the 10 GWh threshold for which we estimated treatment effects

under the notched policy design. We calculate standard errors based on post-matching inference

(Abadie and Spiess, 2022) for NN matching without replacement. All outcomes are expressed as

differences between the treatment year (2013) and the year that determines treatment eligibility

(2011).

Panel A shows that the REL exemption under the reformed policy schedule led to an increase

in electricity consumption by about 3% for all plants (Column 1) and 6% for the plants with

an electricity consumption with 5-10 GWh. Both estimates are considerably smaller than the

effects sizes found under the notched exemption design. When taking into account that an
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exemption reduces the marginal electricity price by 31.4%, our estimates imply a short-run

price elasticity for electricity in the range between −0.09 and −0.20.13 In addition, we again

find some evidence that plants reduced their share of fossil fuels in total energy use. Our point

estimates are negative, and statistically significant for the sample of plants with 5-10 GWh

electricity use.

In Panel B, we investigate changes in CO2 emissions. Our estimates for direct CO2 emissions

are negative, yet not statistically significant. Their sign is consistent with our finding that

plants reduce fossil fuel consumption. The estimates for total emissions are positive, although

only significant for the sample of 5-10 GWh plants that show a stronger electricity use response

to the exemption.

In Panel C, we investigate how the REL exemptions influence competitiveness indicators in

the short-run. We find that the point estimates of these variables are all close to zero and not

statistically significant at any conventional level. The higher degree of precision compared to

the RD design allows us to reject the null hypotheses that employment, sales and the export

share have responded strongly to the REL exemptions. Accordingly, our results cast doubt on

the effectiveness of REL exemptions to foster the competitiveness of the industry.

Robustness

We conduct robustness checks and additional tests of our identifying assumptions in the match-

ing DiD setting. First, we provide an indirect test for SUTVA by restricting the analysis to

single-plant firms (Column 1 of Appendix Table G.7). As the REL reform benefited mostly small

and medium-sized manufacturing plants from the levy payment, the majority of our sample are

single-plant firms, so the concerns for direct spillovers are limited (see Table 1 and Appendix

Table A.3). The point estimates are aligned with our main results, indicating that intra-firm

spillovers are of limited concerns in this setting. Similarly, as we do not find any significant

effects of the REL exemption on sales or other competitiveness measures in the short-run, we

expect no indirect equilibrium effects invalidating our DiD strategy.

Second, we deal with concerns regarding possible anticipation from the reform announce-

ment in 2011 by matching on variables from the previous year (Column 3 of Table G.7 in the

Appendix). Plants that knew about the policy change in 2011 may have anticipated future

exemptions and adjusted their production in that year already. To test for this possibility,

13An exemption in 2013 reduces the REL by 90% (REL: 5.28 ct/kWh, average electricity price: 15.11 ct/kWh).
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we match the treatment and control group based on the pre-announcement year 2010, when

plants were not yet informed about the reform. Finally, Column 3 of the same table excludes

own-electricity producers from the sample. Both robustness checks confirm our main findings.

In Appendix Table G.7, we further show that the main point estimates are unaffected by the

matching algorithm, employing NN matching with caliper and replacement and similarly one-

to-many matching with caliper and replacement. Similarly, we provide evidence that our main

results are robust to the choice of specification for the propensity score specification (Appendix

Section E.2.1). In these specifications we estimate the propensity score only on electricity cost to

GVA (energy cost to GVA) within economic subsectors, without using lags or further covariates.

As an additional robustness check, we test whether our findings are robust to alternative

estimation approaches that exploit merely the change in eligibility induced by the policy reform.

In particular, we estimate the intention-to-treat (ITT) effect in a DiD setting where we exploit

only the change in eligibility status due to the 2013 policy reform as treatment. To ensure that

differences in electricity intensity between newly eligible and non-eligible plants do not confound

our estimates, we restrict the sample to firms with an electricity cost to GVA ratio around the

14% threshold, between 10 and 18% (see Appendix Section E.3 for details). Again, we find a

statistically significant increase in electricity use, which supports the findings from our main

specification.

Long-run effects

To gauge the long-run impacts of the exemptions, we estimate the ITT effects of an exemption

for the years 2014 - 2017. The empirical specification is identical to Equation (5), except that

the dependent variable takes as value the difference between the outcome year and the base

year 2011. Treatment is determined by the REL exemption status in 2013. Because the number

of exempted plants has slightly increased from some 1,700 in 2013 to 2,000 in the subsequent

years, the ITT can be interpreted as a lower bound for the average treatment effect in those

years.

The estimates, presented in Appendix Table A.5, confirm our previous findings. We show

that the effect size for log electricity use increases from 3% in 2014 to about 7.7% in 2017.

This finding mirrors the slight increase in the REL over time from 5.28 ct. per kWh in 2013

to 6.88 ct per kWh in 2017, but also suggests that the responsiveness to REL exemptions

increases over time. We obtain negative and statistically significant estimates for the fossil fuel
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share, which support the findings from our main specification that firms substitute electricity

for fossil fuels. For the years 2014 to 2016, we also detect a statistically significant positive

effect on investments. Other than that, we again do not find any significant impact on plant

level competitiveness variables.

6. Model estimation and counterfactual simulations

To identify the parameters of our model, we make four structural assumptions. First, we

assume that compliance cost C are constant over time and independently distributed according

to a lognormal distribution, C ∼ logN(µ, σ), where µ and σ are the mean and standard deviation

of the exponentiated normal distribution. Second, we allow for the presence of fixed bunching

cost β and variable bunching cost γ, which we assume to increase linearly in the distance to

the threshold: κ(xc) = β + γ(x̂ − xc).Third, we assume that the input demand for electricity

in the absence of a notch is isoelastic with an elasticity of η. Fourth, we suppose that firms

form expectations about the value of an exemption based on the magnitude of the REL and

the electricity use in the respective baseline period.

The identification of the structural parameters proceeds in three steps (see Appendix Sec-

tion C for details). First, the input demand elasticity η is identified by our evaluation of the

exemption under the reformed design. Second, we identify the parameters of the compliance

cost distribution µ and σ by the exemption behavior of eligible plants. Note that the value of

an exemption, A(xc(ψ)), is a function of the electricity demand in the absence of a notch, xc,

which in turn depends on the productivity ψ. For plants outside the bunching range, the coun-

terfactual electricity use xc equals the observable use x. Hence, we can express the probability

of an exemption as:

Prexempt(x) = Fc(A(x)) if x ≥ xu, (6)

where xu is the upper bound of the bunching range (see Appendix C for a derivation). Equation

(6) links the parameters of the compliance cost distribution to observable firm behavior and

thus enables us to estimate them via Maximum Likelihood. Intuitively, we exploit that the

decision of an eligible firm to not claim an exemption implies that the unobserved compliance

cost exceed the exemption value.

31



Third, we identify the bunching cost parameters β and γ from the following two conditions

that characterize firms’ bunching behavior:

lim
ǫ→0

Prbunch(x̂− ǫ) = Fc(A(x̂)− β)

A(xm(0)) = β + γ(x̂− xm(0)).

The first condition states that the probability to bunch just below the threshold equals the

probability that compliance cost are smaller than the value of an exemption, less the fixed

bunching cost. This condition follows from Equation (1) and exploits that variable bunching

cost are zero just below the threshold. The second condition states that a marginal buncher

with the lowest possible compliance cost C = c = 0 is indifferent between bunching and not

bunching. As we can estimate both statistics using methods from the bunching literature, we

obtain a system of two equations with two unknowns, which we solve to identify the bunching

cost parameters.

For estimation, we use exemption behavior among eligible plants in 2012 and the bunching

behavior in the corresponding base period 2010 (see Appendix Section C for details).14 This

allows us to test the plausibility of our model by comparing simulated outcomes with the actual

outcomes in all other years. We find that the fitted values from the lognormal distribution

closely align with actual exemption behavior (see Appendix Figure D.1). Our estimates for the

bunching cost imply a fixed bunching cost of 0.055 Mio. EUR. This value equals roughly one

third of the 2010 exemption value for a plant with an electricity use of 10 GWh, and about

one half of that value in 2008 and 2009, respectively.15 We estimate variable bunching cost γ

of around 8.2 ct per kWh, which is lower than the average 2010 electricity price of 12 ct per

kWh. Hence, the marginal product from using more electricity is positive for bunching firms,

for instance because they reduce costly electricity conservation measures.

To assess the efficiency and distributional implications of exemption design features, we sim-

ulate market outcomes under two sets of scenarios. In a first set, we test the plausibility of our

model by comparing simulated with actual bunching and exemption behavior (Rows 1 to 4 of

Table 5). In a second set, we conduct counterfactual simulations of market behavior assuming

that a notched regime had continued to exist in 2013, that the 2013 REL had been at 2017

14As a robustness check, we estimate the compliance cost based on a sample of firms with an electricity cost to
GVA of at least 25% (see Appendix Section E.4). The results remain virtually unchanged.

15An exemption reduces the REL from 2.05 (1.32, 1.16) ct. per kWh by 0.05 ct for 90% of baseline use, which
yields a value of 0.180 (0.114, 0.999) Mio. EUR for a marginal plant with a baseline use of 10 GWh in 2010
(2009, 2008).
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levels, that compliance was costless, and that fixed bunching cost were absent (Rows 5 to 9 of

Table 5).

For every scenario, we draw 200 realizations of the compliance cost and then determine the

profit-maximizing bunching, exemption, and input use behavior. The values presented in Table

5 are averages across all simulations. The simulations provide us with a quantification of the

number of bunchers and exempted plants, as well as the total increase in electricity use due to the

bunching behavior and the exemption, respectively. We also assess the efficiency implications

by calculating the total bunching and compliance cost that plants incur. To assess externality

cost from changes in electricity use, we first determine the average wedge between the social cost

of electricity and the input prices paid by firms for the years 2008 to 2013 following Borenstein

and Bushnell (2022) (see Appendix F for details). We find that the social cost of electricity

exceeded the cost paid by firms by 1.28 to 3.36 ct. per kWh. We then multiply these wedges

with the electricity use change in a given year to obtain a measure for the externality cost.

The results from the simulations in the Rows (1) to (4) confirm that our model captures

key features of actual exemption behavior. As shown in Columns (6) and (8), the number of

exempted plants and the value of an exemption predicted by our model closely mimics the actual

numbers, which we display in parentheses. We simulate that only few plants would bunch over

the eligibility threshold in the years 2008 and 2009 (Column 1), while bunching considerably

increases in 2010. This finding reflects that the value of an exemption was relatively small in

2008 and 2009, compared to 2010. Hence, only small increases in bunching cost due to the

financial crisis suffice to reduce bunching to zero in 2008 and 2009.

