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Abstract

In today’s world, social networks have a significant impact on information processes,

shaping individuals’ beliefs and influencing their decisions. This paper proposes a

model to understand how boundedly rational (DeGroot) individuals behave when

seeking information to make decisions in situations where both social communica-

tion and private learning take place. The model assumes that information is a local

public good, and individuals must decide how much effort to invest in costly infor-

mation sources to improve their knowledge of the state of the world. Depending on

the network structure and agents’ positions, some individuals will invest in private

learning, while others will free-ride on the social supply of information. The model

shows that multiple equilibria can arise, and uniqueness is controlled by the lowest

eigenvalue of a matrix determined by the network. The lowest eigenvalue roughly

captures how two-sided a network is. Two-sided networks feature multiple equilib-

ria. Under a utilitarian perspective, agents would be more informed than they are

in equilibrium. Social welfare would be improved if influential agents increased their

information acquisition levels.
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1 Introduction

Information is key to making decisions. Nowadays, social networks have a significant

impact on information processes. We discuss various issues with family, friends, and

colleagues, affecting their opinions and shaping our own. Random conversations about

an upcoming election, the job market, or stock market performances can influence our

beliefs. Breakthrough news spreads rapidly, and individuals are constantly updating their

opinions. Apart from this social supply of information, individuals can learn privately,

such as by searching on the internet or consulting a book. Therefore, it is essential

to understand how individuals behave when they seek to acquire information to make

decisions in situations where both social communication and private learning take place.

To what extent do people exert effort themselves, and to what extent do they rely on

others?

In this paper, we propose a model of information acquisition in networks in which

individuals are boundedly rational, behaving as mechanical updaters when it comes to

learning. With this in hand, they decide how much to invest in a costly information source

to improve their knowledge of the state of the world. Mechanical updating here consists

of agents merely taking weighted averages of the signals received—the so-called DeGroot

updating rule from DeGroot (1974).

Despite considering boundedly-rational agents, we still apply the concept of Nash

equilibrium at the stage where they determine their information acquisition. This is

done in the spirit of an evolutionary concept of Nash equilibrium. An evolutionary model

consists of a large population of boundedly-rational players playing some game repeatedly

over time (Mailath, 1998). Evolutionary theory shows that such players eventually learn to

play Nash equilibrium,1 even in the absence of perfect rationality. The crucial assumption

is that more successful behaviors become more prevalent due to a combination of imitation

and the failure of unsuccessful behaviors.2 In our model, boundedly-rational agents that

update mechanically face the problem of provision of a local public good. The task of

gathering information for subsequent decision-making recurs numerous times throughout

an individual’s life. In the spirit of evolutionary theory, we think of boundedly-rational

agents who, despite their cognitive constraints, have learned to reach Nash equilibrium

outcomes through their choices.

To provide an intuition for the formal model, consider an agent who wishes to become

1 In particular, the central notion in evolutionary game theory is that of evolutionary stable strategy, and
theory shows that any symmetric strict Nash equilibrium is indeed an evolutionary stable strategy.
See Mailath (1998) or Samuelson (2002) for an overview.

2 This is also discussed by Aumann (1997), asserting that ordinary people, in their daily activities, do
not consciously adhere to rationality but evolve “rules of thumb” through evolution. If these rules
prove effective, they proliferate and multiply, eventually reaching the equilibrium that strict rationality
would have predicted.
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more informed about a particular issue. We assume that she has some prior knowledge,

and that informative conversations take place in her neighborhood—for example, at the

office. There, each colleague exerts a different and fixed influence that shapes the agent’s

final opinion. Anticipating this, she decides how much effort to spend on private learning.

Given that learning tools are similar among neighbors, we assume a positive correlation

when it comes to private learning signals. Hence, each agent faces a problem of informa-

tion acquisition in which information is a local public good. Individuals have to decide

how much to invest in private learning, knowing that free social learning will take place

later. Depending on the substitutability between information acquired personally and

information acquired by others, but also on the neighbors’ choices, agents will raise or

lower their learning efforts. Free-ride behaviors will arise.

