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Abstract

Using a novel identi�cation approach derived from sticky price
theories with time or state-dependent adjustment frictions, we
empirically identify the e¤ect of in�ation on relative price distor-
tions. Our approach can be directly applied to micro price data,
does not rely on estimating the gap between actual and �exible
prices, and only assumes stationarity of unobserved shocks. Us-
ing U.K. CPI micro price data, we document that suboptimally
high (or low) in�ation is associated with distortions in relative
prices that are highly statistically signi�cant. At the aggregate
level, �uctuations in ine¢cient price dispersion are sizable and
covary positively with aggregate in�ation. In contrast, overall
price dispersion fails to covary with in�ation because it is mainly
driven by trends in the dispersion of �exible prices.
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1 Introduction

The monetary models employed in academia and central banks postulate
that too high (or too low) rates of in�ation give rise to distortions in
relative prices. These distortions drive many of the trade-o¤s and policy
prescriptions, e.g., the recommendation to implement low and stable
in�ation rates.1 While being central to monetary theory, there exists no
structural empirical evidence in support of in�ation distorting relative
prices.
The present paper seeks to �ll this gap and derives a novel theory-

consistent empirical approach that allows estimating the marginal e¤ect
of in�ation on relative price distortions. The paper uses this approach
to estimate the relationship between in�ation and relative price distor-
tions in the micro price data underlying the U.K. consumer price index.
It documents that in�ation is associated - at the product level - with
economically signi�cant amounts of price distortions, in line with what
sticky price theories predict. At the aggregate level, price distortions
covary positively with aggregate in�ation over time.
Documenting the relationship between in�ation and relative price

distortions is challenging for a number of reasons and the present paper
makes progress by overcoming a number of these challenges.
First, it is di¢cult to recover in�ation-induced price distortions from

price observations. Price distortions consist of the gap between the ac-
tual price charged by the �rm and the so-called ��exible price�, i.e., the
counterfactual price the �rm would charge in the absence of price rigidi-
ties.2 We formally show that the �exible price process - and therefore
the distribution of price distortions - cannot be identi�ed from micro
price data, whenever the dynamics of the �exible price contain some
stationary stochastic component.3

In light of this �nding, it may not be surprising that previous papers
documenting the relationship between price dispersion and in�ation do
not decompose price dispersion into the dispersion present under �exi-
ble prices and the additional dispersion arising from too high or too low
in�ation� e.g., Nakamura, Steinsson, Sun and Villar (2018) and Wulfs-

1See, for instance, Woodford (2003), Galí (2015), Adam and Weber (2019) or
Archarya, Challe and Dogra (2023).

2The �exible price may itself be distorted, e.g., due to market power. Distortions
due to price stickiness come on top of the distortions that are already present under
�exible prices.

3Price gaps can be estimated in the rare cases in which additional information
about marginal costs and the desired mark-up is available. Eichenbaum, Jaimovich
and Rebelo (2011) estimate price gaps using such information for supermarket goods,
but do not analyze how in�ation a¤ects price distortions.
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berg (2016). Instead, these papers highlight the di¢culties associated
with empirically recovering the gaps between the actual and the �exible
price.4

An important contribution of the present paper is to show how one
can empirically identify the marginal e¤ect of in�ation on price distor-
tions without the need to identify the level of price distortions. We show
that time and state-dependent pricing models make identical predictions
(up to a second-order approximation) on how this can be achieved using
micro price data alone: one �rst computes residual price variation around
the life-cycle trend of a product, where a product is a physical object
or a service sold in a particular location over time. In a second step,
one relates this residual variation - in the cross-section of products - to
a squared measure of the deviation of in�ation from its product-speci�c
optimal level. This structural approach is valid without imposing any as-
sumptions on the evolution of the cross-sectional distribution of �exible
prices over time.
A second challenge is related to the fact that - according to sticky

price theory - a higher in�ation rate may either increase or decrease price
distortions. The direction of the e¤ect depends on whether the current
in�ation rate lies above or below the optimal (distortion-minimizing) in-
�ation rate.5 Existing work tends to ignore this issue and often assumes
that the optimal in�ation rate is zero. Yet, the optimal in�ation rate
typically di¤ers from zero and has been found to vary systematically in
the cross-section of products (Adam and Weber (2022), Adam, Gautier,
Santoro and Weber (2022)).
To address this issue, the present paper uses measures of suboptimal

in�ation, i.e., of the di¤erence between the actual and the optimal level
of in�ation to obtain estimates of the marginal e¤ect of suboptimal in�a-
tion on relative price distortions. We show that price distortions in the
data depend on the squared value of suboptimal in�ation, in line with
the theoretical predictions. In particular, we robustly �nd that the e¤ect
of suboptimal in�ation on product-level price distortions is statistically
signi�cant in 95% of the expenditure categories underlying the U.K. con-
sumer price index. Interestingly, the notion that price distortions at the
product level are driven by the square of the in�ation rate receives no
support in our data.
The third challenge this paper addresses is that it is generally di¢cult

to establish a causal relationship between in�ation and ine¢cient price
dispersion by exploiting variation in aggregate in�ation over time: out-

4See section IV.A in Nakamura et al. (2018).
5If the optimal level of in�ation lies above (below) the actual level, then sticky

price models predict that higher rates of in�ation decrease (increase) price distortions.
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Figure 1: In�ation and price dispersion (United Kingdom, 1996-2016)

side hyperin�ationary episodes, aggregate in�ation tends to vary slowly
over time, so that its movements are often hard to distinguish from a
slow-moving time trend. Observed time trends in price dispersion might
then re�ect either the time trends in in�ation or other trends, e.g., a
secular increase in the variety of products over time.
Our empirical approach overcomes this issue by exploiting cross-

sectional variation in the product-speci�c optimal in�ation rate. This
variation is driven by product-speci�c fundamentals, e.g., the rate of
productivity progress at the product level. According to the theory,
cross-sectional heterogeneity in these product-speci�c fundamentals is
unrelated to in�ation and thus induces quasi-exogenous variation in the
gap between actual and optimal in�ation that can be exploited to esti-
mate causal e¤ects.
Using these insights, we decompose the observed cross-sectional dis-

persion of prices into two components: (i) a component re�ecting identi-
�able parts of the �exible price dispersion, and (ii) a residual component.
While the residual component fails to identify the level of price distor-
tions, one can use it to identify the marginal e¤ect of in�ation on price
distortions.
Figure 1 illustrates this decomposition. The top panel depicts the
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evolution of overall cross-sectional dispersion of log prices over time.6

Overall price dispersion in the U.K. is rising strongly and stands at a
level that is more than 50% higher in 2016 than in 1996. In�ation,
however, fails to display any trend over this time period, see the bot-
tom panel in �gure 1, which suggests that the observed upward trend
in price dispersion is unrelated to in�ation.7 Using our product-level
approach, we can in fact show that almost all of the increase in overall
price dispersion is due to increased dispersion in the identi�able parts
of the �exible price distribution, i.e., component (i) mentioned above.
Since the �exible price distribution re�ects di¤erences in productivities,
�exible-price mark-ups, or unobserved qualities across products, our ap-
proach suggests that these factors are predominantly driving overall price
dispersion in the data.
The bottom panel in �gure 1 also depicts the residual component

(ii) of overall price dispersion: this component covaries strongly with
aggregate in�ation over time, with a correlation equal to +0:58 that is
statistically signi�cant at the 1% level. According to the theory, time
variation in this measure captures time variation in relative price distor-
tions due to changes in in�ation.8 Time variation in price distortions is
quantitatively large and implies that changes in in�ation alone give rise
to an ine¢cient cross-sectional standard deviation of log prices reaching
at least 3.8% over the sample period.9

Our �nding that an increase in aggregate in�ation leads to an increase
in aggregate price distortions aligns well with key assumptions made in
monetary models and should thus increase con�dence in the economic
relevance of key policy recommendations derived from these models, e.g.,
the desirability of targeting low and stable in�ation rates. It also aligns
well with recent �ndings in Ascari, Bonmolo and Haque (2022), who
show that high in�ation rates are associated with a loss in the economy�s

6The dispersion measure is constructed by computing the variance of log prices
at the level of more than 1000 expenditure items and then aggregating across items
at each point in time using household expenditure weights. Nakamura et al. (2018)
compute aggregate price dispersion using the interquartile range of log prices and
aggregate across expenditure items using the expenditure weighted median. This
leads to very similar conclusions. We use the variance measure because the underlying
theory delivers decomposition and aggregation results for variance-based dispersion
measures only.

7Even detrended measures of overall price dispersion fail to correlate in a statis-
tically signi�cant way with in�ation.

8Due to the identi�cation problem, the level of this measure does not identify the
level of relative price distortions.

9While the dispersion measure fails to identify the level of price distortions, it can
still be used to compute upper an lower bounds for the contribution of in�ation to
price distortions.
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output potential. Relative price distortions are one source of potential
output losses associated with high in�ation rates, as emphasized in the
literature studying price-induced misallocations inferred from product
mark-ups (Baqaee, Farhi and Sangani (2022), Meier and Reinelt (2022)).
The paper is related to work by Alvarez, Beraja, Gonzalez-Rozada

and Neumeyer (2019) who estimate a nonlinear relationship between
the cross-sectional dispersion of prices and in�ation using data from Ar-
gentina. They �nd that cross-sectional price dispersion does not respond
to in�ation for in�ation rates below 10%, but rises strongly for higher
rates and eventually levels o¤. Relatedly, Sheremirov (2020) uses super-
market scanner data for the U.S. and documents how the cross-sectional
dispersion of prices for products with identical barcodes correlates with
in�ation over time. He �nds that covariation is negative when includ-
ing all prices, but turns slightly positive when excluding sales prices.10

Instead of estimating a reduced-form relationship between the cross-
sectional dispersion of prices and in�ation, our structural approach calls
for estimating across-time dispersion of prices at the level of individual
products and relating this dispersion to a product-speci�c measure of
suboptimal in�ation.
The remainder of the paper is structured as follows. Section 2 illus-

trates, using the simplest possible case, the empirical approach developed
in this paper for identifying the relationship between suboptimal in�a-
tion and ine¢cient price dispersion. Section 3 introduces the full theory
and shows how sticky price models with time or state-dependent pricing
frictions imply a regression approach that allows estimating the causal
e¤ect of suboptimal in�ation on price distortions. Section E discusses
econometric issues associated with implementing the approach and sec-
tion 4 introduces the U.K. micro price data to which it is applied. The
main empirical results, including a number of robustness exercises, are
presented in section 5. Section 6 discusses variation of aggregate price
distortions over time and their covariation with aggregate in�ation. A
conclusion brie�y summarizes. Most technical derivations can be found
in the appendix.

2 The Approach in a Nutshell

This section illustrates how one can empirically identify the marginal
contribution of suboptimal in�ation to ine¢cient price dispersion from
micro price data.
Identi�cation is achieved by considering a set of products for which

10Sara-Zaror (2022) extends the empirical approach of Sheremirov (2020) and doc-
uments that cross-sectional price dispersion strongly rises with the absolute deviation
of in�ation from zero, with the relationship becoming �atter for larger in�ation rates.
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(i) price stickiness and (ii) the shock process driving the idiosyncratic
component of the �exible price is homogeneous across products. One
can then exploit variation in the optimal in�ation rate across products
to identify the marginal e¤ect of in�ation on ine¢cient price dispersion.
This holds true even if the actual in�ation rate is constant over time.
To provide a simple example, we assume that idiosyncratic shocks are

simply absent, so that the �exible relative price evolves deterministically,
and that prices get adjusted in regular intervals every N > 1 periods
(Taylor (1979)).11 Consider product j, which is a physical object or
service sold in a speci�c location.12 The �exible optimal relative price
p�jt = P �jt=Pt of product j is the price the �rm would like to charge in
the absence of any price setting frictions and evolves deterministically
according to

ln p�jt = ln p
�
j � t � ln��j ; (1)

where p�j is a product-speci�c intercept and �
�
j a product-speci�c time

trend, capturing di¤erences in marginal costs (or other factors) across
products. Finally, suppose gross in�ation is constant and equal to �.
In this setting, the optimal in�ation rate for product j is given by

ln� = ln��j because the relative price then gets eroded at the desired
rate ln��j : the nominal price for product j can remain constant, so that
price setting frictions do no matter for tracking the desired relative price.
When ln� > ln��j (ln� < ln��j), the relative price gets eroded too
quickly (slowly). As a result, adjustments of the nominal price have to
be made to correct for the �wrong� trend induced by in�ation during non-
adjustment periods. Due to price stickiness, these adjustments occur
only occasionally, so that suboptimal in�ation leads to deviations of the
relative price from the �exible relative price.
Figure 2 illustrates the situation. It depicts the �exible relative price

ln p�jt for three products (j = 1; 2; 3), for which the �exible relative price
falls at rate ��1 < �

�
2 < �

�
3. Assuming that actual in�ation � is equal

to ��1, the �exible relative price of product 1 coincides with the sticky
relative price ln pjt, so that there are no relative price distortions. For
product j = 2, in�ation is too low, which means that the relative price
falls insu¢ciently during non-adjustment periods. To compensate for
this e¤ect, it becomes optimal to choose a relative price that is lower
than the �exible price in adjustment periods, to reduce the gap between

11These assumptions are special because they allow identifying the �exible price
from micro price data, which fails to be true under the more general assumptions
considered later on, but useful for illustrating the approach.
12Objects or services that are sold in di¤erent locations are treated as di¤erent

products. The same holds true when an existing product gets substituted by a new
product.