Column (3) clarifies that inframarginal bunching effects can be substantial. We find that

the maximal increase in electricity use because of bunching amounts to 26.9% in 2010. This

finding supports the hypotheses that average treatment effects under a notched regime may be

particularly large. In our example, the net bunching response for the plant with the largest

bunching response is 26.9%−2.8% = 24.1%, and thus exceeds the marginal price response by one

order of magnitude. Yet, our simulations (2)-(4) also demonstrate that the overall bunching cost

(Column 4) and the externality cost from bunching (Column 5) were minor from an aggregate

perspective, reaching 4.7 Mio. EUR and 0.6 Mio. EUR in 2010, respectively. By contrast,

we find that the total compliance cost and externality cost from an exemption two years later

amounted to 289.9 Mio. EUR and 38.2 Mio. EUR in 2012, respectively (Row 2, Column 9 and

10).
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Table 5: Simulations of Efficiency and Distributional Implications of Policy Designs

(a) Bunching Behavior (in t)

(1) (2) (3) (4) (5)
# of bunchers Bunching, Max. bunching, Bunching cost, Externality cost,

in GWh in % in Mio. EUR in Mio. EUR

Simulations for Bunching in 2008 to 2011 Under the Respective Exemption Designs
(1) 2011 (reformed) 0 – – – –
(2) 2010 (notched) 34 36.1 26.9 4.7 0.6
(3) 2009 (notched) 11 4.9 10.0 1.0 0.1
(4) 2008 (notched) 3 0.8 3.7 0.3 0.01

Counterfactual Simulations for 2013 under a Notched Exemption Design
(5) 2011 (notched) 56 55.3 26.8 7.5 1.4
(6) REL 2017 145 258.2 60.3 28.8 6.4
(7) Costless compliance 181 220.9 29.2 27.8 5.5
(8) No fixed bunching cost 75 90.1 36.0 7.3 2.2
(9) No frictions, REL 2017 414 1,008.3 74.2 82.0 25.1

(b) Exemption Behavior (in t+ 2)

(6) (7) (8) (9) (10)
# of exemptions Electricity use Exemption value, Compliance cost, Externality cost,

(actual #) change, in GWh in Mio. EUR in Mio. EUR in Mio. EUR
(actual value)

Simulations for Exemptions in 2010 to 2013 Under the Respective Exemption Designs
(1) 2013 (reformed) 1,239 (1,574) 2,172.9 3,874 (3,804) 335.7 73.0
(2) 2012 (notched) 764 (697) 1,514.2 2,531 (2,394) 289.9 38.2
(3) 2011 (notched) 559 (579) 1,307.1 2,146 (2,250) 165.1 32.5
(4) 2010 (notched) 481 (539) 812.1 1,136 (1,220) 122.8 14.2

Counterfactual Simulations for 2013 under a Notched Exemption Design
(5) 2013 (notched) 833 2,081.3 3,681 303.2 69.9
(6) REL 2017 1,020 2,887.9 5,108 486.2 97.0
(7) Costless compliance 1,317 2,423.2 4,259 0.0 81.4
(8) No fixed bunching cost 852 2,085.6 3,689 304.8 70.1
(9) No frictions, REL 2017 1,550 3,231.3 5,683 0.0 108.6

Notes: For every scenario, we determine the profit-maximizing market behavior in the baseline period (Panel
a) and exemption period (Panel b). Values represent averages over 200 compliance cost draws. The scenarios
in Rows (1)-(4) simulate market behaviors under the actual exemption designs that were in place from 2010 to
2013. The scenarios in Rows (5)-(9) assume that a notched exemption regime was in place in 2013. In Rows
(6)-(8), we additionally set the REL to 2017 levels (6.88 ct. per kWh), eliminate compliance cost, and set fixed
bunching cost to zero, respectively. Scenario (9) simultaneously implements all these three changes. The results
shown in the columns are aggregate sums, with the exception of the maximum bunching response from Column
(6). The exemption value is calculated by taking the magnitude of the REL and the respective exemption rules
into account. Externality cost are calculated as explained in Appendix Section F.

Our second set of counterfactual simulations explore how market behavior would have evolved

in 2013 if the notched design had still been in place (Row 5). In that case, we find that bunching

would have substantially increased to 56 bunching plants and a total bunching effect of 55

GWh. As Row (6) shows, this increase would have been even more drastic if the REL levy was

at 2017 levels (6.88 ct per kWh). In this scenario 145 plants would bunch and increase their

electricity by 258 GWh to reach eligibility. The exemptions would have also led to a far greater

redistributional burden (5,108 Mio. EUR of exemption value) and externality cost of about 70

Mio. EUR. Furthermore, the compliance cost would have increased to 486 Mio. EUR as more
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plants would have claimed an exemption. Hence, one reason why the notched design had only

limited distortive effects in the years prior to 2013 is that the REL was sufficiently low.

Another reason for this finding is the presence of compliance cost. Had compliance cost been

zero, the increase in the number of bunching and exempted plants would have reached 181

and 1,371, respectively (Row 7). This result suggests that policy makers face a trade-off when

designing notched exemption schemes with more or less stringent organizational requirements:

higher requirements and thus compliance cost reduce rent-seeking behavior through bunching

and limit the number of exemption claims, but impose substantial cost on firms (e.g. Row 5,

Column 9). By contrast, we find that the absence of fixed bunching cost would change market

outcomes only little (Row 8).

When we set the REL to 2017 levels and eliminate compliance and fixed bunching cost, we

find that 414 plants would bunch and increase their electricity use by about 1 TWh of electricity

merely to reach eligibility for an exemption two years later (Row 9). This results clarifies that

the distortive effects from notches have significant adverse aggregate impacts when the stakes

are high and frictions through bunching and compliance costs are absent. In this scenario, the

exemptions would have caused a redistributive burden of about 5,700 Mio. EUR annually, and

an increase in electricity use by 3.2 TWh, which translates into externality cost of 108.6 Mio.

EUR.

7. Conclusion

This paper analyses how a large electricity tax exemption scheme, the exemption from the

German renewable energy levy (REL), affects the use of energy inputs and production outcomes

of manufacturing plants. Our findings show that REL exemptions lead to significant increases in

electricity consumption under two exemption designs. We find that exempted plants increased

their electricity consumption on average by approximately 3% in 2013, when a reformed design

without notches was in place. By contrast, the effect sizes under the original (notched) schedule

were about one order of magnitude larger. Our analysis also highlights the importance of

compliance cost and the stakes involved for understanding market behavior under notched

policy designs. While bunching was only of limited relevance in the years 2008 to 2011, we show

that it would have led to an increase in electricity use of about 1,000 GWh had the REL levels

increased to 2017 levels and compliance cost been absent.
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By contrast, we do not find statistically significant impacts of the REL exemption on compet-

itiveness indicators such as sales, export share, or employment. This evidence contrasts with the

goal of exemption policies to sustain competitiveness and domestic production of manufacturing

plants. It casts doubt on the effectiveness of a costly exemption policy that puts an additional

burden on all electricity consumers (for distributional implications of other renewable energy

policies, see e.g. Reguant 2019). Our results thus suggest the use of other policy instruments

against leakage, such as carbon-border adjustments or output-based subsidies (e.g. Fowlie et al.

2016).

Regarding external validity, we identify the exemption effects for a group of energy-intensive

plants with about 1-10 GWh of electricity use. It would be interesting to know whether these

estimates can be extrapolated to larger plants. Yet, as exogenous variation in exemptions is

absent for these plants, empirical designs to evaluate the causal effect of these exemptions face

fundamental identification problems. Similarly, price shocks that exceed the price variation we

use for identification may produce different firm-level responses. It may thus be difficult to

conclude from our study that the current drastic increase in energy input prices does not affect

firms’ competitiveness.

Taken together, our findings caution against defining the eligibility for an exemption based

on production inputs. Furthermore, they show that exemptions for EITE plants may not be

justified on the grounds of competitiveness concerns, at least for medium-sized plants. Both

insights allow policy makers to optimize the design of exemption policies in order to sustain

domestic production levels, while minimizing cost and production input distortions. More

generally, our findings are also useful to improve support policies in other contexts. For example,

policy makers worldwide have decided to support businesses against demand reductions induced

by a pandemic and soaring energy input cost. The design features of such policies are likely

to interact with market outcomes, and our findings may prove useful in avoiding welfare losses

due to unintended consequences of design choices.
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Küchler, Swantje, and Rupert Wronski. 2015. “Was Strom wirklich kostet.” In Vergle-
ich der staatlichen Förderungen und gesamtgesellschaftlichen Kosten konventioneller und
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Appendix (for online publication)

A. Additional Tables and Figures

Figure A.1: Evolution of Feed-in Tariffs (FiTs) for Solar Installations

Notes: Evolution of FiT for new solar photovoltaic installations and average electricity prices in Germany.
Source: Fraunhofer ISE (2018).

Figure A.2: Renewable Energy Levy (REL) Exempted Plants
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Figure A.3: Bunching Around 10 GWh Threshold
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(c) 2009
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(f) 2012
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(h) 2014
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Notes: Distribution of plants around the 10 GWh threshold for the years 2007-2014. We estimate
the counterfactual frequency as explained in Appendix Section C. For data confidentiality reasons, we
estimate the actual frequency using local linear regressions (rule-of-thumb bandwidths are displayed the
figures). Source: AFiD Panel, own calculations. 42



Figure A.5: Number of Plants in 0.5 GWh Bins of Electricity Consumption in 2008
and 2009
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Notes: Absolute frequency of plants within 0.5 GWh bins of electricity use in the years 2008 and 2009.
Source: AFiD Panel, own calculations.