This paper provides three main contributions. First, we analyze and characterize the

equilibria arising in the model. Depending on the network structure and their positions,

agents will contribute with some learning or completely free-ride. In principle, there

are multiple equilibria, and all of them can be calculated. A sufficient condition for

equilibrium uniqueness is our second contribution. If this condition does not hold, the

equilibria computations run in exponential time. Equilibrium uniqueness is controlled

by the lowest eigenvalue of a matrix given by the network. This eigenvalue essentially

captures how two-sided the corresponding network is, that is, whether agents can be

divided into two sets with many links between them but just a few within. In a game

of strategic substitutabilities, when an agent increases her effort, her neighbors decrease

theirs in response, so that the neighbors’ neighbors have to increase, and so on. When the

network is two-sided, these direct effects accumulate and lead to several distinct equilibria.

However, if the lowest eigenvalue is sufficiently large, the network will not be two-sided

enough for the actions to rebound, and the equilibrium will be unique. Finally, we provide

a welfare analysis. From a social (utilitarian) perspective, every agent would be more

informed than she is in equilibrium. To satisfy this demand, at least the influential agents

(those agents from which the others get the majority of information) have to increase their

contribution. If the network is too unbalanced, this becomes a burden and the welfare of

the influentials decreases. In general, the utilitarian optimum does not Pareto-dominate

the equilibrium outcome.

The choice of the updating rule, i.e., how individuals process and incorporate the

information received, is a relevant decision when trying to model social learning. One has

to decide whether to employ the fully rational Bayesian focus or the naive, boundedly-

rational approach, mainly represented by the already mentioned DeGroot rule. Quoting

Acemoglu and Ozdaglar (2011), “which type of approach is appropriate is likely to depend

on the specific question being investigated”. We argue here that the DeGroot updating

rule fits best within our context.

Bayesian updating requires an unrealistic cognitive demand for learning in large net-
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works. However, the DeGroot rule provides a convenient alternative, given its simplicity

and lack of restrictive requirements. In a simultaneous setting, Bayesian agents who re-

ceive Gaussian private signals behave like DeGroot updaters when subject to persuasion

bias, as shown by DeMarzo, Vayanos, and Zwiebel (2003). In fact, if the game is one-shot

(as it is in this paper), persuasion bias is not even necessary for such a result to hold. Still,

their model deviates slightly from standard rational assumptions, as neighbors’ signal pre-

cision is unknown. The relationship between Bayesian and DeGroot rules, especially for

one-shot games, supports our model and is further analyzed in the Appendix. Nonethe-

less, after the first period, a pure Bayesian (not suffering from persuasion bias) would

adjust for the information buried in the network, while DeGrootian agents would not.3

The literature on networks has widely used the DeGroot rule in different settings. Golub

and Jackson (2010) show that under some mild conditions on connectedness and influ-

ence, DeGroot agents converge to the belief that would result from the full aggregation

of everyone’s signal. Both Golub and Jackson (2012), devoted to study homophily, and

Acemoglu, Ozdaglar, and ParandehGheibi (2010), which analyzes the tension between

the spread of misinformation and information aggregation, also reflect how convenient

DeGroot updating is for large networks analysis. However, the major drawback of the

rule is that the choice of weights might seem arbitrary, particularly when communication

lasts longer than one period. Furthermore, the assumption that everyone is informed at

the outset may be too demanding. Banerjee, Breza, Chandrasekhar, and Mobius (2021)

adapted the rule to sparse signals to address this issue.

This having been said, the empirical evidence heavily supports DeGroot updating.

Various papers confront it against Bayesian learning in an experimental setting, conclud-

ing that it approximates better people’s information aggregation rules (see Corazzini,

Pavesi, Petrovich, and Stanca (2012), Mueller-Frank and Neri (2013), Grimm and Mengel

(2020), Chandrasekhar, Larreguy, and Xandri (2020)). Although there is no definitive

approach, many recent papers tend to use a boundedly rational model for both sequential

and simultaneous settings. For example, Dasaratha and He (2020) assume that agents

neglect redundancies of information and then aggregate heuristically, and Mueller-Frank

and Neri (2021) consider a large class of boundedly rational or quasi-Bayesian rules, re-

spectively.

Although modelling learning through a mechanical updating rule is overly simplistic,

it allows us to isolate the network effects, which is the primary concern of this paper.

Furthermore, we argue that assuming exogenous and fixed weights reflects human behav-

ior. The influence that our neighbors exert on a concrete topic is almost predetermined.