7



Figure 2: Relative price trends and relative price distortions (u)

the sticky and the �exible relative price over the lifetime of the sticky
price. Suboptimally low in�ation thus leads to a deviation of the sticky
relative price from the �exible relative price. This deviation is even
stronger for product j = 3, which has a higher optimal in�ation rate and
- in adjustment periods - a relative price that is even further below the
�exible relative price. A larger gap between in�ation and the optimal
in�ation rate thus gives rise to larger deviations of the sticky relative
price from the �exible relative price.
Since symmetric arguments apply when in�ation is higher than opti-

mal in�ation, it is easy to verify that the variance of the gap u between
the sticky relative price around its time trend, i.e., the variance of price
distortions, is a function of the square of suboptimal in�ation:

V ar(uj) = c � (ln�� ln��j)2 (2)

where

c =
N � (N � 1) � (N + 1)

12
> 0

depends positively on the degree of price stickiness N > 1:
An important insight developed in this paper is the fact that the

relationship between suboptimal in�ation and ine¢cient price dispersion
in equation (2) can actually be estimated using micro price data because
(i) the product-speci�c optimal in�ation rate ��j is identi�ed by the time
trend in the sticky relative price, see �gure 2, and (ii) price distortions,
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i.e., the gaps between the actual and the �exible price, are identi�ed
by the residuals of a regression of actual prices on a time trend, as
illustrated in �gure 2. Thus micro price data su¢ces to test whether
price distortions vary with suboptimal in�ation rates, i.e., whether c > 0,
as predicted by sticky price theory.
While property (ii) fails to be true when the �exible price also de-

pends on unobserved idiosyncratic shocks, we show in the next section
that the presence of such shocks only requires adding a constant to equa-
tion (2). This holds true even when considering more plausible pricing
setting frictions, such as Calvo or menu-cost frictions, as we show in the
following section.

3 Identifying Ine¢cient Price Dispersion: Theory

This section uses sticky price theory to derive a regression equation
that allows identifying the marginal e¤ect of suboptimal in�ation on
ine¢cient price dispersion using micro price data. The regression ap-
proach turns out to be independent (to a second-order approximation)
of whether price adjustment frictions are of a time-dependent or state-
dependent nature and can be directly applied to micro price data. It
does not require imposing any assumptions on the behavior of the cross-
sectional distribution of �exible prices over time. Section 3.1 considers
time-dependent price-setting frictions and section 3.2 presents the case
with state-dependent frictions.

3.1 Time-Dependent Price Setting Frictions

The price setting problem. We consider the �nest possible product
speci�cation in which a product j is a physical object or service sold
in a speci�c location over time. Otherwise identical objects or services
that are sold in di¤erent locations are treated as di¤erent products in
our approach. The same holds true whenever an existing product gets
substituted by a new product.
As before, let pjt � Pjt=Pt denote the relative price charged for prod-

uct j, where Pjt denotes the nominal product price and Pt the price index
of all competing goods within a narrowly de�ned expenditure item.13

Similarly, let p�jt denote the �exible relative price, i.e., the price the �rm
would like to charge in the absence of price setting frictions. The �exible
price can di¤er from the (socially) e¢cient relative price.14

13In our empirical application, we will consider more than 1000 di¤erent expendi-
ture items. To simplify notation, we do not separately index the expenditure item in
this section.
14This may be due the presence of product-speci�c monopoly mark-ups. In the

special case, where desired monopoly mark-ups are identical across products or simply
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A second-order approximation to the nonlinear optimal price setting
problem with Calvo price adjustment frictions is then given by15

max
ln pjt

�Et
1X

i=0

(��)i
�
ln pjt � i ln�� ln p�jt+i

�2
; (3)

where the parameter � 2 (0; 1) denotes the �rm�s discount factor, � 2
(0; 1) the Calvo probability that the price cannot be adjusted in the
period, and � the gross in�ation rate. The �rm�s relative price in period
t + i is given by ln pjt � i ln�, which shows that the reset price ln pjt
chosen by the �rm gets eroded over time by in�ation, as long as prices
fail to adjust. Deviations of the �rm�s relative from its �exible optimal
price ln p�jt+i give rise to pro�t losses that are quadratic in the size of the
deviation.

The dynamics of the �exible price. A key object of interest in
problem (3) is the �exible (or frictionless) relative price p�jt. This price
is observed by the �rm but not by the econometrician. We consider the
following general stochastic process:

ln p�jt = ln p
�
j � t � ln��j + ln xjt: (4)

The term ln p�j is an unobserved product �xed-e¤ect that is drawn at the
time of product entry from some arbitrary and potentially time-varying
distribution. It is a stand-in for unobserved location-speci�c e¤ects such
as di¤erence in the level of marginal costs, wages, rents, service or quality
components of the product. It also captures the presence of product and
location-speci�c �exible price mark-ups.
The variable��j in equation (4) captures a product-speci�c time trend

in the relative price and also denotes the product-speci�c optimal in�a-
tion rate, as discussed in section 2. It is drawn at the time of product
entry from an arbitrary distribution that may also depend on time. The
trend in relative prices may re�ect a product-speci�c rate of productivity
progress, induced for instance by learning-by-doing e¤ects, or product-
speci�c marginal cost trends induced by trends in wages or rents that are
speci�c to the particular location where the product is sold. It is well-
known that the strength of these e¤ects varies across products16 and
we will exploit the variation in ��j below to identify the distortionary
e¤ects of in�ation. We consider a linear time trend in relative prices
because the relative price dynamics of newly introduced products are

absent, the frictionless relative price is equal to the e¢cient relative price.
15See Appendix C.1 for a derivation.
16Adam and Weber (2022) document this for the U.K and Adam, Gautier, Santoro

and Weber (2022) for France, Germany and Italy.
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well-approximated by a linear trend.17 Yet, in our empirical analysis we
also consider nonlinear time trends.
Finally, there is an idiosyncratic stochastic component ln xjt in equa-

tion (4), which captures �uctuations induced by changes in productivity
or service components at the product level. The absence of a common
component in these shocks is justi�ed on the grounds that the left-hand
side of equation (4) features the log relative price, thus absorbs com-
mon components in the nominal price (at the level of a narrowly-de�ned
expenditure category). The stochastic process governing these idiosyn-
cratic components is assumed to be the same for all products within a
narrowly-de�ned expenditure category and satis�es the following restric-
tion:

Assumption 1: Idiosyncratic shocks ln xjt are stationary and Markov.

Assumption 1 e¤ectively rules out that idiosyncratic shocks ln xjt
follow a random walk. This seems innocuous because our data strongly
reject a random walk in ln xjt, as appendix B.18 We can thus normalize
idiosyncratic shocks so that E[ln xjt] = 0.
Note that the cross-sectional distribution of �exible prices is allowed

to vary over time in important ways, even when abstracting from idio-
syncratic shocks: (i) for a given set of products, heterogeneity in the
relative price trends ��j induces changes in the cross-sectional distrib-
ution of the �exible relative prices; (ii) as products exit and enter the
market, newly entering products may have di¤erent product-speci�c in-
tercepts p�j and time trends �

�
j than exiting products. Since the para-

meters (p�j ;�
�
j) of newly incoming products are drawn from arbitrary

time-varying distributions, our setup imposes no restrictions on the evo-
lution of the cross-sectional distribution of �exible relative prices over
time.

The optimal reset price. Considering the limit � ! 1, the optimal
reset price ln poptjt solving problem (3) is given by19

ln poptjt = (ln p
�
jt � ln xjt) +

�
�

1� �

�
(ln�� ln��j) + f(xjt); (5)

where

f(xjt) � (1� �)Et
1X

i=0

�i ln xjt+i: (6)

17See �gure A.XI in the November 2018 working paper version of Argente and Yeh
(2022), which depicts the relative price dynamics of newly introduced products using
scanner data.
18This �nding does not depend on assuming Calvo frictions.
19See appendix C.1 for a derivation.
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The �rst term on the r.h.s. of equation (5), ln p�jt � ln xjt, captures the
deterministic component of the �exible price (4). The second term cap-
tures the e¤ects induced by deviations of actual in�ation ln� from the
product-speci�c optimal in�ation rate ln��j . The last term in equation
(5) captures e¤ects due to the presence of time-varying idiosyncratic
components. Equation (6) shows that it is the expected value of the
idiosyncratic shock over the lifetime of the price that matters for this
component.
Only the second term on the r.h.s. of equation (5) depends on in-

�ation. If actual in�ation exceeds optimal in�ation (ln� > ln��j), then
the reset price gets pushed up to compensate for the suboptimally high
rate of future erosion of the relative price during periods in which the
price does not adjust. The opposite is true if actual in�ation falls short
of optimal in�ation (ln� < ln��j).
Importantly, the optimal reset price ln poptjt is equal to the expected

value of the �exible price over the expected lifetime of the price. There-
fore, an initial period in which relative prices lie above (below) the �ex-
ible price is followed - in expectation - by a period in which the relative
price falls short (exceeds) of the �exible price. This explains how -
according to the theory - deviations of in�ation from its optimal level
induce additional dispersion of prices around the �exible level. This ef-
fect is stronger if prices are more sticky: for a given deviation of in�ation
from its optimal level, reset prices react by more, the higher is the degree
of price stickiness (�).

The dynamics of the actual relative price. While equation (5)
determines the optimal reset price in periods where prices adjust, the
dynamics of the actual relative price for product j are given by

ln pjt = �jt(ln pjt�1 � ln�) + (1� �jt) ln poptjt ; (7)

where �jt 2 f0; 1g is an iid random variable capturing periods with price
adjustment (�jt = 0 with probability 1� �) and no-adjustment (�jt = 1
with probability �). In periods in which the price does not adjust, the
relative price falls with in�ation.
It also follows from equation (7) that the actual relative price inherits

the product-speci�c time trend present in the optimal price poptjt , which
in inherits the trend from the �exible price p�jt; see equation (5). We
show next that the variability of the actual price ln pjt around this trend
is a function of (i) the deviation of in�ation from its optimal level, and
(ii) the idiosyncratic shocks ln xjt. This insight turns out to be key
for identifying the marginal e¤ects of suboptimal in�ation on ine¢cient
price dispersion.
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The �rst-stage regression. The �rst step in estimating the e¤ects
of ine¢cient price dispersion consists of running OLS regressions of the
form

ln pjt = ln aj � (ln bj) � t+ ujt; (8)

which regress the relative product price on a product-speci�c intercept
and time trend. To simplify the exposition, we abstract from small
sample issues and focus on population regressions.20 Regression (8) is of
interest for two reasons. First, the coe¢cient estimates deliver21

dln aj ! ln p�j
dln bj ! ln��j ; (9)

which shows that the regression allows recovering the deterministic com-
ponents of the �exible relative price, i.e., the intercept term p�j and the
product-speci�c optimal in�ation rate ��j . Since the actual relative price
follows - in terms of its level and time trend - these deterministic dy-
namics, the e¤ects of ine¢cient price distortions must be contained in
the residuals of regression (8). In fact, these residuals are the second
reason why regression (8) is of interest. They are asymptotically given
by22

ujt = �jt(ujt�1� (ln�� ln��j)) + (1� �jt)(f(xjt) +
�

1� �(ln�� ln�
�
j))

(10)
where �jt = 0 captures periods in which the price gets adjusted and
�jt = 1 captures periods without adjustment, and where f(xjt) is de�ned
in equation (6). We next discuss the properties of the the regression
residuals (10).

The level of ine¢cient price dispersion is not identi�ed. Due to
price stickiness (� > 0), the regression residuals ujt in (10) fail to be very
informative about the idiosyncratic shocks, as previously emphasized by
Nakamura, Steinsson, Sun and Villar (2018). The underlying intuition
is straightforward: in periods where prices do not get adjusted, they
reveal no new information about idiosyncratic shocks; and in periods,
where prices get adjusted, their adjustment gives considerable weight
to expected future values of the idiosyncratic shock, particularly when
prices are sticky, see equation (6).
Due to the in�uence of expected future shock values, the informa-

tion that becomes available upon a price adjustment, i.e. the term f(xjt)

20Small sample e¤ects are discussed in detail in appendix E.
21See appendix C.2 for a formal derivation.
22See appendix C.3 for a derivation.
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de�ned in equation (6), fails to identify the underlying process of idio-
syncratic shocks ln xjt. Appendix A proves the following result:

Proposition 1 In the presence of price stickiness, observed prices ln pjt
fail to identify the process for idiosyncratic shocks ln xjt. Consider, for
example, a stationary discrete N-state Markov process for f(xjt). It can
be generated either by a stationary Markov processes for ln xjt with N
states or an in�nite number of di¤erent Markov processes with M � N
states, where M is arbitrary and where M � N states in the M-state
process are not states in the N-state process.

Intuitively, di¤erent fundamental processes for ln xjt give rise to iden-
tical processes for f(xjt), because they imply the same conditional expec-
tations in equation (6). Since the process for ln xjt cannot be identi�ed
from observed prices, it is impossible to estimate �price distortions�, i.e.,
the gap between the actual and �exible price. This may explain why the
literature has to date not come up with an estimate of how ine¢cient
price dispersion responds to (suboptimal) in�ation.
It is worth emphasizing that the result in proposition 1 applies more

generally to the case where ln xjt is non-stationary but still contains
some stationary component, e.g., when ln xjt is the sum of a random
walk process ln yjt plus an independent stationary Markov process ln zjt.
We then have f(ln xjt) = ln yjt + f(ln zjt), so that the process ln zjt and
thus ln xjt can again not be identi�ed, even if the process for ln yjt could
be perfectly recovered from the data.
One way to deal with the identi�cation problem is to bring in addi-

tional information. This is the strategy pursued in Eichenbaum, Jaimovich
and Rebelo (2011) who exploit information on marginal costs in super-
markets to identify price distortions (but do not analyze how they de-
pend on in�ation). Yet, information on marginal costs is only rarely
available.
An alternative approach to handle the identi�cation problem is to

impose additional identi�cation assumptions. This is the approach pur-
sued in Baley and Blanco (2021) and Alvarez, Lippi and Oskolkov (2022),
who show that the distribution of price distortions can be recovered from
observed price changes, whenever ln xjt is a pure random walk, i.e., does
not contain stationary shock components. With a random walk, we have
f(xjt) = ln xjt, so that the size of innovations between price reset times
identi�es the innovation variance of the random walk. Yet, the hypoth-
esis of a pure random walk in ln xjt is strongly rejected in our data, as
we show in appendix B.
We now show that it is simply not necessary to identify the level of

price distortions to estimate the marginal e¤ects of suboptimal in�ation
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on price distortions. We discuss this point in the next subsection.