Figure A.6: Exemption Shares in 2010 and 2011 for Energy Intensive Plants
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Notes: REL exemption shares (2010 and 2011) correspond to averages within 1 GWh bins of electricity
consumption two years prior to the treatment period. For reasons of data confidentiality, the minimum
bin width for this plot is 1 GWh. Source: AFiD Panel, own calculations.
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Figure A.7: Exempted Plants in All Eligible Plants
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(b) Baseline 2009 for exemption 2011
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(c) Baseline 2010 for exemption 2012
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(d) Baseline 2011 for exemption 2013
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Notes: Share of exempted plants in all plants by baseline electricity use. Dotted lines represent 95%
confidence intervals. Source: AFiD Panel, own calculations.
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Table A.1: Summary Statistics, 2007-2017, all plants

VARIABLE Mean Std. dev. Obs.
(1) (2) (3)

Plant-level data
Economic covariates
Sales, in million e 38.71 424.32 473,542

Export share (of sales) 0.21 0.26 473,906
Number of employees 138 597 466,710
Investments, in million e 1.26 14.25 473,730
Avg. wage per employee, thd. e 33.8 13.71 466,710

Energy-related covariates
Electricity use, in GWh 5.36 57.07 464,444
Other energy use , in GWh 19.26 606.51 476,965
Own electricity generation, in % 0.08 0.27 496,697
Electricity share in total energy 0.52 0.26 464,426
Gas share in total energy 0.29 0.3 471,532
Oil share in total energy 0.13 0.24 471,532
Coal share in total energy 0.01 0.06 471,532
Renewable share in total energy 0.05 0.16 471,532
Total CO2 emissions, in 1,000 t 7,171 180,150 477,095
Direct CO2 emissions, in 1,000 t 4,580 172,722 477,095

Firm-level data
Number of plants per firm 1.19 1.57 421,056
Gross value added (GVA), in million e 27.15 275.26 170,275
Total energy cost, in million e 1.96 15.5 170,221
Total electricity cost, in million e 0.58 6.32 417,979
Electricity cost to GVA, in % 0.05 0.1 413,023

Notes: Descriptive statistics for all plants for the year 2007-
2017. Source: AFiD Panel, own calculations.

Table A.2: REL Exempted Plants (by Manufacturing Sub-sector)

2010 2011 2012 2013
ISIC (Rev.4) # Share # Share # Share # Share

Manufacturing:
Food & Beverages 10,11,12 54 7.00% 63 7.70% 78 7.97% 382 16.64%
Textiles & Leather 13,14,15 17 2.20% 15 1.83% 19 1.94% 56 2.44%
Wood, Paper & Print 16, 17, 18 132 17.12% 130 15.89% 152 15.53 238 10.37%
Mineral Oil 19 4 0.52% 4 0.49% 5 0.51% 14 0.61%
Chemicals 20,21 122 15.82% 130 15.89% 144 14.71% 231 10.07%
Rubber & Plastics 22 46 5.97% 55 6.72% 84 8.58% 298 12.98%
Non-metallic minerals 23 100 12.97% 105 12.84% 126 12.87% 244 10.63%
Basic metals 24 111 14.40% 121 14.79% 138 14.10% 222 9.67%
Fabricated Metals 25 20 2.59% 22 2.69% 30 3.06% 222 9.67%
Optics & Electronics 26, 27 10 1.30% 12 1.47% 16 1.63% 38 1.66%
Machinery 28 3 0.39% 3 0.37% 3 0.31% 11 0.48%
Vehicles & Transport 29, 30 2 0.26% 5 0.61% 5 0.51% 24 1.05%
Other manufacturing 31, 32, 33 1 0.13% 1 0.12% 1 0.10% 5 0.22%

Other sectors (excluded from analysis):
Railway 49 49 6.36% 49 5.99% 51 5.21% 53 2.31%
Mining 0 35 4.54% 38 4.65% 45 4.60% 231 10.07%
Recycling 37, 38 8 1.04% 6 0.73% 13 1.33% 26 1.13%
Electricity & Water 35,36 36 4.67% 38 4.65% 45 4.60% 0 0.00%
Construction 43 21 2.72% 21 2.57% 24 2.45% 0 0.00%
# exempted plants 771 818 979 2295

Notes: Number of REL exempted plants by economic sub-sector and year. Source: Federal
Office of Economics and Export Control (BAFA).
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Table A.3: Number of Plants per REL Exempted Firm

Number of plants per firm 2010 2011 2012 2013

1 375 400 498 1238
2-3 50 54 69 182
4-5 10 9 12 28
6-10 3 5 3 6
≥ 10 2 2 2 5
# of exempted firms 440 470 584 1459

Notes: Number of REL exempted single-plant firms as
well as multi-plant firms over the years 2010 to 2013.
Source: Federal Office of Economics and Export Control
(BAFA).
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Table A.4: Treatment Eligibility and Uptake, 2013

REL exempted (2013) (1) (2) (3)

Firm level variables:
Employment (#) −0.000005∗∗∗ −0.000004∗ −0.000004∗

(0.000001) (0.000002) (0.000002)
White collar workers (%) 0.0012 0.0028 0.0032

(0.0093) (0.0092) (0.0092)
Sales (m e) 0.000025∗∗∗ 0.000020∗ 0.000020∗

(0.000007) (0.000010) (0.000010)
Eligible for exemption in 2011 0.360∗∗∗

(0.0130)
Number of plants:
2-4 0.0122∗∗∗ 0.00448∗ 0.00175

(0.00226) (0.00230) (0.00221)
5-9 0.0179∗∗∗ 0.00269 −0.00565

(0.00555) (0.00577) (0.00554)
10-19 0.0274∗∗∗ 0.0126 0.00214

(0.00781) (0.00865) (0.00793)
> 20 −0.0155∗∗∗ −0.0505∗∗∗ −0.0513∗∗∗

(0.00365) (0.00547) (0.00550)
Electricity cost intensity (%) in 2011:
0.10 - 0.13 0.0370∗∗∗ 0.0366∗∗∗

(0.00570) (0.00564)
0.14 - 0.17 0.170∗∗∗ 0.160∗∗∗

(0.0150) (0.0147)
0.18 - 0.21 0.297∗∗∗ 0.283∗∗∗

(0.0262) (0.0258)
0.22 - 0.25 0.399∗∗∗ 0.380∗∗∗

(0.0222) (0.0223)
> 0.25 0.213∗∗∗ 0.196∗∗∗

(0.0209) (0.0207)
Electricity use (GWh) in 2011:
1-3 0.00764∗∗∗ 0.00775∗∗∗

(0.00146) (0.00145)
4-6 0.0585∗∗∗ 0.0572∗∗∗

(0.00530) (0.00523)
> 7 0.102∗∗∗ 0.0951∗∗∗

(0.00905) (0.00890)
Previous exemptions (2010-2012):
One or more plants of firm 0.103∗∗

(0.0421)
Eligible × One or more plants 0.392∗∗∗

(0.0687)
Constant 0.0133∗∗∗ 0.00470∗∗ 0.00426∗∗

(0.00219) (0.00205) (0.00200)

N 36,228 36,200 36,200
Adj. R2 0.273 0.266 0.286
Sector FE Yes Yes Yes

Notes: Dependent variable is a dummy that equals 1 if a plant is REL
exempted in 2013 and zero otherwise. Eligibility for exemption is based on
electricity use and (imputed) electricity cost intensity in 2011. Omitted
base categories for number of plants (1), electricity cost intensity (≤ 0.10),
and electricity use (≤ 1 GWh) not reported in the table. Sample: 2013,
plants with electricity use ≤ 10 GWh in 2011. Standard errors clustered
at the plant level. * p<0.1, **p<0.05, and ***p<0.01. Source: AFiD
Panel, own calculations.
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Table A.5: Results Matching DiD Estimates Long Run

Treatment difference ∆ 2014-2011 ∆ 2015-2011 ∆ 2016-2011 ∆ 2017-2011

ATTDiD SE ATTDiD SE ATTDiD SE ATTDiD SE
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 0.104 0.073 0.107 0.091 0.2∗ 0.102 0.25∗∗ 0.112
Log electricity consumption 0.03∗∗ 0.015 0.034∗ 0.019 0.05∗∗ 0.02 0.077∗∗∗ 0.026
Log electricity purchase 0.046∗∗∗ 0.016 0.054∗∗ 0.021 0.075∗∗∗ 0.022 0.105∗∗∗ 0.028
Log fossil fuel consumption −0.061 0.055 −0.022 0.056 −0.035 0.06 −0.051 0.057

Share of total energy mix:
Electricity [%] 0 0.006 0.004 0.006 0.003 0.008 0.006 0.008
Fossil fuel [%] −0.01 0.007 −0.01 0.007 −0.014∗ 0.008 −0.018∗∗ 0.008

Panel B: CO2 emissions
Log CO2, direct −0.024 0.054 0.017 0.057 −0.005 0.061 −0.026 0.058
Log CO2, total 0.023 0.017 0.035∗ 0.02 0.038∗ 0.022 0.06∗∗ 0.027

Panel C: Competitiveness indicators
Log employment 0.007 0.015 0.006 0.017 0.014 0.02 0.01 0.022
Log sales 0 0.018 0.003 0.022 0.014 0.025 −0.009 0.03
Export share 0 0.007 0.004 0.007 0.008 0.008 0.003 0.009
Log investment 0.308∗∗ 0.138 0.448∗∗∗ 0.151 0.282∗ 0.153 0.022 0.15
✶(investment > 0) −0.011 0.022 −0.02 0.024 0.009 0.026 0 0.027
✶(investment machinery > 0) 0.023 0.021 0.009 0.022 0.017 0.021 0.026 0.021
# of observations 702 702 702 702
# of treated plants 351 351 351 351

Notes: Outcome variables defined in differences with the base year 2011 for outcome years 2014 to 2017
(Columns 1, 3, 5 and 7, respectively). The table presents the ATTDiD and standard errors (SE) from
nearest neighbor (NN) matching without replacement following Specification (5). The sample is limited
to plants that report in the treatment years and the base year. Inference follows Abadie and Spiess
(2022). * p<.1, ** p<.05, and *** p<.01. Source: AFiD Panel, own calculations.
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B. Conceptual Model for Input Tax Notch

In this section, we describe how a firm makes production input choices under a notched tax

schedule (as described in Section 2.3).

Input use and bunching behavior under a notched design

Let us first consider the impact of the tax notch A on input use. Let xc and zc denote the

(hypothetical) optimal input choice for x and z in the absence of the notch (i.e., if A = 0). The

optimal inputs are implicitly defined by the two first order conditions for profit maximization,

ψyx = p + t, and ψyz = q, where the subscripts denote first derivatives of the production

function with respect to these variables, respectively. The comparative statics of the optimal

input choices show that ∂xc/∂ψ > 0, i.e., firms with a larger productivity ψ use more of the input

x, irrespective of the substitutability of the inputs x and z. As a consequence, the productivity

ψ uniquely pins down the electricity use in the absence of a notch, xc. Hence, we can use ψ or

xc to describe firm-level heterogeneity in productivity.