A wide range of factors such as past interactions, trustworthiness, and expected level of

knowledge defines an influence level before communication occurs. Similarly, it seems

3 See Molavi, Tahbaz-Salehi, and Jadbabaie (2018) for an axiomatic foundation of the DeGroot rule
under imperfect recall.
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sensible that agents can endogenously set the influence of their own private learning on

their views: the more time devoted to researching, the more reliable the agent perceives

it to be. Thus, the expenditure of costly attention will reduce player-specific noise.

Galeotti and Goyal (2010) is a key paper in the literature on information acquisition in

networks. In this paper, network-placed agents strategically select their links to access the

information held by their neighbors. Every equilibrium displays the so-called “law of the

few”: the majority of individuals tend to get most of their information from a tiny subset of

the group, the influentials. Our model shows that this result holds true for networks where

a subset of agents, the populars, has a significantly higher weight than the rest, such as the

core-periphery network. In such networks, popular agents become influential and acquire

most of the information, while the others free-ride. This finding contrasts with Banerjee,

Breza, Chandrasekhar, and Mobius (2021), where the sparse-signals structure indicates

that being popular alone is insufficient for being influential. However, two assumptions

in Galeotti and Goyal (2010) differ from our model: links are endogenous, allowing an

agent to reach any other individual in a potentially large network, and homogeneous,

meaning perfect substitutability. Network effects on information acquisition have also

been analyzed from a Bayesian perspective. In Myatt and Wallace (2019), rational agents

acquire information about the state of the world from sources that provide noisy signals.

Paying costly attention reduces noise, and signals are possibly correlated across players,

similar to our model. However, incentives differ as agents not only want to match the state

of the world but also care about coordination asymmetrically. Furthermore, there is no

communication stage. The player’s centrality (in the sense of Bonacich) and correlations

determine information acquisition, but centrality entails less expenditure, in contrast to

Galeotti and Goyal (2010) and our paper. Finally, Denti (2017) introduces the concept

of entropy reduction to study how players endogenously acquire costly information to

decrease their uncertainty about fundamentals. Network effects induce externalities in

information acquisition and are a source of multiple equilibria.

Regarding equilibrium analysis, our work closely follows that of Bramoullé, Kran-

ton, and D’Amours (2014). Following previous attempts in the literature to charac-

terize conditions for equilibrium in linear games of strategic complements (cf. Ballester,

Calvó-Armengol, and Zenou (2006)) and strategic substitutes (especially in public goods,

cf. Bramoullé, Kranton, et al. (2007)), the authors showed that equilibrium uniqueness

and stability depend on the lowest eigenvalue of the network matrix. This is dependent

on the two-sidedness of the network. Although our paper differs in setting and motiva-

tion, the best response function derived from our model is similar to that of Bramoullé,

Kranton, and D’Amours (2014). Consequently, the result regarding the lowest eigenvalue

characterizing equilibrium uniqueness is also similar. However, their model assumes that

agents’ contributions are reciprocal and weighted equally, which differs from our assump-

tions. This has two consequences. First, the potential theory introduced in Monderer

and Shapley (1996), on which Bramoullé et al. base their results, cannot be applied here;
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second, a wider range of networks can be analyzed. Nevertheless, if we restrict our setting

to symmetric, homogeneous networks, an almost equivalent condition arises. Finally, our

paper is also related to Bramoullé, Kranton, et al. (2007) model of pure public goods

in exogenous networks, where again all contributions are weighted equally and there is

perfect substitutability. In that model, the authors find that multiple equilibria typically

exist, and there is always one in which some individuals contribute while others free-ride.

This equilibrium is typically unique.

The rest of the paper is organized as follows. Section 2 describes and analyzes our

model, Section 3 studies the equilibria, provides a uniqueness condition and presents some

examples, and Section 4 analyzes the model from a social planner perspective. Section 5

briefly introduces a dynamic version of the model, and Section 6 concludes.

2 Model

We consider a finite set of n agents interacting via a social network represented by an

n × n matrix G = (gij), which is predetermined and stochastic: the entries in each row

are non-negative and sum to one. Interactions need not be symmetric or two-sided, so in

general gij , gji and gij > 0 does not imply gji > 0.

Each agent holds a private signal si about a common underlying state of the world

µ ∈ R, drawn independently from a normal distribution with mean µ and variance σ2 > 0.

There are two learning resources available to improve this signal, presented in the order in

which they become accessible to the agent: active private learning from a more informative

but costly source, and social learning from neighbors. The first resource involves drawing

a signal Ii from a normal distribution with mean µ and variance σ̃2 < σ2, while the second

resource involves aggregating the signals of the agent’s direct neighbors in the network.