Second-stage regression: the marginal e¤ect of suboptimal in-

�ation. While the level of price distortions cannot be identi�ed from
observed prices, the theory predicts that the marginal e¤ect of sub-
optimal in�ation on price dispersion can be identi�ed. In fact, equa-
tion (5) highlights that any non-zero gap ln� � ln��j generates front-
loading of prices upon price adjustment times, as captured by the term
�
1��(ln� � ln��j). Likewise, during non-adjustment periods, a gap be-
tween actual and optimal in�ation leads to a drift in the gap between
actual and �exible relative prices. Both of these features contribute to
increasing the variance of the regression ujt in the �rst-stage regression
(10).
Therefore, the variance of �rst-stage residuals satis�es the following

relationship:23

Proposition 2 The variance of the �rst-stage residual in equation (8)
is given by

V ar(ujt) = v + c � (ln�� ln��j)2; (11)

where the intercept

v � V ar
 
(1� �)Et

1X

i=0

�i ln xjt+i

!
(12)

is a function of the idiosyncratic shock process ln xjt and the price stick-
iness parameter �, and

c � �

(1� �)2 : (13)

The intercept term v in equation (11) contains both e¢cient price
components, e.g., the presence of idiosyncratic fundamental shocks, and
ine¢cient price components that arise due to price stickiness, see equa-
tion (12). In particular, price stickiness causes the loading on the cur-
rent idiosyncratic shocks to be too low relative to the �exible price case.
Without additional information, it is impossible to further decompose
to what extent v re�ects e¢cient or ine¢cient forces, which is precisely
the feature preventing identi�cation of the level of price distortions from
observations of actual prices. The second term on the r.h.s. of equa-
tion (11) captures the e¤ects of suboptimal in�ation on ine¢cient price
dispersion. According to the theory, the coe¢cient c is an increasing
function of the degree of the Calvo price stickiness parameter �.

23See appendix C.3 for a derivation.
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Equation (11) is a second-stage regression equation and a key equa-
tion we shall exploit in the present paper. It uses the residual variance
from the �rst-stage equation (8) as left-hand side variable, and the gap
between the (item-level) in�ation rate � and the product-speci�c opti-
mal in�ation ��j as right-hand side variable, where �

�
j is also identi�ed

from the �rst-stage regression, see equation (9). Equation (11) implies
that the marginal e¤ect of suboptimal in�ation on ine¢cient price dis-
persion can be estimated using a cross-section of products for which price
stickiness and the process driving idiosyncratic shocks are the same.
Appendix E describes in detail the two stage estimation approach

that allows estimating the coe¢cient c. It shows that the second-stage
estimate for c is biased towards zero, due to the presence of �rst-stage
estimation error. The second-stage estimate of c thus provide a lower
bound of the true marginal e¤ect of suboptimal in�ation on price distor-
tions. Since we are interested in rejecting the null hypothesis of in�ation
not creating ine¢cient price dispersion (H0 : c = 0), this works against
our main �nding.
The next section brie�y shows that the results derived thus far are

not speci�c to the case with Calvo frictions, but also apply in a setting
with menu-cost frictions.

3.2 State-Dependent Price Setting Frictions

We now present a model with state-dependent pricing. To be able to
get closed-form solutions, we consider a continuous-time setup and a
slightly more restrictive process for the idiosyncratic shocks. Within
this setup, we derive continuous-time analogue to proposition 2. The
�rm�s objective (3) becomes:

max
f�ji;� ln pjig1i=1

�E
"Z 1

t

e��(s�t)
�
ln pjt+s � ln p�jt+s

�2
ds+ �

1X

i=1

e��(�ji�t)

#

(14)
The parameter � > 0 is the discount rate, �ji are the random adjustment
times and � is the cost paid at the times of adjustment. As with time-
dependent frictions, the �rm�s relative price in period �ji + s is given
by ln pj�ji � s ln� between adjustment periods, re�ecting relative price
erosion due to in�ation.
The �exible relative price ln p�jt follows a continuous-time analogue

of (4) with an additional restriction on the idiosyncratic process ln xjt,
namely that it assumes values from a �nite grid fln x1; : : : ; ln xNg and
switches from grid point i to grid point j with Poisson intensity �Xij .

24

24The restriction is very mild because we do not impose any assumption on the
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Appendix D shows that under �! 0 and for su¢ciently small adjust-
ment cost �;25 the OLS regression (8) recovers the exact same coe¢cients
as in the time-dependent model. Furthermore, the variance of residuals
depends on product-speci�c suboptimal in�ation:

V ar(ujt) = V ar(ln x) + c
MC � (ln�� ln��j)2 +O((ln�=��j)4); (15)

where the intercept is again a function of the idiosyncratic shock process,
the quadratic term depends on suboptimal in�ation, and O((ln�=��j)

4)
denotes a fourth order approximation error. The coe¢cient cMC is now
a function of the shock process parameters �Xi =

PN

j 6=i �
X
ij :

cMC � E
"

1

(�Xi )
2

#
:

If �Xi is constant across states, then

cMC =
1

�2
(16)

where � is equal to the adjustment frequency (again up to a fourth
order approximation error O(( ln�=��j)

4)) and thus can be directly esti-
mated from the data. The coe¢cient cMC di¤ers slightly from the one in
the discrete time setup with Calvo friction, see equation (13), for which
� = 1 � �. This is so because multiple price adjustments can happen
per unit of time under continuous time modeling. Notice also that the
coe¢cient cMC does not depend on the menu cost �, under the main-
tained assumption that menu costs are small enough. Di¤erences in �
have only fourth order e¤ects in equation (15). This is the reason why
equation (15) now holds only up to a fourth-order approximation error,
while it was exact in the Calvo setup (given the quadratic approximation
to the �rm objective), see equation (11).
Perhaps surprisingly, the results obtained from the state-dependent

model are (to the consider order of approximation) virtually the same
as for the time-dependent model.

4 Data Description

We use the micro price data underlying the o¢cial U.K. consumer price
index (CPI) for the sample period February 1996 to December 2016,

switching intensities. Even though we are ruling out all processes with continuous
paths, we can still approximate them well with a su¢ciently �ne grid.
25Note that we do not consider a limiting case �! 0, instead our result holds for

all � � �� for some �� > 0.
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as obtained from the O¢ce of National Statistics (ONS). The data are
monthly and classi�ed into narrowly de�ned expenditure items (e.g., �at
panel TV 33inch, men�s shoes trainers, vegetarian main course, etc.).
Given the sample selection described further below, we consider 1033
di¤erent expenditure items and 15.4 million price observations over the
considered 20 year period.
A product within an item is a sequence of price observations for a

particular object or service sold in a particular store. The product life
ends whenever a product substitution takes place or when the product
rotates out of the sample.
We then estimate the �rst-stage equation (8) for every product in the

sample and estimate the second-stage equation (11) at the level of the
expenditure item z = 1; ::::1033, considering all products j belonging to
the item, i.e., we estimate

dV ar(ujzt) = vz + cz � ( \ln�z=��jz)
2 + "jz (17)

where dV ar(ujzt) is the variance of �rst-stage residuals of product j in
item z and \ln�z=��jz the corresponding �rst-stage estimate of the gap
between the item-level in�ation rate and product-speci�c optimal in�a-
tion.26 Estimation of equation (17) delivers 1033 estimates cz, one for
each expenditure item. We focus in our analysis on the item-level rather
than on the aggregate level because doing so increases the chances that
our two key identifying assumptions (identical degrees of price rigidity &
identical stochastic processes driving idiosyncratic shocks) are satis�ed.
The data methodology follows the one used in Adam and Weber

(2022), who provide further details. Starting from the raw micro price
data, we delete products with duplicate price observations in a given
month27 and also delete all price observations �agged by ONS as �in-
valid.� Furthermore, we split observed price trajectories for ONS product
identi�ers, whenever ONS indicates a change in the underlying product,
i.e., a comparable or non-comparable product substitution, and when-
ever price quotes are missing for two months or more. This conservative
splitting approach insures that we do not lump together products that
might in fact be di¤erent. It leads to a re�ned product de�nition that
we use to compute relative prices by de�ating nominal product prices
with a quality-adjusted item price index.

26See appendix E for details of the estimation approach, including arguents showing
why two-stage estimation approach only biases the coe¢cient cz towards zero, i.e.,
against �nding a role for suboptimal in�ation on ine¢cient price dispersion.
27Duplicate price quotes can arise because the U.K. O¢ce of National Statistics

(ONS) does not disclose all available locational information underlying the data, so
that in rare cases we cannot uniquely identify the product price.
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Total number of price quotes used 15.4 million

mean median min max
Number of products per item 816 637 101 3,490
Number of price quotes per item 14,861 11,095 608 73,301

Table 1: Basic product and price statistics

We only include expenditure items for which the item price index,
computed from our micro price data, replicates the o¢cial item price
index provided by ONS su¢ciently well. This leads to a selection of
1093 expenditure items from the 1233 contained in the raw data. Fur-
thermore, we only consider products with a minimum length of six price
observations and expenditure items containing at least one hundred of
such products.28 This leads us to the 1033 expenditure items that we
use in our empirical analysis.29 Table 1 reports basic statistics on the
number of products and price observations.

4.1 Descriptive Statistics of the Regression Inputs

This section presents key descriptive statistics about the variables enter-
ing the �rst and second-stage regression equations. Since we run these
regressions for more than one thousand expenditure items, we report
the distribution of key moments of the variables of interest in the cross-
section of items.
The left column in �gure 3 depicts the distribution of the mean and

standard deviation of the length of product life. For most items, the
mean product length ranges between 10 and 25 months, which is long
enough to estimate an intercept and slope parameter in our �rst-stage.
The bottom left panel in �gure 3 highlights that there is a considerable
amount of variation in the length of product lives within each item. We
exploit this feature below to present estimates that are based on products
whose price can be observed for at least twelve (instead of six) months.
The top right panel in �gure 3 reports the distribution of the meanR2

values of the �rst-stage regression (46) across items. For most items, the
intercept and time trend tend to capture on average between 30% and
50% of the observed variation in relative prices. The remainder of the

28We also eliminate expenditure items for which the estimated residual variances
are zero for all products. The latter occurs when prices never adjust within an item,
which is the case for less than a handful of items capturing administered prices.
29Not all these items are present throughout the sample period, as expenditure

items get added and removed. For the average year, we have 503 expenditure items.
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Figure 3: Descriptive statistics: �rst-stage regression

variation goes into the regression residual, the variance of which enters
our second-stage regression. The bottom right panel in �gure 3 depicts
the distribution of the mean autocorrelation of these residuals. The
autocorrelation is signi�cantly below one, showing that the assumption
of a random walk is implausible given our data.30

The top left panel of �gure 4 reports the mean standard deviation
of the regression residual across items.31 For most items, the average
standard deviation ranges between 2% and 4%. The standard deviation
of the standard deviation of residuals is shown in the bottom left panel
of �gure 4. It highlights that there is a considerable amount of variation
in the left-hand side variable of our second-stage regression, which is
desirable.
The top right panel in �gure 4 depicts the distribution of item-level

means of the suboptimal in�ation rate.32 For the vast majority of items,
the average suboptimal in�ation rate lies between �0:5% per month.
The lower right panel in �gure 4 shows the within-item standard devia-
tion of suboptimal in�ation. The cross-product variation is signi�cant,
with a standard deviation ranging between 1/3 and 2/3 of a percent on

30See appendix B for formal tests of the random walk hypothesis, which are based
on price observations form price adjustment periods.
31We report moments of the non-squared variables entering the second-stage re-

gression to increase readability of the �gures.
32See appendix F for information on the cross-sectional distribution of the product-

speci�c optimal in�ation rate ��jz.

20



Figure 4: Descriptive statistics: second-stage regression

a monthly basis in most items. This shows that our second-stage right-
hand side variable also displays a considerable amount of variation.

5 Price Distortions at the Product Level: Empiri-

cal Results

This section reports our estimates of the coe¢cient cz in equation (48),
which captures how suboptimal in�ation distorts relative prices. We
perform the estimation at the level of 1033 �nely disaggregated expen-
diture categories, the so-called U.K. expenditure items, to ensure that
the key identifying assumptions of identical degrees of price rigidity and
identical stochastic processes for idiosyncratic disturbances hold.
Our baseline results are presented in section 5.1 and the subsequent

section documents their robustness along a number of dimensions. An al-
ternative estimation approach, which exploits only within-product vari-
ation, is presented in section 5.3 and leads to very similar conclusions.

5.1 Baseline Results

Figure 5 presents overwhelming evidence of the notion that suboptimal
in�ation gives rise to price distortions at the product level. It depicts the
distributions of the estimated intercepts (top left panel) and the coe¢-
cients of interest cz (top right panel) obtained from estimating equation
(17) across 1033 expenditure categories z. The coe¢cient cz captures the
marginal e¤ect of suboptimal in�ation on ine¢cient price dispersion. In
line with the underlying sticky-price theories, 97% of the estimated co-
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Figure 5: Baseline results from estimating equation (17)

e¢cients are positive.
The bottom row in �gure 5 reports the distribution of t-statistics of

the coe¢cients shown in the corresponding top panels. It shows that
95% of the estimated coe¢cients cz have a t-statistic larger than two,
while only 0.5% have a t -statistic below minus two.
Moreover, the mean R2 value of the second-stage regression (17) is

17%, which highlights that suboptimal in�ation explains a sizable part
of the cross-product variance of �rst-stage residuals.33 This is the case
despite �rst-stage estimation error contributing to unexplained variance
in our second stage regression.
The point estimates for cz are not only positive and statistically sig-

ni�cant for the vast majority of expenditure categories, but also quan-
titatively large: the average point estimate is equal to 10 and implies
that a monthly in�ation rate that lies 1% above (or below) its optimal
level34 increases the variance of the �rst-stage residual by 0.1% and thus

33Recall that item-speci�c constants do not contribute to the R2 values of the
second-stage regressions (17).
34The 1% number is approximately equal to two times the median value of the

standard deviation of the in�ation gap in the data, see the lower right panel in �gure
4.
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Figure 6: Estimation with actual in�ation only on r.h.s. (equation (18))

its standard deviation by 3.2 percentage points, which appears sizable.35

Since �rst-stage estimation error causes the second-stage estimates of cz
to be biased towards zero, we refrain here from a further quantitative
interpretation of the point estimates. Instead, we will assess in section 6
the quantitative importance of relative price distortions using (unbiased)
�rst-stage estimates only.