We proceed by deriving the conditions under which firms below the eligiblility threshold

bunch, i.e., increase their electricity use in order to become eligible for an exemption. Firms

bunch if their profit after bunching exceeds the profits they would realize otherwise. Hence,

firms bunch if and only if:

π(x̂, z̄) ≥ π(xc, zc)

⇐⇒ ψy(x̂, z̄)− qz̄ − (p+ t)x̂+A(ψ)− c ≥ ψy(xc, zc)− qzc − (p+ t)xc

⇐⇒ A(ψ)− c ≥ ψy(xc, zc)− qzc − (p+ t)xc − ψy(x̂, z̄)− qz̄ − (p+ t)x̂
︸ ︷︷ ︸

κ(x̂,xc(ψ))=κ(ψ)

⇐⇒ A(ψ) ≥ c+ κ(ψ), (7)

where z̄ denotes a firm’s profit maximizing choice of the input z, conditional on bunching to the

notch threshold x̂, and κ(x̂, xc) denotes the bunching cost, i.e., the profit loss from deviating

from the optimal production choices xc and zc.

To quantify the amount of bunching, we define the “marginal buncher” as a firm with cost

C = c and productivity ψm that would be indifferent between using the optimal input level

in the absence of the notch, xc, and increasing its electricity consumption to x̂ in order to
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Figure C.1: Bunching with heterogeneity in productivity and compliance cost

become eligible for an exemption. Hence, the marginal buncher ψm(c) is implicitly defined by

the following equation:

A(ψm) = c+ κ(ψm).

Firms with compliance cost c bunch if and only if their productivity ψ is larger than the marginal

productivity ψm(c). We can now determine the profit maximizing demand for the taxed input

under the notched schedule:

x∗(ψ, c) =







xc if ψ ≤ ψ < ψm(c) or ψx̂(c) ≤ ψ < ψ̄

x̂ if ψm(c) ≤ ψ < ψx̂(c).

(8)

Figure C.1 illustrates how the presence of the tax notch changes the distribution of input

choices x∗. For simplicity, let xm(c) be the quantity that the marginal buncher with compliance

cost c would use as an input, i.e. xm(c) = x∗(ψm, c). For firms with sufficiently low productivity

(ψ < ψm(c) or, equivalently, firms that choose x∗ < xm(c)), the notch does not change input

choices, as increasing the input demand by ∆x = x̂ − xc would result in profit losses that

outweigh the gains from obtaining A. This is the case for all firms with electricity use xc that

are lower than the electricity use of the buncher with the lowest compliance cost c, xm(c). For
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more productive firms, bunching may be profitable if the compliance and bunching cost are

sufficiently small. As bunching cost increase in the distance to the threshold, firms close to it

are particularly likely to bunch. As a result of bunching, there is missing mass in the interval

xm ≤ x∗ < x̂ and bunching mass in the interval x̂ ≤ x∗ < xu, where xu denotes the upper

bound of the bunching region.

Exemptions under a notched design with compliance cost

Next, we determine the conditions under which eligible firms (xc > x̂) apply for an exemp-

tion.16 Eligible firms do not need to adjust their production input choices in order to become

eligible. Hence, they apply for an exemption if and only if:

ψy(xc, zc)− qzc − (p+ t)x̂c +A(ψ)− c ≥ ψy(xc, zc)− qzc − (p+ t)xc

⇐⇒ A(ψ) ≥ c. (9)

.

Effect of a tax exemption on input use under a notched design

We then investigate how exempting plants from paying the tax t changes the demand for the

input x∗ under a notched tax schedule. A tax change has two main effects. First, it changes

the input demand for all firms. Second, it changes the productivity of the marginal buncher by

dψ = ψm
′
(c)−ψm(c), where ψm

′
(c) denotes the productivity of the marginal buncher after the

tax change.

We now determine the first derivative of x∗(c) =
∫∞

0 x∗(ψ, c)dG(ψ|c) with respect to a reduc-

tion in the tax rate t by tex, where G(ψ|c) and g(ψ|c) denote the cumulative density function

and density function of ψ, conditional on C = c. Using Equation (8), we take the first derivative

of x∗(ψ, c) with respect to tex for every ψ. We then integrate ∂x∗(ψ, c)/∂tex over the entire

support of G(ψ|c) and rearrange terms, which yields:

∂x∗(c)

∂tex
=

∫ ∞

0

∂xc

∂tex
g(ψ|c)dψ

︸ ︷︷ ︸

Marginal price response, MPR(c)

+

∫ ψm(c)

ψm′ (c)
(x̂− xc) g(ψ|c)dψ −

∫ ψx̂(c)

ψm′ (c)

∂xc

∂tex
g(ψ|c)dψ

︸ ︷︷ ︸

Net bunching response, BR(c)

.

16Firms that increase their input use to become eligible (bunchers) will always apply for an exemption because
it would never be optimal to incur the bunching cost without getting exempted.
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The treatment effect in the population of firms (as shown in Equation 3 in the main text) is

then given by:

∂x∗

∂tex
=

∫

c

∂x∗(c)

∂tex
f(c)dc

=

∫

c

MPR(c)f(c)dc+

∫

c

BR(c)f(c)dc

= MPR+ BR,

where MPR and BR denote the population-level marginal price and net bunching response,

respectively.

This equation clarifies that the effect of a tax reduction in the presence of a notched schedule

can be decomposed into two components. The first term equals the change in demand for all

firms under the hypothetical scenario that there was no notch, which we denote as the marginal

price response in the absence of a notch. This effect corresponds to the rightward shift of the

density, as shown by the blue dotted line in Figure C.1 for the interval x < xm
′
(c), for example.

With a tax reduction, the marginal price response is always positive, which reflects the basic

notion that an input is used more when its price decreases.

The second component gives the net bunching response (BR), i.e., the net effect of a tax

reduction on input demand for bunching firms. This effect reflects that some firms bunch only

after the tax reduction and increase their input use for that reason. In particular, for every c,

the electricity use of the marginal buncher decreases from xm(c) to xm
′
(c), as shown in Figure

C.1. To fix ideas, let us consider a group of firm with compliance cost c. Those firms firms

with input demand between xm(c) and xm
′
(c) bunch only after the tax reduction and increases

their input demand by x̂ − xc. Because we are interested in the net effect of a tax increase

on bunching, we subtract the (counterfactual) increase in electricity use of all bunchers in the

absence of a notch, which is given in the third term. For bunchers, this counterfactual marginal

increase in electricity use does not materialize and thus reduces the net bunching response.
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C. Identification and Estimation of Structural Parameters

In this subsection, we derive the conditions used to identify the structural parameters and

explain how we estimate them.

Identification of compliance cost parameters

We start from Equation (1) and make explicit that a firm with productivity ψ has a counter-

factual electricity use xc(ψ) in the absence of a notch:

A(xc(ψ)) ≥ C.

Hence, we can express the probability of an exemption as follows:

Prexempt(x
c) =

∫

1(A(xc) ≥ c)f(c)dc

= Fc(A(x
c)).

For firms with an electricity use x that exceeds the upper limit of the bunching range xu, the

observed electricity use equals the counterfactual use in the absence of a notch, which gives:

Prexempt(x) = Fc(A(x)) if x > xu.

Figure D.1: Share of Exempted Plants and Value of Exemption
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Notes: Blue line represents predicted exemption shares, estimated as the sample average in bins and plot-
ted at the bin midpoints. Dotted lines denote 95% confidence intervals. Green line plots the exemption
rates implied by the fitted lognormal distribution.
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Estimation of compliance cost parameters

Under the assumption that C ∼ logN(µ, σ), we can construct the likelihood function for all

eligible plants above the bunching range and maximize it to obtain parameter estimates for µ

and σ (µ̂ = −1.14, σ̂ = 2.33).

Figure D.1 plots the observed exemption rates against the exemption rates implied by our

estimates for all plants with baseline electricity uses above the bunching range. It shows that

the structural assumption of lognormality allows us to reproduce the main features of actual

exemption behavior.

Identification of bunching cost parameters

The probability to bunch for a firm that has an counterfactual electricity use just below the

threshold (xc = x̂− ǫ) is given by:

Prbunch(x̂− ǫ) = Pr(A(x̂− ǫ) ≥ c+ β + γǫ)

As the distance to the threshold ǫ converges to zero, we obtain:

lim
ǫ→0

Prbunch(x̂− ǫ) = Pr(A(x̂) ≥ c+ β).

Furthermore, a marginal buncher is defined as:

A(xm(c)) = β + γ(x̂− xm(c)) + c.

When we consider the marginal buncher with the smallest compliance cost (c = 0), this equation

simplifies to:

A(xm(0)) = β + γ(x̂− xm(0)).

Estimation of bunching cost parameters

We apply the techniques developed in the taxation literature (e.g., Kleven and Waseem 2013)

to construct a counterfactual density in the absence of a notch. We construct narrow bins of

electricity use in 2010 with a width of 0.01 GWh and calculate the observed frequency within

every bin. We then proceed in three steps (for a detailed description of the methodology, see

Almunia and Lopez-Rodriguez (2018)). First, we use visual inspection of the observed frequency

to determine the upper bound of the bunching range at 10.5 GWh. Second, we determine the

counterfactual density by estimating a polynomial regression of order five, where observations
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Figure D.2: Actual and Counterfactual Frequency Around the Threshold
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Notes: The dashed line represents the counterfactual frequency. For data confidentiality reasons, we
show the predictions from local linear regressions rather than the actual frequencies in 0.1 GWh bins,
which underlie this graph. The bunching range and the marginal buncher (shown as blue vertical dashes)
are determined based on the actual frequencies.

within the bunching region are omitted. The lower bound of the bunching region is determined

via an iterative procedure. In every step of the procedure, the counterfactual density is estimated

as well as the bunching mass above and the missing mass below the threshold (as the distance

between the observed and the counterfactual density). The procedure continuously decreases

the lower bunching bound until the bunching mass equals the missing mass.

Using this method, we estimate the lower bound at 8.79 GWh. In our conceptual model, the

lower bound corresponds to the electricity use of the marginal buncher at the lowest compli-

ance cost, xm(0). To estimate the probability to bunch below the threshold, we calculate the

counterfactual frequency of plants just below the threshold (in the interval [9.5, 10]) and divide

it by observed frequency in the same interval, which yields 34%. Figure D.2 summarizes our

results by showing the counterfactual electricity use density that we estimate for 2010 in the

absence of the notch, the observed frequency, as well as the bounds of the bunching region.

Using xm(0) = 8.79 GWh and limǫ→0 Prbunch(x̂− ǫ) = 34%, we estimate the fixed bunching

cost β at 0.055 Mio. EUR and the variable bunching cost γ at 0.082 Mio. EUR per GWh.