Both types of learning take the form of DeGroot updating of signals, following DeG-

root (1974). Agents take a weighted average of their signals, i.e., they aggregate several

indicators in just one. In the case of private learning, agent i decides the weights in the

convex combination between si and Ii. The costly signal Ii receives weight xi ∈ [0, 1]

at linear cost xic with c > 0. Costly signals are positively correlated across agents,

Cov(Ii, Ij)= α > 0 for all i, j. The original private signals are independent across agents

and independent of all costly signals. Regarding social learning, agent i takes the weighted

average of her neighbors’ signals and her own. Weights are exogenously4 given by the net-

work matrix, and they represent influence or trust: agent i listens to agent j precisely at

intensity gij.

4 Rational learners might adjust the weights based on neighbors’ information levels, as discussed in
Galeotti and Goyal (2010). However, in this case, we want to focus on situations where weights are
pre-determined for a näıve learner due to past interactions, influence, or reputation, and cannot be
modified.
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The mechanical updating process described can be viewed as active learning with

attention costs for boundedly rational agents. In addition to normal signals, it can also

be interpreted from a Bayesian perspective, as demonstrated in DeMarzo, Vayanos, and

Zwiebel (2003). Agents assign subjective precisions πij to each other, attempting to

estimate the true precision of their signals. If the signals are independent and normal,

Bayesian updating is equivalent to DeGroot updating, with weights given by πij∑n

j=1
πij

for social learning.5 A similar argument applies to the active learning process; see the

Appendix for a motivation of the present framework in terms of quasi-Bayesian updating

as defined in DeMarzo, Vayanos, and Zwiebel (2003).

In the following, we use the term “beliefs” to refer to the most recently updated signal

an agent holds about µ. A precise description of the learning process is as follows: The

agent receives si ∼ N (µ, σ2) and decides how much to spend on learning Ii ∼ N (µ, σ̃2).

Once xi is selected, the belief becomes pi = (1−xi)si +xiIi at cost xic. Finally, the social

communication stage yields beliefs

n∑

j=1

gijpj =
n∑

j=1

gij ((1 − xj)sj + xjIj) .

Note that if i and j are not neighbors, gij = 0, so summing over i’s neighbors is equiv-

alent to summing over all n individuals. At this point, only one communication stage is

assumed, but considering t stages would imply the substitution of G by Gt, as shown in

Section 5.

Agent i aims to obtain the most precise belief about µ at minimum cost, as deviations

are penalized through a quadratic loss function. This is specified in the payoff function

−


µ −
n∑

j=1

gijpj





2

− xic = −


µ −
n∑

j=1

gij((1 − xj)sj + xjIj)





2

− xic.

Although agent i is a naive, mechanical learner, we assume, based on evolutionary theory,

that she is capable of reaching Nash equilibrium outcomes. Specifically, deciding how

much to contribute to a public good is a typical example of a process in which boundedly-

rational agents evolve toward Nash equilibrium outcomes in the long run (Mailath, 1998).

Hence, we allow agent i to form expectations and best respond to others’ choices, as if

she were rational at this stage. She chooses the amount xi that maximizes her expected

utility:

max
xi∈[0,1]







E




−



µ −
n∑

j=1

gij((1 − xj)sj + xjIj)





2



− xic







. (1)

5 If gij = 0, then πij = 0.
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3 Equilibrium

The equilibrium concept used in this model is Nash equilibrium, where each agent i

chooses her information level xi by best responding to others’ equilibrium choices. It is

important to note that E[si] = E[Ii] = µ for all i. Additionally, every pair of signals is

independent except for Ii and Ij. As a result, E
[
∑n

j=1 gij(xjIj + (1 − xj)sj)
]

= µ, while

Var(xjIj +(1−xj)sj) = x2
j σ̃

2 +(1−xj)
2σ2 and Cov(xjIj +(1−xj)sj, xkIk +(1−xk)sk) =

αxjxk. These equalities, along with the payoff equation, imply that only second moments

matter. In fact,

E




−



µ −
n∑

j=1

gij(xjIj + (1 − xj)sj)





2



 = −Var





n∑

j=1

gij(xjIj + (1 − xj)sj)



 .