In�ation versus Suboptimal In�ation. It turns out to be impor-
tant for our empirical results that the right-hand side of equation (17)
features suboptimal in�ation rather than simply the level of in�ation. To
show this, we estimate the alternative second-stage regression

dV ar(ujzt) = vz + cz � (\ln�jz)2 + "jz; (18)

where \ln�jz denotes the average item-level in�ation rate during the
lifetime of product j. This speci�cation counterfactually imposes zero
optimal in�ation rate for all products. Figure 6 shows that the coe¢-
cients cz are then more or less symmetrically centered around zero with
most of them being statistically insigni�cant: only 20% of coe¢cients
have a t-statistic larger than two, while 12% have a t-statistic below
minus two. Thus, one would wrongly conclude that in�ation produces
no price dispersion, if one assumed that the product-speci�c optimal
in�ation is equal to zero, as the simplest sticky price models actually
suggest. This result also highlights that our baseline �ndings emerge
due to cross-sectional variation in the product-speci�c optimal in�ation
rate.
35The reported increase in the standard deviation assumes that fundamental shocks

and measurement error are absent (vz = "jz = 0) in equation (17).
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Figure 7: Obseved (�z) and estimation-implied (�cz) price adjustment
rates.

Price Stickiness. The underlying sticky price theories suggest that
the coe¢cient cz increases in the degree of price stickiness, see equations
(13) and (16). We now investigate the empirical relationship between
the estimated coe¢cient cz and the observed price adjustment rate at
the item level.
In a continuous time setup, with constant price adjustment rate �z

in item z, the share of non-adjusters per unit of is equal to e��z . The
monthly share of non-adjusters �z in item z can be measured directly
from the data, which provides an estimate of the implied instantaneous
price adjustment rate:

�z = � ln�z:
We compare this estimate to the estimate implied by our regression
coe¢cients cz. To this end, we back out an implied instantaneous price
adjustment rate from cz using our theory. This delivers36

�cz =

s
1=

�
cz +

1

12

�
:

36This follows from equation (13), which implies

cz =
�z

(1� �z)2
=

e��z

(1� e��z )2

=
1

(�z)
2
� 1

12
+O(�2z);

where the approximation in the last equality is taken for the limit �z ! 0. Using the
menu cost setup, we arrive at very similar implications, namely: cz = 1= (�z)

2�1=12.
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Figure 8: Robustness to adding a linear term (equation (19))

Figure 7 presents a scatter plot with observed price adjustment rate
(�z) on the y-axis and the estimation-implied adjustment rate (�cz) on
the x-axis. While both measures display a strongly positive correlation
equal to +0:6, the linear regression line in �gure 7 has a slope that is
equal to 0.34 only, while the predicted slope is unity. This is consistent
with a substantial downward bias in our estimated coe¢cients cz, due
to the presence of �rst-stage estimation error. Nevertheless, the posi-
tive correlation between observed and implied price adjustment rates is
encouraging and in line with the underlying theory.

5.2 Robustness of Baseline Approach

We now explore the robustness of our baseline results in a number of
directions.

Adding Linear Terms. Sticky price theories predict that only the
squared deviation of in�ation from its optimal level should explain vari-
ance of the �rst-stage regression residuals. In particular, a linear term
consisting of the gap between in�ation and its optimal level should have
a zero coe¢cient. We test this overidentifying restriction by running
regressions of the form

dV ar(ujzt) = vz + vlz � \ln�z=��jz + cz � ( \ln�z=��jz)
2 + "jzt (19)
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Figure 9: Longer price series in �rst stage (at least 12 price observations)

and checking whether vlz � 0. We also check whether the estimates for
the coe¢cients cz remain una¤ected by the presence of the linear term.
Figure 8 reports the distribution of the estimates of vlz (top left

panel), the estimated coe¢cient cz (top right panel), and the distrib-
ution of t-statistics for these coe¢cients (corresponding bottom panels).
In line with sticky price theory, the coe¢cients vlz are indeed tightly cen-
tered around zero. Moreover, the distribution of estimated cz and the
distribution of associated t-statistics hardly move relative to the base-
line.

Reducing First-Stage Estimation Error. One possible economet-
ric concern with the baseline estimation approach is that �rst-stage esti-
mation errors are large and lead to substantial attenuation in the second
stage. The quantitative relevance of possible attenuation e¤ects can be
evaluated by restricting attention to products in the �rst stage sample
to products with a su¢ciently large number of price observations. Thus,
we consider only products with at least 12 monthly price observations
(rather than six). If the concern is valid, this subsample should increase
the point estimates in the second stage.
The left panel in �gure 9 compares the distribution of the estimated

coe¢cients cz to the baseline outcome. As expected, the distribution
of estimates moves to the right, suggesting that �rst stage estimation
errors lead to a downward bias in the second stage baseline estimates.
However, the distribution of t-statistics, displayed in the right panel of
�gure 9, remains largely una¤ected, possibly due to the decline in the
number of observations in the second-stage.

Including Sales Prices. Our baseline estimation removes all sales
prices from the sample, mainly because the underlying sticky price theo-
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Figure 10: Estimation including sales prices

ries typically do not model sales. Our results are robust to including also
sales prices in the estimation, as shown in �gure 10: the distribution of
estimated coe¢cients cz (left panel) and t-statistics (right panel) remain
almost una¤ected by the inclusion of sales prices.

Nonlinear Time Trends. Our baseline approach allows for a linear
time trend in relative prices in the �rst-stage regression equation (8).
Importantly, the linearity assumption is no crucial for our empirical re-
sults. To illustrate this, we recompute the �rst-stage residuals allowing
also a quadratic time trend and then use the residuals obtained this ways
in our second-stage regression (11). The outcome is depicted in �gure
11. It shows that the point estimates for the coe¢cient cz are then some-
what closer to zero, possibly due to attenuation e¤ects associated with a
more noisy �rst-stage estimate of the linear coe¢cient. Still, more than
97% of the point estimates are positive and 93% of all coe¢cients have a
positive t-statistic larger than two, which is very similar to the baseline
result.

5.3 Exploiting Within Product Variation

The baseline estimation exploits cross-sectional variation across products
within narrowly de�ned expenditure categories to identify the coe¢cient
cz. An important identifying assumption is that idiosyncratic shocks are
driven by the same stochastic process for all products within an item.
Equations (11) and (15) show that product-speci�c processes for idio-

syncratic shocks would give rise to product-speci�c intercepts in the
second-stage regression. If unobserved shock heterogeneity varies sys-
tematically with our second-stage regressor (the squared of suboptimal
in�ation), then second stage estimates could be driven by heterogeneity
in unobserved shock processes, rather than the e¤ect of in�ation on price
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Figure 11: Nonlinear time trend in �rst-stage regression

dispersion.
We address this concern by also estimating the coe¢cient of interest

cz using only within-product variation. Speci�cally, we split the life
of each product into its �rst and second half and exploit variation in
item-level in�ation across the two lifetime subsamples to estimate cz.
Since equation (17) holds for either subsample, we can then take �rst
di¤erences of equation (17) and estimate

dV ar1(ujzt)�dV ar2(ujzt) = cz
��

\ln�1z=�
�
jz

�2
�
�
\ln�2z=�

�
jz

�2�
+ "jz;

(20)
where dV ar1(ujzt) and dV ar2(ujzt) denote the residual variances in the
�rst and second half of the product lifetime, respectively, and \ln�1z=�

�
jz

and \ln�2z=�
�
jz the respective suboptimal in�ation rate.

37 Speci�cation
(20) is considerably more demanding than our baseline speci�cation, as
it relies purely on variation of suboptimal in�ation over the product
lifetime, rather than on cross-product variation in suboptimal in�ation,
as is the case in our baseline.
Figure 12 depicts the regression outcomes and compares them to our

baseline �ndings.38 The estimated coe¢cients in the left panel tend to
be even larger than in our baseline speci�cation. At the same time, they
tend to be estimated less precisely, causing a shift in the distribution of
t-statistics in the right panel of �gure 12 towards zero. Nevertheless, the

37This rate can be obtained by estimating equation (47) in appendix E separately
for the �rst and second half of product lifetime.
38To alleviate concerns about a missing constant, we also add a constant to re-

gression equation (20). The speci�cation without the constant leads to very similar
outcomes.
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Figure 12: Estimation using within product variation (equation (20))

share of point estimates with a t-statistic larger than two still stands
at 88%, while only 2% of the estimated coe¢cients have a t-statistic
below minus two. This strongly suggests that our baseline results are
not driven by unobserved product heterogeneity in the underlying idio-
syncratic shock processes.

6 Cross-Sectional Price Dispersion over Time

The analysis so far focused on price distortions at the product and item
level. This section considers the cross-sectional distribution of prices and
shows how to decompose it into (i) a component capturing elements of
the �exible price distribution, and (ii) and a remainder identifying vari-
ation in ine¢cient price dispersion over time. Ine¢cient price dispersion
covaries positively with aggregate in�ation over time, as shown in our
introductory �gure 1, and is sizable in absolute terms. At the same time,
ine¢cient price dispersions is modest in size relative to overall price dis-
persion. As one might expect, most time-series variation in overall price
dispersion is explained by variation in component (i).

6.1 Decomposing Cross-Sectional Price Dispersion

From the sticky price theories analyzed in section 3, it follows that the
price of product j in expenditure category z evolves over time according
to39

ln pjzt = ln p
�
jz � ln��jz � t+ ujzt; (21)

39See equation (38) in appendix C.2 for the case with Calvo frictions and equation
(39) in appendix D for the case with menu costs.
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where the residuals ujzt have mean zero, are independent across j and
z, and have variance over time equal to

V ar(ujzt) = vz + cz � (ln�z � ln��jz)2: (22)

We are now interested in decomposing the cross-sectional variance of
prices, denoted by V arj(ln pjzt), of the products present at some time t
in some item z. We then evaluate how this measure of cross-sectional
price dispersion depends on the item-level in�ation rate �z.
Suppose there is a unit mass of products in item z and that a share

of products randomly exits the sample each period and gets replaced by
newly sampled products. Newly sampled products may have di¤erent
characteristics than the products that leave the sample. Thus the distri-
bution of product characteristics fp�jz;��jzg within the item may change
over time.40

Appendix F shows that time variation in the distribution of opti-
mal in�ation rates is minor, which allows us to consider a time-invariant
cross-sectional distribution of optimal in�ation rates f��jzg. Speci�cally,
we assume that upon entry of a product into the sample, the optimal
in�ation rate ��jz is an i.i.d. draw from f��1z ;��2z ; :::;��Iz g, where ��iz is
chosen with probability mi

z � 0;
P

im
i
z = 1. In contrast, the distrib-

ution of estimated intercepts fp�jzg is strongly moving over time in the
data. We thus allow for arbitrary time variation in the distribution of
intercepts for newly incoming products.41

Given this setup, we obtain the following decomposition result:42

Proposition 3 Let V arj(�) denote the variance in the cross-section of
products j. Then, the cross-sectional dispersion of prices in expenditure
category z at time t is given by

V arj(ln pjzt) = V ar
j(ln p�jz � ln��jz � t) + V arj(ujzt); (23)

where
V arj(ujzt) = vz + cz �

X

i

(ln�z � ln��iz )2mi
z: (24)

40We assume that upon the time of entry, the residual ujzt is drawn from the
stationary residual distribution for products with characteristics

�
p�jz;�

�

jz

�
. This

is justi�ed by the fact that newly sampled products in our data typically do not
represent truly new products, instead products that are newly sampled by the O¢ce
of National Statistics.
41The covariance between the distribution of intercepts fp�jzg and optimal in�ation

rates f��jzg is also left unrestricted.
42See appendix 3 for the proof.
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Equation (23) decomposes the cross-sectional price dispersion into
two components. The �rst component, V arj(ln p�jz � ln��jz � t), captures
identi�able elements of the �exible price distribution. We obtain this
component using our �rst stage estimates of (ajz; bjz) from equation
(8). The second component, V arj(ujzt), depends on the constant vz and
cz �
P

i(ln�z�ln��iz )2mi
z, which captures - according to the theory - price

distortions induced by in�ation.43 Using our our �rst-stage residuals, we
can estimate V arj(ujzt) as V arj(bujzt). The decomposition in proposition
3 holds at each point in time in setting where in�ation �z is constant.
The decomposition also applies in a setting where in�ation is chang-

ing slowly over time.44 Equation (24) thus provides a theory-implied
relationship linking (yearly) in�ation rates �zt to the cross-sectional dis-
tribution of �rst-stage residuals V arj(ujzt) (at the end of the year). De-
pending on the distribution f��iz g of optimal in�ation rates, an increase
in �zt can lead to either an increase or a decrease in ine¢cient price dis-
persion: if average optimal in�ation rate (

P
i�

�i
z m

i
z) lies below actual

in�ation, then ine¢cient dispersion is predicted to increase with in�a-
tion. The opposite is true if the average optimal in�ation rate lies above
actual in�ation. It is thus an empirical question whether higher in�ation
rates lead to more or less ine¢cient price dispersion in the data, which
is investigated in the next section.

6.2 In�ation and Cross-Sectional Price Distortions

over Time

The present section investigates the comovement between in�ation and
ine¢cient cross-sectional price dispersion over time. It considers �rst
comovement at the level of expenditure items and then comovement at
the aggregate level.

6.2.1 Item Level Results

From proposition 3 and the subsequent discussion follows that ine¢cient
price distortions correlate positively (negatively) with item-level in�ation
over time, whenever the average optimal in�ation rate (

P
i�

�i
z m

i
z) lies

below (above) actual in�ation. For in�ation rates close to the average
optimal level, this correlation is predicted to be close to zero.