55



D. Additional Data on Electricity Cost and Gross Value Added

To calculate the second criteria that determines eligibility of the RE levy exemption, the ratio

of electricity cost to gross value added (GVA), we obtain additional data from the Statistical

Offices of the Federal States in Germany. Firm-level data on electricity cost is collected in the

‘material and incoming goods statistics’ (MIGS) in four-year intervals. We have access to the

survey waves 2006, 2010, and 2014. This data is not a standard AFiD product, but usage was

granted upon special request. The survey scope is aligned with the sample that constitutes the

‘cost structure survey’ and includes approximately 18,000 firms with at least 20 employees in the

German manufacturing sector. The data is representative with regard to economic sub-sectors

and firm size. However, while the cost structure survey is collected every year, MIGS is only

collected in four-year intervals (both surveys are based on a random sample of the universe of

German manufacturing firms). As a consequence, we do not observe neither GVA nor electricity

cost for all firms in all years of our sample period. To construct a measure of electricity cost to

GVA for all firms and all years, we interpolate both variables based on two auxiliary variables

that are observe annually: electricity use and sales.

We start by interpolating GVA for all firm in all periods. To impute missing values, we first

define the GVA-to-sales ratio of a firm dividing GVA by total sales. As this measure is rather

constant over time, we use it to impute GVA in time periods when only output is observed. In

particular, we multiply the firm level GVA-to-sales ratio by firm sales to obtain a measure of

the GVA. If a firm has missing values for GVA in all periods, we impute it using the average

GVA intensity by three-digit economic sub-sector and size class (<50, 50-250, 250-500, >500

employees) in the same year.

To impute missing electricity cost information, we proceed analogously, yet, have to make

additional assumptions about annual price changes. We start by calculating the average firm-

level electricity price for each year by dividing its total electricity cost by the total amount of

electricity purchased (both at the firm level). We clean this data for outliers by winsorizing the

obtained electricity price at the 5th and 95th percentile. This procedure eliminates extreme

prices (electricity prices below 4 cent per kWh or above 40 cent per kWh) that are inconsistent

with the average electricity prices shown in Figure 1.
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Table E.1: Electricity Cost and Energy Cost Intensity

2006 2007 2008 2009 2010 2011 2012 2013 2014

(1) Electricity cost / GVA 0.054 0.056 0.07 0.077 0.082 0.083 0.084 0.082 0.085
(0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

(2) Energy cost / GVA 0.112 0.113 0.158 0.167 0.159 0.163 0.17 0.17 0.158
(0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.005) (0.004) (0.004)

(3) Electricity cost / energy cost 0.622 0.613 0.557 0.541 0.643 0.637 0.617 0.585 0.698
(0.011) (0.012) (0.01) (0.009) (0.013) (0.011) (0.01) (0.01) (0.021)

(4) Electricity use / sales 0.178 0.169 0.165 0.181 0.172 0.161 0.16 0.16 0.159
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Notes: Sample averages and standard error of the mean. 2006-2014, own calculations.

In case a firm has missing values for one or more of the three survey waves (2006, 2010, or

2014), we employ additional data from Eurostat17 on average annual electricity prices to fill in

missing values. In particular, we calculate the electricity price ratio (growth rate) between any

two survey periods, e.g., price2010/price2006, and extrapolate electricity prices by multiplying

them with that growth rate. The extrapolation also takes firm exemption status (or a poten-

tial change in exemption status) into account. As a result, we obtain a balanced dataset for

electricity prices in 2006, 2010, and 2014 for all firms that have been included at least once in

MIGS.

For years between the survey waves, we interpolate electricity prices linearly.18 In a final

step, we then multiply the annual electricity purchase at the firm level by the interpolated

electricity prices to obtain firm-level electricity cost. Dividing it by the GVA yields our measure

of electricity cost to GVA.

Data quality

We assess its data quality in two ways. First, we test the plausibility of the evolution of

electricity cost to GVA by comparing it to two other measures that we observe in the data:

energy cost to gross value added (GVA) and the ratio of electricity use to sales for the period

2006 to 2014. In line with the evolution of electricity prices. We find that the electricity cost to

GVA increases from 5.4% in 2006 to 8.5% in 2014 (Row (1) of Table E.1), which is consistent

with the evolution of electricity prices shown in Figure 1 of the main text. We also find electricity

cost to GVA are significantly smaller than the energy cost to GVA, amounting to some 60% of

17Electricity prices for non-household consumers, bi-annual data (from 2007 onward), last accessed 8 De-
cember 2022, https://ec.europa.eu/eurostat/databrowser/explore/all/envir?lang=en&subtheme=nrg.
nrg_price.nrg_pc&display=list&sort=category&extractionId=NRG_PC_205. Data is available for different
consumption bins and tax levels.

18As average prices have been rather flat over this time period with some price increases as well as decreases, we
opt for using fixed weights rather than year-on-year changes observed in the aggregate data. This procedure
guarantees that all weights are bound between 0 and 1.
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Figure E.1: Density of Electricity Intensity, Interpolated Data
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Notes: Distribution of electricity cost to GVA for the year 2010, using the interpolated data. Source:
AFiD Panel, own calculations.

the latter. Finally, Row (4) verifies that the increase in the electricity cost to GVA over time is

driven by price increases rather than higher use: the electricity use to sales ratio declines from

about 0.18 in 2006 to 0.16 in 2014.

Second, Figure E.1 plots the distribution of the interpolated electricity cost to GVA in the

year 2010 for the sample of exempted plants. By design of the policy, we expect plants to be

exempted only when reporting an electricity cost to GVA of at least 0.15. As expected, most of

the mass of observations is to the right of the threshold, and only few plants are to the left of it.

The fact that we observe some plants with an an electricity cost to GVA below 0.15 might arise

from measurement error in the original data as we calculate GVA using its official definition

and several variables from the cost structure survey, as well as the interpolation procedure

explained above. The graph is informative concerning the size of the potential measurement

error, which can be bound at roughly +/- 10 percentage points. We use these bounds in a

robustness check of our counterfactual simulation results, by estimating the compliance cost in

a sample of electricity cost to GVA of more than 0.25 (see Appendix Section E.4).
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E. Robustness Checks

E.1. RD Design

This section provides evidence that the main identifying assumptions SUTVA and no observable

differences in the baseline period are met in the RD setting (Table G.1) and that there are no

observable differences in the sectoral composition around the 10 GWh threshold in the baseline

period 2008 and 2009 (Table G.2). We also provide additional robustness checks regarding the

treatment of own-electricity producers and the choice of bandwidth in Tables G.3 and G.4,

respectively.

Table G.1: Robustness Fuzzy RD Estimates (at the Cutoff)

Main sample Single-plant firms Baseline elect. cost/GVA >.15

ATTRD SE ATTRD SE ATTRD SE
(1) (2) (3) (4) (5) (6)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 4.184∗ 2.329 0.000 0.000 0.659 0.943
Log electricity consumption 0.674∗ 0.383 −0.008 0.011 0.17 0.139
Log electricity purchase 0.777 0.519 0.125 0.124 0.176 0.129
Log fossil fuel consumption 0.8 0.737 0.19 0.51 0.23 0.331

Share of total energy mix:
Electricity [%] 0.063 0.112 0.013 0.091 −0.035 0.052
Fossil fuel [%] −0.146 0.099 −0.057 0.084 −0.041 0.053

Panel B: CO2 emissions
Log CO2, direct 0.396 0.68 0.311 0.502 0.196 0.337
Log CO2, total 0.718 0.462 0.402 0.306 0.057 0.244

Panel C: Competitiveness indicators
Log employment 0.189 0.247 −0.071 0.112 −0.019 0.117
Log sales 0.342 0.392 −0.325 0.242 0.112 0.174
Export share −0.042 0.094 −0.069 0.053 −0.062 0.057
Log investment 0.547 1.299 −0.493 0.97 0.053 0.819
✶(investment > 0) −0.245 0.279 −0.099 0.144 −0.106 0.154
✶(investment machinery > 0) −0.105 0.225 −0.158 0.179 −0.155 0.12
# of observations 32,708 40,246 3,234
# of treated plants 497 497 405

Notes: Observations from firms with an energy cost share to GVA below 15% in 2008 and 2009 are
excluded from the analysis. Number of observations and number of treated plants refer to the total
number of observations (plants) in the sample, independent of the bandwidth. Each cell represents a
separate estimation, based on the MSE-optimal bandwidth selector (Calonico et al., 2019). Columns
1 and 2 further restrict the sample to single-plant firms. Columns 3 and 4 estimate differences in the
baseline period and Columns 5 and 6 limit the sample to plants with an electricity cost to GVA ratio of
.15. As we condition on lagged electricity use, the test statistic for electricity use is zero for electricity
consumption by construction. Standard errors clustered at the firm level. * p<.1, ** p<.05, and ***
p<.01. Source: AFiD Panel, own calculations.
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Table G.2: Sector Composition Around the Cutoff

Bandwidth around 10 GWh 0.5 GWh 1 GWh

Beta SE Beta SE
2-digit sub-sector (1) (2) (3) (4)

Manufacturing (C):
Food products (10) −0.001 0.032 −0.02 0.024
Beverages (11) 0.01 0.011 0.003 0.01
Tobacco (12) 0 0 0 0
Textiles (13) −0.005 0.013 −0.003 0.01
Wearing apparel (14) 0 0 0.002 0.002
Leather and related products (15) −0.004 0.004 −0.004 0.004
Wood and Cork, except furniture (16) −0.013 0.01 −0.002 0.008
Paper (17) 0.003 0.013 0.019 0.014
Printing (18) 0.026∗ 0.013 0.025∗∗ 0.012
Coke and refined petroleum (19) 0 0 0 0
Chemical products (20) −0.028 0.027 −0.017 0.018
Pharmaceutical products (21) 0.002 0.011 −0.005 0.01
Rubber and plastic products (22) −0.024 0.028 −0.003 0.022
Non-metallic mineral products (23) 0.013 0.024 0.012 0.018
Basic metals (24) 0 0.022 0.006 0.015
Fabricated metals, except machinery (25) −0.043 0.031 −0.036 0.022
Computer, electronic and optical products (26) 0.014 0.014 0.004 0.011
Electrical equipment (27) 0.012 0.019 0.006 0.012
Machinery and equipment (28) 0.024 0.023 0.011 0.019
Motor vehicles, trailers and semi-trailers (29) −0.011 0.021 −0.01 0.016
Other transport equipment (30) 0.004 0.004 0.003 0.005
Furniture (31) 0.007 0.014 0.009 0.011
Other manufacturing (32) 0.008 0.008 0.003 0.006
Repair and installation of machinery (33) 0.004 0.004 −0.003 0.004
# of observations 528 1,010
Chi-square statistic (24 deg. of freedom) 16.120 (0.709) 19.696 ( 0.541)