Using that for any sequence of random variables {X̃j}n
j=1 it holds that Var(

∑n
j=1 X̃j) =

∑n
j=1 Var(X̃j) + 2

∑n
j=1

∑j−1
k=1 Cov(X̃j, X̃k), the maximization problem for agent i can be

simplified as follows:

max
xi∈[0,1]






−σ̃2

n∑

j=1

g2
ijx

2
j − σ2

n∑

j=1

g2
ij(1 − xj)

2 − 2α
n∑

j=1

j−1
∑

k=1

gijgikxjxk − cxi






. (2)

The objective is strongly concave in the choice variable. The first order condition for an

interior solution yields

xi =
2σ2 − c/g2

ii

2(σ̃2 + σ2)
− α

gii(σ̃2 + σ2)

∑

j,i

gijxj.

Note that this expression is bounded above by 1 but could be negative. As xi ∈ [0, 1] by

assumption, the optimal choice of active learning for agent i given others’ choices x−i is

x∗
i = max






0,

2σ2 − c/g2
ii

2(σ̃2 + σ2)
− α

gii(σ̃2 + σ2)

∑

j,i

gijxj






.

This best response function is similar to the one obtained when solving a maximization

problem in a local public goods setting. Games of negative externalities or Cournot

competition also yield similar forms. The only difference is that here, δ is divided by gii,

a parameter that varies across agents. In the other cases, the substitutability factor is the

same for all agents.

Note that only the weighted out-degree matters for information acquisition, but not

the weighted in-degree.6 In other words, agents care about who they are listening to (the

gijs), but not who listens to them (the gjis). Furthermore, if gii = 0, then x∗
i = 0 trivially,

6 The out-degree of agent i is the total weight of links directed away from her. The in-degree is the
total weight of links directed to her.
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as active learning is a waste of resources for someone who does not assign positive weight

to herself. Therefore, without loss of generality we can assume gii > 0. By setting

x̄i =
2σ2 − c/g2

ii

2(σ̃2 + σ2)
,

and

δ =
α

(σ̃2 + σ2)
,

we obtain

x∗
i = max






0, x̄i − δ

gii

∑

j,i

gijxj






.

Here, information refers to individuals’ costly learnt signals and is a local public good.

Each agent benefits from others’ private learning via network communication. The quo-

tient δ
gii

scales the benefit and indicates the substitutability between an agent’s and her

neighbors’ information. Agent i seeks to reach at least the information target x̄i through

a combination of her own information and her neighbors’. If the weighted contributions

of the others are enough ( δ
gii

∑

j,i gijxj > x̄i), then she will not spend on private learning,

and x∗
i = 0. If not, she will make up the difference, and x∗

i > 0.

Let us analyze the scale factor δ
gii

, which measures the substitutability between the

information purchased by an agent and her neighbors. On the one hand, 1
gii

reflects how

important others’ contributions are to the particular agent i. If gii is small, almost all

attention is paid to the neighbors, so their information matters considerably. In contrast,

if gii is close to one, agent i essentially listens to herself. On the other hand, δ = α
σ2+σ̃2

reflects the quality of the neighbors’ information. The parameter α indicates how much

information one can extract from others. Consequently, the higher α, the less information

is purchased. The sum σ2 + σ̃2 expresses the overall level of uncertainty. If it grows,

the incentives for an agent to increase her information level also grow. Note also that

δ ∈
[

0, 1
2

]

by the Cauchy-Schwarz inequality.7 Therefore, for any gii ≥ 1/2, the scale

factor is always lower than one. This is not surprising: if an agent listens to herself more

than to others, the information that she acquires matters more.

The information target x̄i indicates how well-informed each agent aims to be. The

more precise Ii is in expectation terms—the lower σ̃2—, the higher x̄i the agent wants to

attain. Additionally, the degree of an agent’s own attention, represented by gii, matters:

acquiring information through costly learning is more profitable if the agent puts a higher

weight on herself when updating. An increase in costs makes information acquisition less

7 In fact, this inequality implies 0 ≤ α ≤ σ̃2, and hence

0 ≤ δ ≤ σ̃2

σ2 + σ̃2
=

1

2
.
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attractive. It is worth noting that x̄i = 1 only if σ̃2 = 0 (i.e., Ii = µ and it is a perfect

signal) and c = 0. In all other cases, a convex combination of si and Ii is preferred. It is

more convenient for the agent to have two independent signals, even if one is much more

informative than the other, than just one. Therefore, she does not want to get rid of si

entirely and sets x∗
i < 1.