43In the absence of price stickiness, we have cz = 0 so that price dispersion does
not depend on in�ation.
44Suppose in�ation changes from year to year and that the in�ation rate is equal

to �zt in year t. If price setters expect future in�ation to be equal to �zt; then
our steady-state pricing results continue to apply. (Such expectations are justi�ed
whenever �zt follows a random walk.) And since the vast majority of prices adjusts
over the course of a year, in�ation rates from earlier years will not matter for the
cross-sectional dispersion of prices.
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Figure 13: Correlation between in�ation and price distortions at the
item level

Figure 14: The gap between average optimal and actual in�ation (y-
axis) determines the correlation between in�ation and ine¢cient price
dispersion (x-axis)
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To test this prediction, we compute the correlation between the cross-
sectional variance V arj(ujzt) and item-level in�ation �zt over time, us-
ing all items for which we have at least three years of data.45 The top
panel in �gure 13 depicts the resulting distribution of correlations across
items, using all correlations with a p-value less or equal to 10%. The bot-
tom panel depicts the distribution of p-values.46 Figure 13 shows that
there are signi�cantly positive and signi�cantly negative correlations,
but more positive than negative ones.47 Proposition 3 implies that pos-
itive (negative) correlations should emerge whenever optimal average
in�ation (

P
i�

�i
z m

i
z) lies above the average actual in�ation rate in the

item. Figure 14 shows that this is indeed the case: the �gure depicts the
outcome of a regression of the gap between optimal and actual in�ation
on the correlation and its square. The regression line behaves in line
with theory, with the statistically signi�cant parts being fully aligned
with the theoretical prediction.48

6.2.2 Aggregate Results

We now consider an economy-wide measure of ine¢cient price dispersion.
To this end, we aggregate the residual variances (24) across items to an
economy-wide dispersion measure using item-level expenditure weights.
We then compare time variation in aggregated residual dispersion with
time variation in aggregate in�ation, as aggregate in�ation is also an
expenditure-weighted average of item level in�ation.
The bottom panel of our introductory �gure 1 depicts the resulting

aggregate price dispersion measure together with the aggregate in�a-
tion rate.49 Both measures covary positively, with a correlation equal
to +0:58 that is signi�cant at the 1% level. This shows that higher
aggregate in�ation rates are associated with larger amounts of relative
price distortions because time variation in the dispersion of �rst-stage
residuals captures time variation in relative price distortions.
Importantly, this result is not driven by outliers in the distribution

of �rst-stage residuals. For instance, results are similar when removing
at the item level the 2.5% highest and 2.5% lowest residuals before com-

45This is the case for 696 expenditure items.
46206 of the 696 correlations have p-values smaller than 10%.
47This result is robust to choosing tighter p-values, e.g., a value of 5%; or to

considering all correlations, independently of their p-value.
48This continues to be true when restricting consideration to a linear regression

or when including a third order term into the regression. However, the regression
coe¢cient on the third order term is not statistically sign�cant.
49Figure 1 displays annual dispersion and annual in�ation to remove within-year

seasonalities in price dispersion and in�ation. Both measures are computed as a 12
month average of monthly dispersion and monthly year-over-year in�ation rate.
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puting the variance of �rst-stage residuals. Likewise, computing instead
a robust dispersion measure, as in Nakamura, Steinsson, Sun and Villar
(2018), leads to very similar outcomes.50

By proposition 3 , the positive correlation between aggregate in�a-
tion and ine¢cient price dispersion is driven by products with optimal
in�ation rate ��jz that lie below the actual in�ation rate.
This theory prediction can again be tested. To do so, we now group

individual products according to their optimal in�ation rate. Specif-
ically, we consider the 1/3 of products with the highest and the 1/3
of products with the lowest optimal in�ation rate in each expenditure
item and then recompute ine¢cient price dispersion for these two sub-
groups.51

The top group of products has an (unweighted) average optimal in-
�ation rate that varies between +2:5% and +5:5% over time, which
roughly covers the range in which actual in�ation moves. The bottom
group, however, has a deeply negative optimal in�ation rate that ranges
between �6% and �10% over time. According to the theory, this group
should display a strong positive correlation between ine¢cient price dis-
persion and in�ation over time. In contrast, the top group should display
no or only a weak correlation with in�ation.
This is indeed what we �nd: the correlation between in�ation and in-

e¢cient dispersion is weak (+0:19) and statistically insigni�cant (p-value
of 0:40) for the top group, but strongly positive (+0:54) and signi�cant
(p-value of 0:01) for the bottom group. In line with sticky price theory,
the positive correlation between in�ation and ine¢cient price dispersion
at the aggregate level is thus driven by products with optimal in�ation
rates that lie below actual in�ation.

6.3 Bounds on Price Distortions and Flexible Price

Dispersion

This section derives upper and lower bounds on the amount of relative
price distortions from in�ation and discusses the drivers of the trends
present in overall price dispersion. Ine¢cient price distortion is sizable,
giving rise - on its own - to a standard deviation of log prices of several
percentage points. At the same time, the amount of price dispersion

50Following their approach, we aggregated the interquartile range (IQR) of �rst-
stage residuals at the level of each expenditure item and then use the expenditure-
weighted median to aggregate across items.
51We split products within each expenditure item, rather splitting products across

all items combined, to avoid that results are driven by compositional e¤ects. As
is well-known, the average optimal in�ation rates varies systematically in the cross
section of items.

34



Figure 15: Overall price dispersion versus �exible price dispersion (var-
ious identi�ed components)

due to in�ation-induced distortions is dwarfed by the dispersion already
present under �exible prices.
It follows from proposition 3 that the (aggregated) variance of �rst

stage residuals represents an upper bound on the amount of ine¢cient
price dispersion that is due to in�ation.52 The upper bound of the vari-
ance reached in the lower panel of �gure 1 is approximately 2:5 � 10�3.
Therefore, absent any �exible price dispersion, ine¢cient price dispersion
gives rise to a standard deviation of prices of at most

p
2:5 � 10�3 = 5% .

While this is quantitatively large, ine¢cient dispersion accounts for
about 1% of the overall price dispersion, see the upper panel of �gure 1.
A lower bound on the contribution of in�ation to ine¢cient price

dispersion is given by the min-max range of the variance of �rst-stage
residuals, as the time-varying component is - according to the theory
- due to in�ation. This range is approximately equal to 1:5 � 10�3 and
implies (in the absence of �exible price dispersion) that in�ation would
induce variation in the standard deviation of prices of up to

p
1:5 � 10�3 =

3:87% over time. Again, this appears sizable in absolute terms.
The overall dispersion of prices, however, is overwhelmingly driven

by price dispersion that is also present under �exible prices. Figure
15 depicts overall price dispersion (the expenditure-weighted item level
variances V arj(ln pjzt)) together with the dispersion of the identi�able
components of the �exible price dispersion (the expenditure-weighted

52This is so because the intercept vz in equation (24) is not due to in�ation.

35



item level variances V arj(ln p�jz � ln��jz � t)).
Figure 15 shows that the identi�able component of �exible price dis-

persion makes up for the vast majority of the observed price dispersion
and also closely tracks it over time. Since time variation in the distri-
bution of optimal in�ation rates (ln��jz) is very limited, virtually all
time-series variation is coming from time-series variation in the cross-
sectional dispersion of the intercepts (ln p�jz).

53

This illustrates that time series variation in overall price dispersion
is to a large extent driven by time series variation in �exible price dis-
persion, which is also strongly rising over time.
Increasing �exible price dispersion may re�ect a number of economic

forces, such as widening in the distribution of (�exible price) mark-ups,
the productivity distribution across products, or the distribution of un-
observed product qualities. The large increase in �exible price dispersion
explains why aggregate in�ation fails to covary with overall price disper-
sion (top panel in our introductory �gure 1).

7 Conclusions

This paper documents three important new facts: (1) at the product
level, deviations of in�ation from its product-speci�c optimal level are
robustly associated with an increase in ine¢cient price dispersion; (2) at
the aggregate level, time-series variation in aggregate in�ation covaries
positively with aggregate measures of ine¢cient price dispersion, with
this relationship being driven mainly by products whose optimal in�ation
rate is low; and (3) the time series variation in overall price dispersion is
closely tracked by the identi�able part of �exible price dispersion, which
strongly suggests that time series �uctuations in overall price dispersion
are driven by fundamentals other than in�ation.
Taken together, these �ndings provide considerable support for the

economic mechanisms enshrined in sticky price models and the monetary
policy conclusions they give rise to.
In future work, we seek to investigate to what extent ine¢cient price

dispersion is associated with ine¢cient dispersion in product demand
(misallocation). This requires observing product quantities, in addi-
tion to observing product prices. While this is feasible only for a much
narrower set of products, studying the misallocation of quantities is an
important step that could provide further support for the view that sub-
optimal in�ation gives rise to signi�cant welfare costs.

53To make comparisons meaningful over time, �gure 15 reports the dispersion
coming from intercepts using the normalized intercepts ln p�jz ���jz � t0jz, where t0jz is
the time period in which the product �rst enters the sample.
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A Proof of Proposition 1

In this section we prove that it is impossible to recover the price gap
distribution if shocks are stationary. Suppose an econometrician ob-
serves the in�nite path of actual prices ln pjt and it is known that
this path is generated under the time-dependent friction and station-
ary shocks ln xjt. The econometrician can recover the N values of the
vector f � [f1; : : : ; fN ]0 of f(xjt) as de�ned in (6):

f(xjt) � (1� �)Et
1X

i=0

(�)i ln xjt+i:

In addition, the econometrician can recover the N�N transition matrix
�f :

�f =

2
64
�f11 � � � �f1N
...
. . .

...
�fN1 � � � �fNN

3
75 ;

where �fij is the probability of observing fj in the subsequent period,
conditional on observing fi in the previous period.54 From the de�nition
of f(xjt) it follows that:

f = (1� �)lnx+ ��xf

where lnx is the state vector of the process ln xjt and �x is its transition
matrix. Setting �x = �f and solving the above equation for lnx �
[ln x1; : : : ; ln xN ] provides a candidate for the process ln xjt that leads to
the observed process f(xjt). However, as we show below, this candidate
solution is not unique and the observed N -state process of f(xjt) can be
equally supported by an (N+1)-state process ln ~xjt, de�ned on the grid
ln ~x � [ln ~x1; : : : ; ln ~xN ; ln ~xN+1] with (N+1)�(N+1) transition matrix
~�x. Such a process would lead to an (N+1)-state process of ~f(xjt), with
~fi = fi for all i < N and ~fN = ~fN+1 = fN , making ~f(xjt) and f(xjt)
observationally equivalent, provided the transition probabilities of ~�x

imply �f . To construct such a process, set ln ~xi = ln xi for all i < N ,
ln ~xN = ln xN�" and ln ~xN+1 = ln xN +" for a su¢ciently small " > 0.55

54This can be achieved by conditioning on price spells of length one.
55One requirement for " is that ln ~xN and ln ~xN+1 do not coincide with existing

values of lnxi. A stricter condition on the size of " is introduced below.
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We now construct the transition matrix ~�x in the following way:

~�x =

2
6666664

�x11 �x12 : : : �x1(N�1) �x1N=2 �x1N=2
...

. . .
...

...
...

�x(N�1)1 �
x
(N�1)2 : : : �

x
(N�1)(N�1) �

x
(N�1)N=2�

x
(N�1)N=2

~�xN1 �xN2 : : : �xN(N�1)
~�xN

~�xN
~�x(N+1)1 �xN2 : : : �x(N+1)(N�1)

~�xN+1
~�xN+1

3
7777775

All elements in black are borrowed directly from the �x matrix, whereas
elements in red are to be solved for.56 The �rst (N�1) rows of ~�x ensure
that for all i < N :

~fi = (1� �) ln ~xi + �
N+1X

j=1

~�xij
~fj

= (1� �) ln xi + �
N�1X

j=1

�xijfj +

�
�xiN
2
+
�xiN
2

�
fN = fi

We now have to set the elements in red (~�xN1, ~�
x
N , ~�

x
(N+1)1,

~�xN+1) such

that ~fN = ~fN+1 = fN . For i = N it requires:

~fN = (1� �)(ln xN � ") + �~�xN1f1 + �
N�1X

j=2

�xNjfj + 2
~�xNfN

= fN � (1� �)"+ �(~�xN1 � �xN1)f1 + �(2~�xN � �xNN)fN
!
= fN

Denote
PN�1

j=2 �
x
Nj � �, then it must be the case that ~�xN1+�+2~�xN = 1

to ensure that ~�x is a proper transition matrix. The same applies to the
elements of �x: �xN1 + � + �

x
NN = 1. Substituting ~�

x
N and �

x
NN in the

above equation and rearranging terms yields:

~�xN1 = �
x
N1 +

1� �
�

"

f1 � fN
For i = N + 1, a similar line of arguments leads to:

~�x(N+1)1 = �
x
N1 �

1� �
�

"

f1 � fN

and the remaining elements ~�xN and ~�
x
N+1 can then be recovered using the

fact that all rows of ~�x sum up to one. " must be small enough to ensure

56We order states such that �xN1 > 0 and �xNN > 0. This is without loss of
generality since lnxjt is a stochastic process, implying that there exists a state i such
that for at least two states j1 and j2, �xij1 > 0 and �

x
ij2
> 0.
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that ~�xN1, ~�
x
N , ~�

x
(N+1)1 and

~�xN+1 are all 2 [0; 1]. Such " always exists since
we have ordered the states to ensure �xN1 > 0 and �

x
NN > 0 and there are

in�nitely many of them. It remains to show that transition probabilities
in ~�x imply �f . This holds trivially for all transitions between states
fi and fj such that i; j < N . It is also true for transitions from fi to
fN when i < N since the probability of transiting from fi to fN is then
equal to �xiN

2
+

�xiN
2
= �xiN . Finally, note that states ln xN and ln xN+1

have the same unconditional probability,57 and therefore the probability

of moving from fN to fi is equal to 1
2

�
~�xNi +

~�x(N+1)i

�
= �xNi for all

i < N . This implies that the probability of staying in fN is also the
same as in the original process (�xNN).
Therefore, we have constructed anN+1-state process ln ~xjt that leads

to the same process f(xjt) as the N -state process ln xjt. By induction
this step can be repeated arbitrary many times.