Notes: Observations from firms with an energy cost share to GVA below 15% in 2008 and 2009 are
excluded from the analysis. The table reports regression coefficients, where we regress a dummy variable
equal to one if a plant is in a given sub-sector on an indicator for being above the threshold of 10
GWh, restricting the sample to either plants within 0.5 GWh around the 10 GWh threshold (Column
2) or plants within 1 GWh of the threshold (Column 4). Sample: 2008-2009. 2-digit sector definitions
according to ISIC (Rev. 4) (10-33). Standard errors clustered at the plant level. * p<.1, ** p<.05, and
*** p<.01. Chi-square statistic tests for the homogeneity of the distribution of plants across all sectors
above and below the threshold, p-values in parentheses. Source: AFiD Panel, own calculations.
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Table G.3: Robustness Fuzzy RD Estimates (at the Cutoff) - Own-electricity producers

Main sample energy cost/GVA >.15 elect. cost/GVA >.1

ATTRD SE ATTRD SE
(1) (2) (3) (4)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 3.958∗ 2.181 1.035 1.578
Log electricity consumption 0.753∗ 0.427 0.369∗ 0.221
Log electricity purchase 0.796∗ 0.465 0.364∗ 0.214
Log fossil fuel consumption −0.079 0.48 0.192 0.417

Share of total energy mix:
Electricity [%] 0.147 0.127 −0.025 0.071
Fossil fuel [%] −0.204∗ 0.106 −0.036 0.058

Panel B: CO2 emissions
Log CO2, direct −0.087 0.476 0.215 0.426
Log CO2, total 0.675∗ 0.379 0.221 0.237

Panel C: Competitiveness indicators
Log employment 0.119 0.16 0.071 0.119
Log sales 0.274 0.281 0.167 0.202
Export share −0.144∗ 0.08 −0.039 0.057
Log investment 0.543 1.273 −0.342 0.939
✶(investment > 0) −0.318 0.213 −0.146 0.171
✶(investment machinery > 0) −0.17 0.17 −0.116 0.131
# of observations 39,202 6,034
# of treated plants 592 570
First-stage 0.164 0.288

Notes: Sample includes plants that are own-electricity producers. Columns 1 and 2 limit the sample
to all energy intensive firms with an energy cost share to GVA above 15% in 2008 and 2009. Columns
3 and 4 further limit the sample to firms with an electricity cost to GVA ratio above .1. Number of
observations and number of treated plants refer to the total number of observations (plants) in the
sample, independent of the bandwidth. Each cell represents a separate estimation, based on the MSE-
optimal bandwidth selector (Calonico et al., 2019). Standard errors clustered at the firm level. * p<.1,
** p<.05, and *** p<.01. Source: AFiD Panel, own calculations.
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Table G.4: Robustness: Bandwidth in Fuzzy RD Design

50% optimal bandwidth 200% optimal bandwidth

ATTRD SE ATTRD SE
(1) (2) (3) (4)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 4.354∗∗ 1.963 2.792∗∗ 1.272
Log electricity consumption 1.574∗ 0.936 0.466∗∗ 0.192
Log electricity purchase 2.419 1.553 0.545∗∗ 0.226
Log fossil fuel consumption −0.815 0.769 0.785 0.498

Share of total energy mix:
Electricity [%] 0.256 0.209 0.059 0.081
Fossil fuel [%] −0.31∗ 0.174 −0.111 0.071

Panel B: CO2 emissions
Log CO2, direct −0.387 0.691 0.677 0.457
Log CO2, total 0.435 0.576 0.495∗ 0.271

Panel C: Competitiveness indicators
Log employment 0.255 0.282 0.165 0.136
Log sales 0.856∗ 0.514 0.404∗ 0.232
Export share −0.149 0.113 −0.061 0.059
Log investment 2.803 2.263 0.455 0.954
✶(investment > 0) −0.278 0.265 −0.013 0.156
✶(investment machinery > 0) −0.428∗ 0.235 −0.202 0.164
# of observations 39,202 39,202
# of treated plants 497 497

Notes: Observations from firms with an energy cost share to GVA below 15% in 2008 and 2009 are
excluded from the analysis. Number of observations and number of treated plants refer to the total
number of observations (plants) in the sample, independent of the bandwidth. Each cell represents a
separate estimation, based on either 50% or 200% of the MSE-optimal bandwidth selector (Calonico
et al., 2019) in Columns 1 and 3, respectively. Standard errors clustered at the firm level. * p<.1, **
p<.05, and *** p<.01. Source: AFiD Panel, own calculations.
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E.2. Matching DiD

This section provides additional evidence concerning the identification assumptions as well

as robustness for the matching DiD approach. Figure G.1 shows how trimming and matching

improves the overlap for the main variable electricity use. Similarly, Figure G.3 shows that there

is considerable overlap for the main propensity score, i.e., we are able to find a suitable control

plant for each treated plant. Table G.5 provides a formal test for parallel pre-treatment trends

and confirms that there are generally no differences between the treated and control group. The

only significant variables are the electricity share in 2010 and 2009 and log employment in 2010.

Yet, these differences are small in absolute size and not persistent when focusing on prior years

(as also indicated by Figure 7 in the main text).

We show that restricting the sample to single-plant firms yields the same qualitative results

(Column 1 of Table G.6). Furthermore, we demonstrate that our main effects are unaffected

by the choice of the baseline year. As the policy change has been discussed already in 2011,

firms might have anticipated the change and adapted their electricity input use. We therefore

match on the year prior to the policy discussion, 2010 (Column 2 of Table G.6). Similarly,

we provide evidence that the treatment of own-electricity producers does not affect our main

findings (Column 3 of the same table). Table G.7 also highlights that the point estimates are

unaffected by the choice of the matching algorithm.

63



Figure G.1: Overlap - Electricity Consumption
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Notes: Density distribution of log electricity for exempted plants and non-exempted plants, without
adjustment (Panel a), with trimming 1-10 GWh (Panel b), and with trimming and matching (Panel c).
Source: AFiD Panel, own calculations.

Figure G.3: Overlap - Propensity Score
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Notes: Overlap of the propensity score following our main matching specification and using nearest
neighbor matching without replacement. Source: AFiD Panel, own calculations.

64



Table G.5: Test for Parallel Pre-treatment trends - Main Propensity Score

Beta SE P-value

∆ 2010-2011
Log electricity 0.016 0.01 0.102
Electricity cost to GVA 0.01 0.007 0.156
Electricity share 0.01 0.004 0.004∗∗∗

Log energy use -0.023 0.033 0.49
Log gas use -0.043 0.041 0.293
Log sales -0.019 0.012 0.128
Log employees -0.013 0.008 0.082∗

Export share -0.003 0.004 0.441
Log wages 0.012 0.008 0.156

∆ 2009-2011
Log electricity 0.015 0.018 0.38
Electricity cost to GVA 0.006 0.009 0.54
Electricity share 0.012 0.005 0.028∗∗

Log energy use -0.025 0.042 0.552
Log gas use -0.029 0.066 0.66
Log sales -0.007 0.021 0.753
Log employees 0.003 0.012 0.818
Export share 0.005 0.006 0.465
Log wages 0 0.012 0.976

∆ 2008-2011
Log electricity 0.017 0.019 0.36
Electricity cost to GVA 0.01 0.009 0.234
Electricity share 0.003 0.006 0.574
Log energy use 0.024 0.046 0.605
Log gas use 0.043 0.068 0.521
Log sales 0.008 0.021 0.711
Log employees -0.011 0.015 0.465
Export share 0.002 0.007 0.836
Log wages 0.003 0.012 0.777

# of observations 7,062

Notes: Test for parallel pre-treatment trends in key out-
come variables for matched sample. We pool the sam-
ple for all years and regress the demeaned variables on
year dummies as well as an interaction term for the year
dummy with the treatment dummy and report the main
interaction terms. Each outcome variable represents a
separate regression to test for differences between the
treatment and control group in the individual years. Main
coefficient (beta) and standard error (SE) reported to-
gether with p-values. Standard errors clustered at the
plant level. * p<0.1, **p<0.05, and ***p<0.01. Source:
AFiD Panel, own calculations.
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Table G.6: Main Robustness Checks for Matching DiD estimates

Single-plant firms Anticipation No own-electricity gen.

ATTDiD SE ATTDiD SE ATTDiD SE
∆ 2013-2011 (1) (2) (3) (4) (5) (6)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 0.096 0.069 0.085 0.056 0.124∗∗ 0.062
Log electricity consumption 0.018 0.014 0.026∗∗ 0.013 0.035∗∗∗ 0.013
Log electricity purchase 0.026∗ 0.015 0.031∗∗ 0.013 0.045∗∗∗ 0.013
Log fossil fuel consumption 0.004 0.045 −0.02 0.037 −0.031 0.041

Share of total energy mix:
Electricity [%] 0.005 0.007 0.002 0.005 −0.002 0.006
Fossil fuel [%] −0.007 0.006 −0.004 0.005 −0.004 0.006

Panel B: CO2 emissions
Log CO2, direct 0.014 0.047 −0.022 0.037 0.001 0.039
Log CO2, total 0.014 0.017 0.011 0.014 0.043∗∗∗ 0.015

Panel C: Competitiveness indicators
Log employment −0.005 0.013 −0.003 0.011 −0.001 0.012
Log sales −0.017 0.018 0.01 0.014 −0.009 0.014
Export share 0.005 0.006 0 0.005 0.002 0.005
Log investment 0.033 0.166 0.091 0.133 0.066 0.146
✶(investment > 0) −0.012 0.028 −0.026 0.022 −0.047∗∗ 0.022
✶(investment machinery > 0) 0.012 0.026 0.003 0.02 0.012 0.022
# of observations 508 702 676
# of treated plants 254 351 338

Notes: Outcome variables defined in differences 2013-2011. The table presents the ATTDiD and standard
errors (SE) from nearest neighbor (NN) matching without replacement. Columns 1 and 2 limit the sample
to single plant firms. Columns 3 and 4 condition the propensity score on 2010, the pre-announcement
year of the policy reform. Columns 5 and 6 limit the sample to plants that do not have own-electricity
generation capacity in the base-year (2011). The sample is limited to plants that report in both the
treatment year and the base year. Inference follows Abadie and Spiess (2022). * p<.1, ** p<.05, and
*** p<.01. Source: AFiD Panel, own calculations.
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Table G.7: Results Matching DiD Estimates: Robustness Matching Algorithm

1:1 matching 1:m matching
w/ caliper and replacement w/ caliper and replacement

ATTDiD SE ATTDiD SE
∆ 2013-2011 (1) (2) (3) (4)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 0.087 0.055 0.098∗∗ 0.049
Log electricity consumption 0.03∗∗ 0.013 0.031∗∗∗ 0.012
Log electricity purchase 0.04∗∗∗ 0.014 0.031∗∗∗ 0.012
Log fossil fuel consumption −0.055 0.043 −0.031 0.032