B Testing for a RandomWalk in Idiosyncratic Shocks

This appendix shows that our data strongly rejects the presence of a
pure random walk in ln xjt. One can test for a random walk in ln xjt by
exploiting the fact that the optimal reset price upon price adjustment
involves a constant gap relative to the �exible price, whenever ln xjt is
a random walk. This holds true with Calvo frictions, see equation (5),
but also for the case with menu cost frictions.
Consider the times tn (n = 1; 2; :::Njz) during which the price of

some product j in expenditure item z adjusts. Given the constant gap
property, we have

ln poptjztn+1 � ln p
opt
jztn

= � ln��jz � (tn+1 � tn) + ln ejzn+1 (25)

where
ln ejzn+1 � ln xjztn+1 � ln xjztn :

With a random walk in ln x, the residuals ln e are uncorrelated over time
and have adjustment-time-dependent variance (tn+1 � tn)�2z , where �2z
denotes the innovation variance in the random walk in expenditure item
z. These two properties can be tested.
To test for the adjustment-time-dependent variance, we use all ob-

servations (tn+1 � tn; ejzn+1) within some item z to run the regression

(ln ejzn+1)
2 = az + bz(tn+1 � tn) (26)

57The unconditional probability satis�es p = (~�x)0p, and the last two columns of
~�x are identical, implying identical values of pN and pN+1.
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Figure 16: Random walk test, equation (26)

and check whether bz = �2z > 0 as predicted by the random walk. Figure
16 reports the distribution of the estimated bz and the associated t-
statistics using all products with Njz > 3. It shows that the random
walk hypothesis bz > 0 is strongly rejected by the data.
Second, we can also test if the residuals ln e in (25) are uncorrelated

over time. To do so, we re-scale residuals according to (ln ejzn+1) =
p
tn+1 � tn

to make them homoskedastic under the null hypothesis of a randomwalk.
We then compute the autocorrelations [Corrz = dCovz=dV arz of these re-
scaled residuals within each item z, using the variance and covariance
estimates for all products with Njz > 3 :

dV arz =
P

j

0
B@ Njz � 2P

k (Nkz � 2)
PNjz

n=2

�
ln ejznp
tn�tn�1

�2

Njz � 2

1
CA

dCovz =
P

j

 
Njz � 3P
k (Nkz � 3)

PNjz�1
n=2

ln ejznp
tn�tn�1

ln ejzn+1p
tn+1�tn

Njz � 3

!

The left panel in �gure 17 depicts the estimated autocorrelations across
items. Almost all of the estimates are negative, and most of them siz-
ably so, which is inconsistent with ln xjzt following a random walk. The
right panel in the �gure reports the bootstrapped p-values for the au-
tocorrelation being weakly larger than zero, as implied by the random
walk, and shows that these values are very low.
We then repeat the analysis when exogenously imposing ��jz = 0

for all products in the �rst-stage regression. This is motivated by the
possibility that the estimated time trends ��jz could be purely spurious
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Figure 17: Autocorrelation of residuals and bootstrapped p-values (ran-
dom walk implies autocorrelation of zero)

in the presence of a random walk in ln xjzt. While the estimated coe¢-
cients bz in (26) are then symmetrically centered around zero (but still
not predominantly positive), the evidence on the auto-correlation of the
residuals remains almost identical to the one shown in �gure 17 for the
case with an estimated time trend ��jz in the �rst-stage regression.
Based on these �ndings, we conclude that unobserved shocks in our

data do not follow a pure random walk.

C Details of the Calvo Model

C.1 Quadratic approximation and optimal reset price

The price-setting problem of �rm j in price-adjustment period t is to
set its price Pjt such that it maximizes the expected discounted sum of
period pro�ts,

Et

1X

i=0

�i
t;t+i

�
(1 + �)

Pjt
Pt+i

�mcjt+i
�
Yjt+i (27)

subject to Yjt+i =

�
Pjt
Pt+i

���
Yt+i; (28)

where 
t;t+i denotes the stochastic discount factor of the representative
household, Yjt denotes output of product j, mcjt real marginal costs
and � is a sales subsidy. Equation (28) states product demand of the
cost-minimizing household that derives utility from a CES consumption
composite aggregating the products in the economy with substitution
elasticity � > 1.
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We approximate the pro�t objective (27) around a balanced growth
path in which aggregate output and consumption grow at constant rate
e; and where gross in�ation is equal to �. With growth-consistent
preferences that exhibit constant relative risk aversion, the household
discount factor is given by 
 = ! (e)�� < 1, where � denotes relative
risk aversion and ! is the rate of time preference. Substituting this
expression for the discount factor into equation (27) yields

Et

1X

i=0

(�! (e)1��)i [(1 + �)epjt+i �mcjt+i] (epjt+i)�� y (29)

where epjt+i = pjt��i and pjt � Pjt=Pt, and y denotes detrended aggre-
gate output. Real marginal costs evolve according to

mcjt = mcje
�(ln��j )txjt; (30)

where the product-speci�c time-�xed e¤ect mcj is drawn randomly at
the time of product entry from some arbitrary distribution. As described
in the main text, ��j is the e¢cient rate of relative price decline under
�exible prices and xjt is a stationary process with E[ln xjt] = 0.
By equation (29), the objective for period t+ i is given by

Djt+i =
�
(1 + �)eln epjt+i � elnmcjt+i

� �
eln epjt+i

���
y: (31)

We approximate this objective to second order in the variables ln epjt+i
and lnmcjt+i around the deterministic paths of the �exible price and
marginal costs, respectively. The deterministic path of the �exible price
is equal to

#mcdetjt+i

where mcdetjt denotes the deterministic path of marginal costs which is
equal to the value of marginal costs mcjt imposing xjt = 1, and # =
�
��1

1
1+�

denotes the �exible-price markup.
The second-order Taylor approximation of equation (31) yields

Djt+i =
�
y#��

�
e(1��) lnmc

det
jt+i

�
� �(ln epjt+i � ln(#mcdetjt+i))2

+ 2�(ln epjt+i � ln(#mcdetjt+i))(lnmcjt+i � lnmcdett+i)
�
+O(3)

=
�
��y#��

� �
mcdetjt+i

�1�� �
ln epjt+i � ln(#mcdetjt+i)� (lnmcjt+i � lnmcdett+i)

�2
+ t.i.p.+O(3)

=
�
��y#��

� �
mcdetjt+i

�1�� �
ln epjt+i � ln(#mcjt+i)

�2
+ t.i.p.+O(3);

(32)

where t.i.p. collects terms independent of policy and it follows from equa-
tion (30) that mcdetjt+i = mcje

�(ln��j )(t+i). Thus, we rewrite the Taylor

44



approximation coe¢cient in the previous equation according to

��y#��
�
mcje

�(ln��j )(t+i)
�1��

= ��y#��mc1��j (��j)
(��1)(t+i):

We can now express the expected discounted sum of period pro�ts in
equation (29) accurate to second order according to

��y#��mc1��j (��j)
(��1)tEt

1X

i=0

(�! (e)1�� (��j)
��1)i

�
ln epjt+i�ln(#mcjt+i)

�2
+t.i.p.+O(3)

which is proportional to

�Et
1X

i=0

(��j)
i
�
ln pjt � i ln�� ln(p�jt+i)

�2
+ t.i.p.+O(3) (33)

after substituting epjt+i = pjt��i and denoting the �rm discount factor
by �j = ! (e)

1�� (��j)
��1 and de�ning

p�jt+i = #mcjt+i

which implies using equation (30)

p�jt = p
�
je
�(ln��j )txjt;

which is equal to (4) for p�j = #mcj. While p
�
jt denotes the �rm�s �exible

price, the ratio of two �rms� �exible prices is equal to the e¢cient relative
price for these �rms, whenever price mark-ups are constant across �rms
and time. In this special case, p�jt denotes also the e¢cient relative price.
We can then express the �exible price in period t+ i as

p�jt+i = p
�
jte

�(ln��j )ixjt+ix
�1
jt :

and substitute into equation (33), which delivers

max
ln pjt

�Et
1X

i=0

(��j)
i
�
ln pjt � i ln(�=��j)� ln p�jt � ln xjt+i + ln xjt

�2
:

(34)
The �rst-order condition is given by

0 = �2Et
1X

i=0

(��j)
i
�
ln poptjt � i ln(�=��j)� ln p�jt � ln xjt+i + ln xjt

�
;

which implies that the optimal price is given by

ln poptjt = ln p
�
jt�ln xjt+

�
��j

1� ��j

�
ln(�=��j)+Et(1���j)

1X

i=0

(��j)
i ln xjt+i

(35)
since

P1
i=0(��j)

ii =
P1

i=1(��j)
ii =

��j
(1���j)2 with ��j < 1. For the limit

�j ! 1, this reduces to equation (5).
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C.2 Asymptotics of the �rst-stage regression

Starting with equation (7), we substitute ln poptjt using equation (5) and
also use (4) to obtain

ln pjt = �jt(ln pjt�1�ln�)+(1��jt)
�
ln p�j � t ln��j +

�

1� � ln(�=�
�
j) + f(xjt)

�
;

(36)
where f(xjt) is de�ned in equation (6).
To derive the OLS estimates of the parameters in equation (8), we

rearrange equation (36) to

ln pjt + t ln�
�
j = �jt(ln pjt�1 + (t� 1) ln��j � ln(�=��j)) (37)

+ (1� �jt)
�
ln p�j +

�

1� � ln(�=�
�
j) + f(xjt)

�
:

Computing the unconditional expectation yields

E[ln pjt + t ln�
�
j ] = �E[ln pjt�1 + (t� 1) ln��j ]� � ln(�=��j)

+ (1� �)
�
ln p�j +

�

1� � ln(�=�
�
j)

�
;

using independence of �jt and E[f(xjt)] = 0. Given stationarity of the
detrended relative price ln pjt + t ln��j , the previous equation yields

E[ln pjt + t ln�
�
j ] = ln p

�
j ;

or
ln pjt = ln p

�
j � t ln��j + ujt; (38)

where ujt denotes an expectation error with zero mean. This shows that
for regression (8) we get

dln aj ! ln p�j
dln bj ! ln��j ;

as the number of price observations becomes large.

C.3 Proof of proposition 2

This appendix derives equations (10) and (11) in the main text. We
substitute equation (38) into equation (37), which yields directly yields
equation (10). Squaring equation (10), taking unconditional expecta-
tions, and using independence of �jt yields

E[u2jt] = E[�
2
jt]E[(ujt�1�ln(�=��j))2]+E[(1��jt)2]E

��
f(xjt)+

�

1� � ln(�=�
�
j)
�2�
;
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where we also used E[(1 � �jt)�jt] = 0. We can rewrite the previous
equation using E[�2t ] = � and E[(1 � �t)2] = 1 � �, completing the
squares to obtain

E[u2jt] = �E[u
2
jt�1 + ln(�=�

�
j)
2 � 2ujt�1 ln(�=��j)]

+ (1� �)E
�
f(xjt)

2 +

�
�

1� � ln(�=�
�
j)

�2
+ 2f(xjt)

�

1� � ln(�=�
�
j)
�
:

Recognizing that the expectation of the cross terms in the previous equa-
tion are zero because E[ujt] = 0 and E[f(xjt)] = 0 yields

E[u2jt] = �E[u
2
jt�1]+� ln(�=�

�
j)
2+(1��)E[f(xjt)2]+(1��)

�
�

1� � ln(�=�
�
j)

�2
:

Using E[u2jt] = E[u
2
jt�1] and simplifying terms yields

E[u2jt] = E[f(xjt)
2] +

�

(1� �)2 (ln�� ln�
�
j)
2:

Recognizing that V ar[ujt] = E[u2jt], as E[ujt] = 0; and V ar[f(xjt)] =
E[f(xjt)

2], as E[f(xjt)] = 0, delivers equation (11).

D Details of the State-Dependent Model

D.1 Setup and OLS regression

Let zjt = ln pjt � ln p�jt be the deviation of the current relative price of
product j from the �exible price optimum. Then in between adjustments
zjt follows:

dzjt = d ln pjt � d ln p�jt = � (ln�� ln��j)| {z }
�j

dt� d ln xjt

d ln xjt =
NX

i=1

(ln xi � ln xjt)dJ it (ln xjt)

where dJ it (ln xjt) is a Poisson jump process with intensity dependent on
the current state ln xjt. Since ln pjt = ln p�jt + zjt, it follows that:

ln pjt = ln p
�
j + ln xjt � t ln��j + zjt (39)

E
�
ln pjt + t ln�

�
j

�
= ln p�j + E[ln xjt]| {z }

=0

+E[zjt]

And thus the estimates of OLS regression (8) converge to

dln aj ! ln p�j
dln bj ! ln��j ;
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if E[zjt] = 0, which is true in the limiting case as � ! 0, as shown
below.58 Furthermore, residuals and their variance can be written as:

ujt = ln pjt � ln p�j + t ln��j = zjt + ln xjt
V ar(ujt) = E[z

2
jt] + 2E[zjt ln xjt] + V ar(ln xjt) (40)

D.2 Solution

To simplify notation, we omit the product index j. The �rm�s objective
is to maximize its value from equation (14), given by:

V (z; xi) = max
f�i;�z�ig1i=1

�E
"Z 1

0

e��tz2t dt+ �

1X

i=1

e���i

����� z0 = z; x0 = xi
#

The �rm�s policy consists of a collection of inaction region boundaries
fz(xi); z(xi)g and reset price gaps ẑ(xi), for all i 2 N . The HJB equation
for the inaction region is given by:

�V (z; xi) = �z2 � �@zV (z; xi)

+
NX

j 6=i
�Xij
�
V (z � (ln xj � ln xi); xj)� V (z; xi)

�

The optimal policy satis�es the usual smooth pasting and optimality
conditions: @zV (ẑ(xi); xi) = @zV (z(xi); xi) = @zV (z(xi); xi) = 0 and
V (z(xi); xi) = V (z(xi); xi) = V (ẑ(xi); xi)��. De�ne v(z; xi) = V (z; xi)�
V (ẑ(x1); x1). Then:

�v(z; xi) = �z2 � �@zv(z; xi)

+
NX

j 6=i
�Xij
�
v(z � (ln xj � ln xi); xj)� v(z; xi)

�
� �V (ẑ(x1); x1)

with @zv(ẑ(xi); xi) = @zv(z(xi); xi) = @zv(z(xi); xi) = 0 and v(z(xi); xi) =
v(z(xi); xi) = v(ẑ(xi); xi)� �. We now take the limit as �! 0.

Proposition 4 As � ! 0, the scaled value function �V (z; x) at any
state fz; xg converges to a constant: lim

�!0
�V (z; x) = A 2 R 8z; x.

58While this result is shown formally under the assumption of su¢ciently small
�, it holds more generally. As � ! 0, the �rms� value until adjustment becomes
the negative expected squared deviation of price gaps from zero, maximizing which
requires setting the expected price gap to zero.
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All proofs are provided in section D.3. By Proposition 4, lim
�!0

�v(z; xi) =

0 and lim
�!0

�V (ẑ(x1); x1) = A, so that:

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX

j 6=i
�Xij v(z � (ln xj � ln xi); xj)� A

where �Xi =
PN

j 6=i �
X
ij = ��Xii is the intensity with which ln xt is exiting

state i. Evaluate the above expression at z = ẑ(x1); xi = x1 to obtain:

A = � (ẑ(x1))2 +
NX

j 6=1
�X1jv(ẑ(x1)� (ln xj � ln x1); xj)

Lemma 5 There exists � > 0 such that �rms �nd it optimal to adjust
after every change in x for all � < �.

Suppose that � is small enough in the sense of Lemma 5. Then �rms
�nd it optimal to adjust whenever idiosyncratic state x changes its value.
The HJB equation becomes:

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX

j 6=i
�Xij v(ẑ(xj); xj)� �Xi �� A

with

A = � (ẑ(x1))2 +
NX

j 6=i
�X1jv(ẑ(xj); xj)

and value function satis�es:

v(z; xi) = C
v
i e
��iz � z2

�Xi
+

2z

�i�Xi
� 2

�2i�
X
i

+
Ci
�Xi

Ci =
NX

j 6=i
�Xij v(ẑ(xj); xj)� �Xi �� A

@zv(ẑ(xi); xi) = @zv(z(xi); xi) = @zv(z(xi); xi) = 0

v(ẑ(xi); xi)� � = v(z(xi); xi) = v(z(xi); xi)

with �i =
�Xi
�
. As long as state x remains unchanged, price gaps evolve

deterministically with drift ��. It thus su¢ces to solve for the reset
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price gap and only one boundary of the inaction region. From now on,
we consider � > 0 and solve for ẑ(xi) and z(xi) since the upper boundary
of the inaction region is irrelevant. Because of symmetry properties of
the model, it is straightforward to then recover the solution and all
statistics for � < 0. To ease notation, let ẑ(xi) = ẑi and z(xi) = zi.

Lemma 6 Suppose � > 0. Then for each state xi, optimal policy is
determined by the following two conditions:

z2i � ẑ2i = �Xi � (41)

e�iẑi(1� �iẑi) = e�izi(1� �izi) (42)

where �i =
�Xi
�
.

Conditional on state xi, the price gap distribution satis�es:

�Xi fi(z) = �@zfi(z)Z ẑi

zi

fi(z)dz = 1

and is thus given by:

fi(z) =
�ie

�iz

e�iẑi � e�izi
It follows that:

E[zjxi] =
Z ẑi

zi

zfi(z)dz = 0

E[z] = 0

E[z2jxi] =
Z ẑi

zi

z2fi(z)dz =
ẑi + zi
�i

� ẑizi (43)

E[z2] = Ex

�
ẑi + zi
�i

� ẑizi
�

(44)

where Ex[�] is the expectation with respect to stationary distribution of
x.

Proposition 7 For � close to zero, E[z2] = E

�
1

(�Xi )
2

�
�2 +O(4).

Finally, note that E[zx] = E
�
xiE[zjxi]

�
= 0 and the main object of

interest � the variance of residuals from the OLS regression (8) � is given
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by:

V ar(ujt) = V ar(ln xjt) + E

"
1

(�Xi )
2

#
�2j +O(4)

= V ar(ln xjt) + E

"
1

(�Xi )
2

#
(ln�� ln��j)2 +O(4)

D.3 Proofs

Proof of Proposition 4. The proof here extends Lemma 3 in Online
Appendix of Alvarez et al. (2019) to a setting with two state variables.
Let V (z; x; �) be the value function in state fz; xg under discount rate
�. We can write �V (z; x; �) as follows:

�V (z; x; �) = �E
�
�

Z �N

0

e��tz2t dt

�
� �E

"
�

NX

i=1

e���i

#

��E
"Z 1

0

e��(�N+t)z2�N+tdt+ �
1X

i=1

e���N+i

#

| {z }
�E[e���N V (z�N ;x�N ;�)]

where �N is the N -th adjustment and all expectation operators are
conditional on z0 = z; x0 = x. Subtract �E [e���NV (z; x; �)] from both
sides and divide by (1� E [e���N ]) to obtain:

�V (z; x; �) = � �

1� E [e���N ]E
�Z �N

0

e��tz2t dt

�
� ��

1� E [e���N ]E
"
NX

i=1

e���i

#

�

1� E [e���N ]E
�
e���N (V (z�N ; x�N ; �)� V (z; x; �))

�

Take the limit as �! 0. Note that �

1�E[e���N ]
! 1

E[�N ]
and thus:

lim
�!0

�V (z; x; �) = � 1

E [�N ]
E

�Z �N

0

z2t dt

�
� �N

E [�N ]
1

E [�N ]
lim
�!0

E [V (z�N ; x�N ; �)� V (z; x; �)]

By Lemma 8, jV (z�N ; x�N ; �) � V (z; x; �)j � C 2 R for all � > 0 and
thus this also holds in the limit as � ! 0. As we take the limit with
N !1, the �rst term converges to the unconditional expected squared
gap E[z2], the second term converges to adjustment frequency �a times
adjustment cost �, and the third term vanishes as E [�N ] ! 1. Thus
lim
�!0

�V (z; x; �) = �E[z2]� ��a � A for all z; x.
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Lemma 8 There exists C 2 R such that for any � > 0 and any z; x; z0; x0,
jV (z; x)� V (z0; x0)j � C.

Proof. First, we show that �V (z; xi) is bounded from below. To see
that, recall that V (z; xi) is achieved under the optimal adjustment policy,
meaning that the value of any feasible policy is weakly lower. Consider
the following policy: the �rm adjusts its price gap whenever it is hit by
a Poisson x shock. In addition, it also adjusts at random times with
Poisson intensity �i, which is speci�c to each state xi. These intensities
satisfy the following condition: �Xi + �i = maxi �

X
i � �, such that in

every state xi �rms adjust with equal intensity �. Since adjustments
occur exogenously, �rms only choose the reset price gap ẑi to maximize
expected pro�ts until the next adjustment:

max
ẑi
E

�
�
Z �

0

e��tz2t

����z0 = ẑi
�
= max

ẑi
E

�
�
Z 1

0

e�(�+�)tz2t

����z0 = ẑi
�

Because in between adjustments price gaps drift deterministically (zt =
ẑi � �t) and adjustment intensities are equalized across states, optimal
reset price gap does not depend on x and satis�es FOC:

Z 1

0

e�(�+�)t(ẑ � �t) = 0 =) ẑ =
�

�+ �

Denote by ~V (z; x) the value function under this policy. Since @z ~V (ẑ; xi) =
0, evaluating the HJB equation at ẑ yields:

� ~V (ẑ; xi) = �ẑ2 + �i
�
~V (ẑ; xi)� �� ~V (ẑ; xi)

�
+

NX

j 6=i
�Xij

�
~V (ẑ; xj)� �� ~V (ẑ; xi)

�

= �ẑ2 +
NX

j 6=i
�Xij

�
~V (ẑ; xj)� ~V (ẑ; xi)

�
� �

 
�i +

NX

j 6=i
�Xij

!

| {z }
=�

It is straightforward to show that ~V (ẑ; xi) = ~V (ẑ; xj) for all i and j.
Assume the opposite and let v = maxi ~V (ẑ; xi) and v = mini ~V (ẑ; xi).
Then:

�v = �ẑ2 +
NX

j 6=i(v)
�Xi(v)j

�
~V (ẑ; xj)� v

�

| {z }
�0

���

� �ẑ2 +
NX

j 6=i(v)
�Xi(v)j

�
~V (ẑ; xj)� v

�

| {z }
�0

��� = �v
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Meaning v = v. As a result, � ~V (ẑ; xi) = �ẑ2 � �� = � �2

(�+�)2
� �� �

��2

�2
� �� for any � > 0. Thus for the true value function evaluated

at the true optimal reset price gap ẑ(xi) it holds that �V (ẑ(xi); xi) �
� ~V (ẑ; xi) � ��2

�2
� �� for all � > 0.

Consider now the true value function V (z; xi) and pick i such that
V (ẑ(xi); xi) = maxj V (ẑ(xj); xj). The HJB equation for this value func-
tion satis�es:

��
2

�2
� �� � �V (ẑ(xi); xi) = � (ẑ(xi))2| {z }

�0

�� @zV (ẑ(xi); xi)| {z }
=0

+
NX

j 6=i
�Xij

0
B@V (ẑ(xi)�(ln xj�ln xi); xj)| {z }

�V (ẑ(xj);xj)

�V (ẑ(xi); xi)

1
CA

�
NX

j 6=i
�Xij (V (ẑ(xj); xj)� V (ẑ(xi); xi))| {z }

�0

� 0

It follows that whenever �Xij > 0:

�
��

2

�2
� ��

�
=�Xij � V (ẑ(xj); xj)� V (ẑ(xi); xi) � 0

For the states j where �Xij = 0 we can bound the di¤erence V (ẑ(xj); xj)�
V (ẑ(xi); xi) iteratively because the network of xi is connected (every two
states are connected by some path). In addition, for any z; xi:

V (ẑ(xi); xi)� � � V (z; xi) � V (ẑ(xi); xi)

Therefore there existsC 2 R such that for all � > 0, jV (z; x)�V (z0; x0)j �
C for all z; x; z0; x0.
Proof of Lemma 5. Consider a model M in which �rms are forced to
adjust after every change in x, but can also adjust at other times and
choose the boundaries of inaction regions and reset price gaps. Suppose
we now allow the �rms to adjust whenever they �nd it to be optimal.
They will adjust their policies fz(xi); ẑ(xi); z(xi)gNi=1 only if changes in
x keep price gaps within the bounds of inaction regions. Otherwise the
optimal policy in modelM and in the model of interest coincide, meaning
that �rms �nd it optimal to adjust after every change in x. To see that,
compare the HJB equations in the original model (�rst line) and model
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M (second line):

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX

j 6=i
�Xij v(z � (ln xj � ln xi); xj)� A

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX

j 6=i
�Xij (v(ẑ(xj); xj)� �)� A

If upon the change in x, z � (ln xj � ln xi) 62 [z(xj); z(xj)], then v(z �
(ln xj � ln xi); xj) = v(ẑ(xj); xj) � � and the value functions in the
two models coincide. Therefore, � is such that minij j ln xi � ln xjj =
maxi z(xi)�mini z(xi) in model M . Such � > 0 always exists since for
all i lim

�!0
z(xi) = lim

�!0
z(xi) = 0.

Proof of Lemma 6. From @zv(ẑi; xi) = 0 and @zv(zi; xi) = 0 it follows:

��iCvi e��iẑi �
2ẑi
�Xi

+
2

�i�Xi
= 0 = ��iCvi e��izi �

2zi
�Xi

+
2

�i�Xi

��iCvi �
2ẑie

�iẑi

�Xi
+
2e�iẑi

�i�Xi
= 0 = ��iCvi �

2zie
�izi

�Xi
+
2e�izi

�i�Xi
e�iẑi(1� �iẑi) = e�izi(1� �izi)

Similarly:

��iCvi e��iẑi �
2ẑi
�Xi

+
2

�i�Xi
= ��iCvi e��izi �

2zi
�Xi

+
2

�i�Xi

Cvi e
��iẑi +

2ẑi
�i�Xi

= Cvi e
��izi +

2zi
�i�Xi

Cvi e
�i(zi�ẑi) = Cvi + e

�izi
2(zi � ẑi)
�i�Xi

(45)

From v(ẑi; xi)� � = v(zi; xi) it follows:

Cvi e
��iẑi � ẑ2i

�Xi
+

2ẑi
�i�Xi

� � = Cvi e��izi �
z2i
�Xi

+
2zi
�i�Xi

Cvi e
�i(zi�ẑi) + e�izi

�
2(ẑi � zi)
�i�Xi

+
z2i � ẑ2i
�Xi

� �
�
= Cvi

z2i � ẑ2i = �Xi �

where the last line follows from (45).
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Lemma 9 For every state xi, ẑi
@ẑi
@�
= zi

@zi
@�
= E[z2jxi]

�
.

Proof. The �rst equality follows directly from the �rst order derivative
of equilibrium condition (41) with respect to �. For the second equality,
di¤erentiate equilibrium condition (42) and collect terms:

e�iẑi
�
@ẑi
@�

� ẑi
�

�
ẑi = e

�izi

�
@zi
@�

� zi
�

�
zi

(1� �izi)
�
@ẑi
@�

� ẑi
�

�
ẑi = (1� �iẑi)

�
@zi
@�

� zi
�

�
zi

zi
@zi
@�
(�iẑi � �izi) =

ẑ2i (1� �izi)� z2i (1� �iẑi)
�

zi
@zi
@�

=
1

�

ẑ2i � z2i � �iẑizi(ẑi � zi)
�i(ẑi � zi)

=
1

�

�
ẑi + zi
�i

� ẑizi
�
=
E[z2jxi]
�

where the second line uses (42) and the third line uses ẑi
@ẑi
@�
= zi

@zi
@�
.

Lemma 10 As �! 0, ẑi ! 0, zi ! �
p
�Xi � and E[z

2]! 0.

Proof. Combine equilibrium conditions (41) and (42) to obtain:
�
�+ �Xi

q
�Xi �+ ẑ

2
i

�

| {z }
>0

=
�
�� �Xi ẑi

�
e
�Xi
�

�
ẑi+
p
�Xi �+ẑ

2
i

�

| {z }
>0

Since the LHS is always positive, and so is the exponent on the RHS,
lim
�!0

ẑi = 0. It then follows from (41) that lim
�!0

zi = �
p
�Xi � and from

(44) that lim
�!0

E[z2] = 0.