Share of total energy mix:
Electricity [%] 0.004 0.005 0.006 0.005
Fossil fuel [%] −0.01 0.006 −0.009∗ 0.005

Panel B: CO2 emissions
Log CO2, direct −0.046 0.043 −0.022 0.035
Log CO2, total 0.009 0.017 0.014 0.014

Panel C: Competitiveness indicators
Log employment 0.001 0.013 −0.004 0.011
Log sales −0.007 0.016 −0.004 0.014
Export share 0.001 0.005 0.003 0.004
Log investment 0.178 0.136 0.027 0.112
✶(investment > 0) −0.045∗ 0.024 −0.04 0.028
✶(investment machinery > 0) 0.035 0.024 0.011 0.016
# of observations 748 2,349
# of treated plants 425 425

Notes: Outcome variables defined in differences 2013-2011. The table presents the ATTDiD and standard
errors (SE) from nearest neighbor (NN) matching with caliper and replacement in Columns 1 and 2, and
one-to-many matching with caliper and replacement in Columns 3 and 4 following Specification (5). The
sample is limited to plants that report in both the treatment year and the base year. Robust standard
errors in Columns 2 and 4. * p<.1, ** p<.05, and *** p<.01. Source: AFiD Panel, own calculations.
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E.2.1. Alternative Propensity Score Definitions

For robustness, we estimate two alternative propensity score variants, based on a minimum

specification that only conditions on electricity cost intensity or alternatively energy cost inten-

sity in the base period 2011 within economic subsector. These specifications do not include any

additional covariates in the base period, nor do they condition on lags of electricity intensity

measures. We use energy cost for matching because it is directly observed in the sample and

thus not prone to measurement error from imputing electricity cost. Yet, as energy cost are

elicited only for a subset of firms, this specification leads to a smaller sample size.

As shown in both Figures G.4 and G.5, the matching variables lead to very similar

pre-treatment trends. Similarly, the main effects in Tables G.8 and G.9 are highly aligned with

out preferred specification.

D.3.1.1 Propensity Score 1: Electricity Cost Intensity

Table G.8: Results Matching DiD Estimates

Main sample all plants single-plant firms 5-10 GWh

ATTDiD SE ATTDiD SE ATTDiD SE
∆ 2013-2011 (1) (2) (3) (4) (5) (6)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 0.172∗∗∗ 0.054 0.148∗∗ 0.065 0.361∗∗∗ 0.125
Log electricity consumption 0.05∗∗∗ 0.013 0.041∗∗∗ 0.016 0.055∗∗∗ 0.019
Log electricity purchase 0.055∗∗∗ 0.014 0.041∗∗∗ 0.016 0.074∗∗∗ 0.021
Log fossil fuel consumption 0.002 0.032 −0.012 0.037 −0.058 0.048

Share of total energy mix:
Electricity [%] 0.01∗ 0.006 0.008 0.008 0.001 0.008
Fossil fuel [%] −0.011∗∗ 0.005 −0.01∗ 0.006 −0.015∗∗ 0.007

Panel B: CO2 emissions
Log CO2, direct 0.002 0.033 −0.021 0.038 −0.04 0.046
Log CO2, total 0.033∗∗ 0.014 0.024 0.016 0.044∗∗ 0.02

Panel C: Competitiveness indicators
Log employment 0.03∗∗ 0.012 0.01 0.015 0.016 0.015
Log sales 0.002 0.016 −0.029 0.02 −0.027 0.022
Export share 0.003 0.004 0.003 0.006 −0.003 0.009
Log investment 0.023 0.125 0.125 0.162 −0.304∗ 0.176
✶(investment > 0) −0.014 0.022 0.014 0.028 0 0.025
✶(investment machinery > 0) 0.014 0.018 0.024 0.021 0.012 0.033
# of observations 848 572 336
# of treated plants 424 286 168

Notes: Outcome variables defined in differences 2013-2011. The table presents the ATTDiD and standard
errors (SE) from nearest neighbor (NN) matching without replacement following Specification (5). The
sample is limited to plants that report in both the treatment year and the base year. Inference follows
Abadie and Spiess (2022). * p<.1, ** p<.05, and *** p<.01. Source: AFiD Panel, own calculations.
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Figure G.4: Common trends: Minimal Specification, Electricity Cost to GVA

Notes: Analysis of parallel pre-treatment trends for treated plants (REL exempted in 2013) and matched
control plants based on nearest neighbor matching. Results based on strict sector propensity score
matching on electricity cost intensity in the base year 2011. The figure plots growth rate of the respective
variables with respect to 2011, the year determining treatment status. The vertical line indicates the
base year (2011) as well as the first treatment year (2013). Source: AFiD Panel, own calculations.
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D.3.1.2 Propensity Score 2: Energy Cost Intensity

Figure G.5: Common trends: Minimal specification, Energy Cost to GVA

Notes: Analysis of parallel pre-treatment trends for treated plants (REL exempted in 2013) and matched
control plants based on nearest neighbor matching. Results based on strict sector propensity score
matching on energy cost intensity in the base year 2011. The figure plots growth rate of the respective
variables with respect to 2011, the year determining treatment status. The vertical line indicates the
base year (2011) as well as the first treatment year (2013). Source: AFiD Panel, own calculations.
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Table G.9: Results Matching DiD Estimates

Main sample all plants single-plant firms 5-10 GWh

ATTDiD SE ATTDiD SE ATTDiD SE
∆ 2013-2011 (1) (2) (3) (4) (5) (6)

Panel A: Electricity & fuel usage
Electricity consumption [GWh] 0.174∗∗ 0.07 0.351∗∗∗ 0.106 0.332∗∗∗ 0.123
Log electricity consumption 0.04∗∗∗ 0.015 0.067∗∗∗ 0.023 0.057∗∗∗ 0.02
Log electricity purchase 0.049∗∗∗ 0.015 0.072∗∗∗ 0.022 0.056∗∗∗ 0.02
Log fossil fuel consumption −0.029 0.051 −0.025 0.068 −0.056 0.06

Share of total energy mix:
Electricity [%] 0.016∗∗ 0.007 0.01 0.01 0.005 0.008
Fossil fuel [%] −0.016∗∗ 0.006 −0.009 0.009 −0.022∗∗∗ 0.008

Panel B: CO2 emissions
Log CO2, direct −0.046 0.05 −0.033 0.068 −0.048 0.061
Log CO2, total 0.015 0.018 0.047∗ 0.025 0.021 0.024

Panel C: Competitiveness indicators
Log employment 0.025∗ 0.014 0.043∗∗ 0.018 0.021 0.018
Log sales 0.03 0.021 0.049∗ 0.027 −0.018 0.024
Export share 0.005 0.007 0 0.008 0.012 0.011
Log investment 0.254∗ 0.146 −0.166 0.205 0.29 0.181
✶(investment > 0) 0.023 0.023 0.034 0.032 0.029 0.025
✶(investment machinery > 0) 0.012 0.025 0.047 0.031 0.029 0.029
# of observations 520 298 272
# of treated plants 260 149 136

Notes: Outcome variables defined in differences 2013-2011. The table presents the ATTDiD and standard
errors (SE) from nearest neighbor (NN) matching without replacement following Specification (5). The
sample is limited to plants that report in both the treatment year and the base year. Inference follows
Abadie and Spiess (2022). * p<.1, ** p<.05, and *** p<.01. Source: AFiD Panel, own calculations.
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E.3. Difference-in-Differences Analysis

Our main matching specification controls for unobserved differences at the plant level, which

cannot confound our estimates. Yet, a concern could be potential selection into treatment based

on unobserved trends. As a robustness check, we implement an alternative estimation approach

that only exploits changes in eligibility status for identification.

To implement this approach, we use the subset of plants that are newly eligible for the

exemption (1-10 GWh electricity use in the baseline period 2011). We then construct two

groups of plants: one with an electricity cost to GVA ratio of at least 0.14, whose eligibility

status changes from 2011 to 2013 and a second group with a ratio below 0.14, which remain not

eligible in 2013. Furthermore, we ensure that electricity intensity is not a confounding factor

by only considering only plants with a similar electricity intensity (between 0.1 and 0.18).

The choice of a maximum deviation of 4 percentage points reflects a trade-off. When we

restrict the maximum deviation further, the difference in the exemption rates vanishes (because

electricity intensity is measured with some error). When we set it too large, we risk to capture

confounding effects that arise because plants with different electricity intensities react differently

to the pronounced increase in electricity prices during that time span. The effects we present

are robust for intermediate deviations of 0.03-0.05 around the cutoff, yet become unstable if we

consider very smaller deviations (0.02 or smaller) or remove the threshold altogether. Additional

results are available from the authors upon request.

Similar to our matching DiD approach, we limit the sample to plants that report electric-

ity in all years 2007-2017 to avoid changes in composition. We then estimate the following

specification:

∆yist = eligiblei ×
∑

t 6=2011

yeart + µt,s + εist, (10)

where ∆yist is defined as the demeaned (with respect to 2011) outcome variable for plant i

in sector s in time period t. The main variable of interest is the effect of the eligibility dummy,

which is equal to one for the group of plants with an electricity cost intensity of more than 0.14,

which become newly eligible between 2011 and 2013 and zero otherwise. We interact it with

year dummies (year) to estimate the average difference in the evolution of mean outcomes for

both groups of plants (relative to 2011, for every year). To capture possible unobserved trends
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at the sectoral level, we control for two-digit sector by year fixed effects µt,s. Standard errors

are clustered at the plant level to allow for correlation over time within the same plant.

The estimation equation can be directly used to test for parallel pre-treatment trends in the

period 2007 to 2010. Our main coefficient of interest is the treatment effect in 2013 as well

as the impact in subsequent years. All effects can be interpreted with respect to the baseline

period 2011, which is omitted from the regression. As treatment is based on the eligibility

criteria for the exemption, the results can be interpreted as intention-to-treat (ITT) effects.

These estimates thus provide us with a useful lower bound for our main matching DiD results.

Figure G.6 plots the effects for key outcome variables together with the 95% confidence

interval. We generally do not find any significant differences between the treated group (plants

that fulfill the eligibility criteria in 2011 for the REL exemption in 2013) and the control group

in the three years leading up to 2011. On the other hand, we can reject the null hypothesis

of a zero effect for electricity use for the treated group starting in 2013. The main effect for

electricity consumption is 0.087 GWh, with a p-value of 0.06. The effect size is thus highly

comparable to the treatment effect that we estimate with the matching DiD approach in the

main text of 0.092 in Table 4. Similarly, log electricity consumption shows a point estimate

of 0.018 in 2013, increasing to 0.029 in 2015, and is thus again similar to the matching DiD

findings. Finally, we confirm a significant increase in the electricity share of eligible plants after

2015, but do not find any significant impact on the competitiveness indicators. The fact that the

main estimates of the DiD approach are highly aligned with the results from the matching DiD

setting supports that selection issues are not a major concern in our setting when estimating

the main treatment effects.