Proof of Proposition 7. From Lemmas 9 and 10, and equation (43)
it follows that:

z0i �
@zi
@�

=
1

�Xi
+
�ẑi � �Xi ẑizi
��Xi zi

lim
�!0

z0i =
1

�Xi
� lim

�!0

ẑi
�
=

1

�Xi
� lim

�!0
ẑ0i

At the same time, by Lemma 9: ẑi =
ziz

0

i

ẑ0i
, and by Lemma 10: lim

�!0
z0i
ẑ0i
= 0.

It then follows that:

O(1) =
z0i
ẑ0i
=

1
�Xi
� ẑ0i +O(1)
ẑ0i

=
1 +O(1)

�Xi ẑ
0
i

� 1
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And therefore lim
�!0

ẑ0i =
1
�Xi
. From (41) it follows that lim

�!0
z0i = 0 and

from (44) that lim
�!0

@E[z2]
@�

= 0. If ẑi is twice di¤erentiable at � = 0, then

due to anti-symmetry (ẑi(�) = �ẑi(��)), ẑ00i (0) = 0. It follows that
ẑ0i =

1
�Xi
+O(2) and ẑi =

�

�Xi
+O(3). Using Lemma 9 we obtain that:

E[z2] = E

"
1

(�Xi )
2

#
�2 +O(4)

Lemma 11 Suppose �Xi = � for all i. Then, as � ! 0, adjustment
frequency �a = � +O(4).

Proof. Since �Xi = �, we can omit the i index. The expected stopping
time �(z) solves the following ODE: ��(z) = 1��@z�(z), together with
boundary condition �(z) = 0, and is given by �(z) = 1

�

�
1� e�(z�ẑ)

�
. It

follows from Lemma 6 and equation (44) that:

�a �
1

�(ẑ)
=
1

�

�
z2 � E[z2]

�

Lemma 10 implies that as �! 0, �a ! �. Furthermore:

@�a
@�

=
1

�

�
2z
@z

@�
� @E[z

2]

@�

�

=
1

�

�
2
E[z2]

�
� 2 �

�2
+O(3)

�
= O(3)

where the last line follows from Lemma 9 and Proposition 7. Therefore,
�a = � +O(4).

E Details of the Regression Approach

This section discusses econometric details associated with estimating our
key equation (11), which relates ine¢cient price dispersion to subopti-
mal in�ation at the product level. In our baseline empirical approach, we
estimate equation (11) at the level of �nely disaggregated expenditure
items, exploiting variation across products within the item. Our sam-
ple contains more than 1000 expenditure items, so that obtain a large
number of estimates of the coe¢cient of interest c in equation (11).
We use a two-step estimation approach, because neither the left-

hand side variable nor the right hand-side variables in equation (11) can
be directly observed. This section presents this approach and discusses
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how �rst-stage estimation errors a¤ect second-stage regression outcomes.
In particular, it shows that �rst-stage error biases the estimates of the
coe¢cient c towards zero, i.e., towards �nding no marginal e¤ect of
suboptimal in�ation on ine¢cient price dispersion.
Our �rst-stage estimation consists of a seemingly unrelated regression

(SUR) system that contains two equations. The left-hand side variable
in equation (11) can be estimated using the residuals of relative-price
regressions of the form

ln pjzt = ln ajz � (ln bjz) � t+ ujzt (46)

where j denotes the product and z 2 f1; :::Zg the expenditure item
under consideration, with Z being the total number of expenditure items
in our sample.59

Estimation of the right-hand side variables in equation (11) would
require estimating the average in�ation rate, ln�z, and the product spe-
ci�c optimal in�ation rate, ln��jz. Having two �rst-stage estimates on
the right-hand side of equation (11) is, however, unattractive on econo-
metric grounds.60 A more parsimonious way to proceed is to estimate
instead directly the gap between the item-level and product-speci�c op-
timal in�ation rate (ln�z=��jz) in the �rst stage. This can be achieved
by adding the price level equation

lnPt = lnP0 + ln� � t
to equation (4). Adding the item-level subindex z, we obtain for every
product another �rst-stage regression of the form

lnPjzt = lneajz +
�
ln�z=�

�
jz

�
� t+ eujzt (47)

where Pjzt denotes the nominal product price. Equation (47) shows that
the time trend in the nominal price of the product directly identi�es
the gap between item-level in�ation and the product-speci�c optimal
in�ation rate. Equations (46) and (47) jointly make up our �rst-stage
seemingly unrelated regression (SUR) system.
Since the SUR system (46)-(47 does not feature exclusion restrictions,

OLS estimation is identical to GLS estimation, despite the presence of
correlated residuals. OLS estimation delivers an unbiased estimate of
the gap ln�z=��jz and an unbiased estimate of the residual variance of
interest,

dV ar(ujzt) =
1

Tjz � 2
X

t

(bujzt)2 ;

59To simplify notation, the previous sections have suppressed the item index z.
60It requires discussing, amongst other things, the covariance in the estimation

errors of these two right-hand side variables.
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where Tjz denotes the number of price observations for product j in item
z.
The �rst-stage estimates for each product j within expenditure item

z can then be used to estimate the second-stage equation

dV ar(ujzt) = vz + cz � ( \ln�z=��jz)
2 + "jz (48)

using OLS estimation. This delivers an estimate of cz for each each
expenditure item z = 1; : : : ; Z. The error term "jz in equation (48)
absorbs measurement error of the left-hand side variable, as discussed
below, as well as the higher-order approximation errors implied by menu-
cost models, see equation (15).

While the �rst-stage estimates dV ar(ujzt) and \ln�z=��jz are unbiased,
they are contaminated by sampling error. Sampling error is an important
concern because the product price time series underlying the �rst-stage
system can be relatively short. Fortunately, the e¤ect of the �rst-stage
sampling error consists solely of biasing the estimate of cz towards zero,
as we now show next.
To illustrate this point, we assume that the �rst-stage residuals are

normally distributed. (The more general case with non-normal errors
is discussed in appendix E.1 below.) When estimating the SUR sys-

tem (46)-(47), the estimation error in \ln�z=��jz is orthogonal to the
estimation error in the residuals fbujztg, by construction of the OLS es-
timate. With normality, both estimation errors are also independent of
each other. Therefore, the estimation error in dV ar(ujzt) on the l.h.s. of
equation (48) is independent of the estimation error in ( \ln�z=��jz)

2 on
the r.h.s. of the equation, because both variables are nonlinear transfor-
mations of independent random variables.
First-stage estimation error on the l.h.s. of equation (48) thus takes

the form of classical measurement error: it does not generate any bias
in the second-stage estimates of cz, instead gets absorbed by the regres-

sion residual "jz. However, �rst-stage estimation error in ( \ln�z=��jz)
2

biases the second-stage estimate of cz towards zero. This is so because

measurement error in ( \ln�z=��jz)
2 generates a classic attenuation e¤ect.

In addition, estimation error in \ln�z=��jz raises the expected value of

( \ln�z=��jz)
2, which generates a further bias towards zero.

Our second-stage estimates for cz thus provides a lower bound of the
true marginal e¤ect of suboptimal in�ation on price distortions. Since
we are interested in rejecting the null hypothesis of in�ation not creating
ine¢cient price dispersion, H0 : cz = 0, the bias is working against our
main �nding.
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Figure 18: Skewness and kurtosis of the �rst-stage regression residuals

Finally, to insure that our results are not driven by outliers, e.g.,
ones associated with errors in price collection, we eliminate within each
expenditure item all products falling into the top 5% of the distribution
of residual variances dV ar(ujzt) and the top 5% of estimated in�ation

gaps ( \ln�z=��jz)
2 when running our second-stage regression.

E.1 General Case with Non-Normal First-Stage Resid-

uals

Figure 18 reports the skewness and kurtosis of the �rst-stage regres-
sion residuals of equation (46) (left-hand side panels) and equation (47)
(right-hand side panels) across the considered expenditure items.61 The
top panels show that skewness is centered around zero and relatively
tightly so, in line with the zero skewness of the normal distribution. For
kurtosis, shown in the lower panels of �gure 18, the situation looks dif-
ferent. Kurtosis values often lie above the value of 3 implied by a normal
distribution.
We now show that quite similar arguments as for the normal case

apply to our second-stage estimates of cz when �rst-stage residuals fail to
be normal. In fact, to insure that there is at most a downward bias in the
second-stage estimate of cz; it is su¢cient to insure that the estimation
error in the l.h.s. variable dV ar(ujzt) in equation (48) is orthogonal to
(rather than independent of) the estimation error in the r.h.s. regressor

( \ln�z=��jz)
2.

Recall that the errors in ( \ln�z=��jz) and fbujztg are orthogonal by
61The measures use outlier trimmed residuals by considering the 2.5%-97.5% quan-

tile of the residual distribution.
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construction. A violation of orthogonality between ( \ln�z=��jz)
2 and

dV ar(ujzt) can thus only arise because these variables are nonlinear rather
than linear functions of \ln�z=��jz and fbujztg, respectively. This illus-
trates that violations of orthogonality conditions are somewhat unlikely
to emerge on a priori grounds, even in the absence of normality.

We show below that orthogonality of the estimation errors in ( \ln�z=��jz)
2

and dV ar(ujzt) holds whenever the residuals satisfy

Cov[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2
; (1; 0)0u0Mu(1; 0)jX] = 0; (49)

where

X 0 �
�
1 1 1 : : :
0 1 2 : : :

�
(50)

is the matrix of �rst-stage regressors and M the matrix de�ned in (51)
below. Condition (49) is a condition on the true residuals u, which is
satis�ed in the special case with normal errors. Condition (49) holds
by construction when replacing the true residuals u by the estimated
OLS or GLS residuals bu, thus cannot be tested empirically using the
regression residuals.62

To understand why condition (49) insures that the same outcome is
obtained as with normality, consider our �rst-stage regression system,
which takes the form of a seemingly unrelated regression (SUR) system:

Y|{z}
Tx2

= X|{z}
Tx2

�|{z}
2x2

+ u|{z}
Tx2

,

where X denotes the (deterministic) regressors de�ned in (50) and Y
the stacked vector of the left-hand side variables (pjzt; Pjzt) in equations
(46) and (47). Letting ut denote the residuals at date t and u the stacked
residual vector, we have E[ut] = 0 and

V ar(ut) =

�
v211 v12
v12 v

2
22

�
:

62Using the notation introduced below, this follows from the fact that

�
X 0V �1X

��1
X 0V �1bu

=
�
X 0V �1X

��1
X 0V (I �X

�
X 0V �1X

��1
X 0V �1)Y

= 0:
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Since the SUR system does not feature exclusions restrictions, OLS es-
timation is identical to GLS estimation. In particular, the OLS/GLS
estimate b� of � is given by

b� � (X 0X)
�1
X 0Y

and the regression residuals by

bu|{z}
Tx2

=MY =Mu where M � (I �X (X 0X)
�1
X 0) (51)

We have

E[bu0bujX] = E[ u0|{z}
2xT

M 0M| {z }
TxT

u|{z}
Tx2

jX]

= E[ u0|{z}
2xT

M|{z}
TxT

u|{z}
Tx2

jX]

= tr(M)E[u0ujX]

=
1

T � 2

�
v211 v12
v12 v

2
22

�
;

An unbiased estimate of the residual variance v211 is thus given by

cv211 �
(1; 0)0bu0bu(1; 0)

T � 2 : (52)

The estimation errors in the variables used in the second-stage regression,

i.e., of
�
(0; 1)

�
b� � �

�
(0; 1)0

�2
and

�cv211 � v211
�
, are orthogonal if and

only if

E[

��
(0; 1)

�
b� � �

�
(0; 1)0

�2��cv211 � v211
�
jX] !

= 0

, E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2�(1; 0)0bu0bu(1; 0)
T � 2 � v211

�
jX] !

= 0

, E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2�(1; 0)0u0u(1; 0)
T � 2 � v211

�
jX] !

= 0

The last equality holds if and only if

E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2 (1; 0)0u0Mu(1; 0)
T � 2 jX]

= E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2
v211jX];

which is the case if and only if condition 49 holds, as E[ (1;0)
0uM 0Mu(1;0)
tr(M 0M)

] =

v211:
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Figure 19: Distribution of product-speci�c optimal in�ation rates ��jz in
1996 and 2016 (monthly rates, unweighted)

F Cross Sectional Distribution of Product-Speci�c

Optimal In�ation Rates over Time

Figure 19 depicts the cross-sectional distribution of product-speci�c op-
timal in�ation rates ��jz across all products and all items in the �rst and
last year of our sample (1996 and 2016). It shows that this distribution
is remarkably stable over the considered 20 year period.

G Proof of Proposition 3

From equation (21) we get

V arj (ln pjzt) = V ar
j
�
ln p�jz � ln��jz � t

�
+ V arj (ujzt)

+ Covj(ln p�jz; ujzt)

� t � Covj(ln��jz; ujzt):

We next show that Covj(ln p�jz; ujzt) = Cov
j(ln��jz; ujzt) = 0 :

Covj(ln p�jz; ujzt) = E
j[ln p�jzujzt]� Ej[ln p�jz]Ej[ujzt]| {z }

=0

= Ej[Ej[ln p�jzujztjp�jz]]
= Ej[ln p�jzE

j[ujztjp�jz]| {z }
=0

]

= 0:
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Similarly:

Covj(ln��jz; ujzt) = E
j[ln��jzujzt]� Ej[ln��jz]Ej[ujzt]| {z }

=0

= Ej[Ej[ln��jzujztj��jz]]
= Ej[ln��jzE

j[ujztj��jz]| {z }
=0

]

= 0:

It thus only remains to compute the cross-sectional variance of residuals,
V arj(ujzt). These residuals are described by a mixture distribution in
which one �rst draws the relative price trend ��(i)z with probability mzi.
Subsequently, we draw corresponding residuals ujzt. Since the residuals
are independent across j, the cross-variance of residuals for any given
�
�(i)
z is equal to their variance over time, as given in equation (22).
Therefore, the variance of the mixture distribution is given by equation
(24).
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