We use this model also to estimate the first stage of the treatment assignment in this setting,

namely we regress the exemption status on eligibility and find a total effect of 0.168 from year

2013 onward, significant at p < 0.001. This effect is conditional on sector-by-year fixed effects

and is consistent with the share of exempted plants among the eligible, which has on average

increased by about that magnitude for all plants with electricity uses between 1 to 10 GWh

(see Panel (d) of Figure A.7).
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Figure G.6: DID: Parallel Trends and Intention-To-Treat Effects

Notes: Analysis of intention to treat (ITT) effects for plants that are eligible for the REL exemptions
in 2013. Sample restricted to plants with an annual electricity use of 1-10 GWh in 2011 and a share of
electricity cost to GVA from 10 to 18%. Each plot refers to a separate regression where the main outcome
variable is demeaned with respect to the baseline period 2011. Point estimates for the interaction term of
treatment eligibility and year following Equation (10) plotted together with 95% confidence intervals. The
vertical lines indicates the year determining treatment (2011, omitted category) and the main outcome
year 2013. Source: AFiD Panel, own calculations.
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E.4. Counterfactual Simulations

In this subsection, we test the robustness of our counterfactual simulations. To rule out that

the sample of plants with an (imputed) electricity cost to GVA share of more than 0.15 may

contain some non-eligible plants, we also conduct our simulations based on compliance cost

estimates that we obtain from a sample of firms with an electricity cost to GVA of at least 0.25.

As shown in Section D, it is very rare that measurement error exceeds 10 percentage points.

Hence, restricting the sample to firms with an electricity cost to GVA of more than 0.25 almost

certainly restricts the estimation to eligible plants. As shown in Table G.10, the results from

the counterfactual simulations remain almost unchanged, which alleviates concerns about the

impact of measurement error on the estimation of the parameters and the simulations.
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Table G.10: Simulations of Bunching and Exemption Effects - Robustness

(a) Bunching Behavior (in t)

(1) (2) (3) (4) (5)
# of bunchers Bunching, Max. bunching, Bunching cost, Externality cost,

in GWh in % in Mio. EUR in Mio. EUR

Simulations for Bunching in 2008 to 2011 Under the Respective Exemption Designs
(1) 2011 (reformed) 0 – – – –
(2) 2010 (notched) 50 66.0 33,8% 7.8 1.2
(3) 2009 (notched) 11 5.0 10,1% 1.3 0.1
(4) 2008 (notched) 1 0.1 01,2% 0.1 0.0

Counterfactual Simulations for 2013 under a Notched Exemption Design
(5) 2011 (notched) 76 89.9 35,3% 11.5 2.2
(6) REL 2017 212 484.4 85,6% 43.3 12.1
(7) Costless compliance 219 317.2 37,6% 36.0 7.9
(8) No fixed bunching cost 137 247.2 61,7% 11.8 6.2
(9) No frictions, REL 2017 612 1980.2 25,1% 95.4 49.3

(b) Exemption Behavior (in t+ 2)

(6) (7) (8) (9) (10)
# of exemptions Electricity use Exemption value, Compliance cost, Externality cost,

(actual #) change, in GWh in Mio. EUR in Mio. EUR in Mio. EUR
(actual value)

Simulations for Exemptions in 2010 to 2013 Under the Respective Exemption Designs
(1) 2013 (reformed) 1374 (1574) 2227.4 3965 (3804) 305.0 74.8
(2) 2012 (notched) 824 (697) 1548.0 2585 (2393) 261.3 39.0
(3) 2011 (notched) 601 (579) 1345.5 2206 (2249) 149.3 33.5
(4) 2010 (notched) 523 (539) 839.9 1174 (1219) 112.6 14.7

Counterfactual Simulations for 2013 under a Notched Exemption Design
(5) 2013 (notched) 899 2129.3 3762 (3765) 273.3 71.5
(6) REL 2017 1124 2941.9 5197 (4948) 436.6 98.8
(7) Costless compliance 1355 2431.0 4269 (3765) 0.0 81.7
(8) No fixed bunching cost 961 2141.9 3783 (3765) 277.2 72.0
(9) No frictions, REL 2017 1748 3265.6 5739 (4948) 0.0 109.7

Notes: For every scenario, we present profit-maximizing market behavior in the baseline period (Panel a) and
exemption period (Panel b). Values represent averages over 200 compliance cost draws. To estimate compliance
cost conservatively, we use only eligible plants with an electricity cost to GVA ratio of at least 25%. The scenarios
in Rows (1)-(4) simulate market behaviors under the actual exemption designs that were in place from 2010 to
2013. The scenarios in Rows (5)-(9) assume that a notched exemption regime was in place in 2013. In Rows
(6)-(8), we additionally set the REL to 2017 levels (6.88 ct. per kWh), eliminate compliance cost, and set fixed
bunching cost to zero, respectively. Scenario (9) simultaneously implements all these three changes. The results
shown in the columns are aggregate sums, with the exception of the maximum bunching response from Column
(6). The exemption value is calculated by taking the magnitude of the REL and the respective exemption rules
into account. Externality cost are calculated as explained in Appendix Section F. Source: AFiD Panel, own
calculations.
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F. Wedge Between Social Marginal Cost of Electricity and the

Average Price Paid by the Industry

To obtain an estimate for the social marginal cost (SMC) of electricity in Germany, we follow

Borenstein and Bushnell (2022) and account for three main cost components: the (wholesale)

price of electricity, direct state subsidies (and comparable other payments to producers), as

well as non-internalizable external costs of electricity generation. The respective values shown

in Table F.1 are drawn from Küchler and Wronski (2015), who calculate the total cost by

electricity generation technology in Germany in 2014.

Table F.1: Social Marginal Cost of Electricity, 2014

Conventional Renewable

Technology Nuclear Coal Lignite Gas Wind Hydro Solar PV

Wholesale electr. price or FiT), ct/kWh 3.86 3.86 3.86 3.86 9.7 9.1 31.7
Subsidies (fin. support, tax reductions), ct/kWh 0.6 2.4 1 -0.1 -0.4 -0.4
Non-internalizable external costs, ct/kWh 9.8 - 32.7 8.1 10 4.2 -0.2 -0.2 0.8

SMC by technology, ct/kWh 14.26 - 37.16 14.36 14.86 7.96 9.1 8.9 32.1
Production shares 20141 0.183 0.207 0.295 0.11 0.099 0.039 0.066

(1) Weighted SMC, ct/kWh 14.23
(2) Avg. ind. elec. price incl. REL 13.51
(excl. VAT), ct/kWh2

Wedge between SMC and avg. ind. elec. prices (for exempted and non-exempted plants)
2008 2009 2010 2011 2012 2013

(3) REL, ct / kWh 1.12 1.33 2.05 3.53 3.59 5.28
Wedge for non-exempted, ct / kWh: (1)− (2) 0.72 0.72 0.72 0.72 0.72 0.72
Wedge for exempted, ct / kWh: (1)− [(2)− (3)] 1.84 2.05 2.77 4.25 4.31 6.00
Average wedge in range [pelec, pelec − (3)] 1.28 1.39 1.75 2.49 2.52 3.36

Notes: Data Sources: SMC by technology: Küchler and Wronski (2015), 1Production shares
by technology: Source BDEW, 12/2014 , 2Average industry electricity prices: Eurostat, Elec-
tricity prices for non-household consumers, bi-annual data (see Footnote 17).

While conventional technologies receive the market (wholesale) price of electricity, producers

from renewables (wind, hydro, and solar PV) mostly obtain fixed payments (feed-in tariffs,

FiTs), that are set above the wholesale electricity price. The first element therefore refers to

the price paid for production from each of these technologies. Similarly, as discussed in detail in

Küchler and Wronski (2015) there are several direct payments in form of tax-financed subsidies

or other financial benefits to producers of conventional electricity that need to be added to the

electricity price. The negative effects for solar, wind, and gas result from the fact that these

technologies paid a higher energy tax as should be required by the general model of energy

taxation (based on energy content and external costs) (see discussion in Küchler and Wronski

(2015)).
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Finally, the external costs resulting from each of the technologies need to be accounted for.

These mainly refer to emission related costs, but also take into account external costs due to

the possibility of nuclear accidents or material and energy costs in the production of renewable

technologies, such as solar PV panels. While electricity generation is part of the European

Emission Trading Scheme, the permit prices have been at an historic low during the period

2013 to 2014. The non-internalizable external costs, aim to account for the excess damages,

not account for by carbon prices in case of fossil fuels or other externalities. There exist a wide

vary of estimates for the external costs of nuclear energy. For a conservative value, we take the

lower bound estimate provided in Küchler and Wronski (2015).

To obtain a single SMC for electricity in 2014, we multiply the price per kWh by the respective

production shares of each technology in 2014. Note that this approach likely results in a lower

bound for the true SMC as we do not account for production from some technologies, such as

biogas or co-generation, which might receive FiTs above the market price of electricity. Similarly,

our calculations do not take into account additional costs from grid balancing (ancillary service

costs), which are typically small (less than 1% of the total energy price), and other costs from

distributional losses. Yet, the simple accounting framework provides us with a useful benchmark

to compare the SMC to the average electricity price in the industry.

Following this procedure, we obtain an SMC of electricity of 14.2 ct / kWh. This value is

higher than the average electricity price of the non-exempted firms of 13.5 ct / kWh in 2014.

Hence, we see that the an exemption from the levy increases the gap between the SMC and the

electricity price considerably. As a result, any increase in electricity use leads to welfare losses.

To assess the social damages from higher electricity use, we calculate the wedge between the

SMC and the price that firms pay when exempted and not exempted. Because we observe the

SMC only for 2014, we assume that the wedge for firms that are non-exempted is time-constant.

We consider this assumption as not very restrictive as variation in wholesale prices over time

leaves the wedge unaffected. Because we assess inframarginal price changes, we then calculate

the average wedge between the average industry price of a non-exempted plant and an exempted

plant (last row of Table F.1). We obtain an average wedge that increases from 1.28 ct/kWh in

2008 to 3.36 ct./kWh in 2013.

Under the assumption that demand for electricity is locally linear in the price range affected

by an exemption [pelec, pelec −REL], the product of the average wedge and the aggregate elec-
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tricity use change equals the welfare loss from an increase in electricity use in response to REL

exemptions.
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