It has been shown that x∗
i ∈ [0, 1]. The combined best response function of the players

maps [0, 1]n to itself and is continuous. Brouwer’s fixed point theorem guarantees the

existence of an equilibrium.

Proposition 3.1. The game of information acquisition by DeGroot updaters has at least

one Nash equilibrium.

We should pay special attention to the limiting case of uncorrelated costly signals, i.e.,

α = 0. Since the correlation between signals is zero, agents cannot extract any information

from each other. The equilibrium analysis is then trivial: as δ > 0, each agent chooses

the information level

x∗
i = max{0, x̄i}.

Since x̄i ≤ 1, x∗
i is well-defined. Moreover, x̄i > 0 if and only if gii >

√
c

2σ2 . This is

the target for active learning: every individual that weighs themselves more than
√

c
2σ2

will choose a positive x∗
i , independently of the network. Due to the lack of strategic

substitutability, equilibrium is unique.

3.1 Examples

With the existence of equilibrium proved, and before further general analysis, some promi-

nent networks and their equilibria are discussed as illustrations.

The first class we consider is the k-regular graphs with homogeneous weights.

This class consists of structures with n agents, each having k neighbors. All connections

have identical weight, such that gij = 1
k

for all i and j. Such a network could represent

a small community where each member listens to everyone else, and influences are ho-

mogeneous. Complete networks in which every agent has the same degree are a subset

of regular graphs. Other examples of symmetric structures represented by regular graphs

are big societies of n individuals who cluster in small k-neighborhoods and the circle. The

unique equilibrium of the k-regular graph with homogeneous weights is given by

x∗
i =

2σ2 − ck2

2(σ2 + σ̃2)(−δ + δ k + 1)
if c ≤ 2σ2

k2
; x∗

i = 0 otherwise.
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As the number of neighbors grows, incentives to acquire information decrease. The

more signals an agent listens to, the better, and active learning loses importance, as

shown in Figure 2. The parameters are set to σ2 = 5, σ̃2 = 1, and δ = 0.07. Each color

corresponds to a different cost of Ii, ranging from c = 0.3 to c = 0. Note that x∗
i = 0 as

soon as c ≥ 10
k2 . The non-symmetric example displayed in Figure 1, which features nine

agents of out-degree four, also has the above equilibrium. This is implied by the fact that

only the acquisition choices of those whom the individual listens to matter. In other words,

only the out-degree matters. Differences between networks with the same out-degree for

all agents but different in-degrees will appear in the socially optimal allocation, where the

in-degree also conditions behavior. This will be shown in Section 4. Comparative statics

are presented in Figure 3 for a regular graph with four neighbors and weights 1
4
. The cost

is c = 0.3 and the rest of the parameters are as above.

The second class is that of stars, where one prominent agent (the hub) is connected

to every other agent (the spokes). The spokes, in turn, are connected only to the hub and

themselves. A department in a firm, with a supervisor and some employees, is a leading

example. An auction with an auctioneer in the center could be another example. Assume

10



that the hub puts the same weight on everyone, and the spokes put weight ε on the hub.

Therefore, the information levels in equilibrium for a society of n agents are given by the

following equations:

x∗
H =

2σ2(1 − ε)2((n − 1)δ − 1) − c(δ(n − 1) − (1 − ε)2n2)

2(σ2 + σ̃2)(1 − ε)((n − 1)εδ2 + ε − 1)
if c ≤ 2σ2(1 − ε)2((n − 1)δ − 1)

(δ(n − 1) − (1 − ε)2n2)
;

x∗
H = 0 otherwise,

x∗
S =

2σ2(1 − ε)(1 − ε − δε) − c(1 + δ(ε − 1)εn2)

2(σ2 + σ̃2)(1 − ε)((n − 1)εδ2 + ε − 1)
if c ≤ 2σ2(1 − ε)(1 − ε − δε)

(1 + δ(ε − 1)εn2)
;

x∗
S = 0 otherwise.

The star graph for five agents is shown in Figure 4, where node A represents the hub

(H) and nodes B, C, D, and E are the spokes (S). The blue links have a weight of 1
5
,

while the bold links have a weight of ε. The hub shares her attention equally, while the

spokes put weight ε on her. The information acquisition levels as a function of ε are also

illustrated below, using the same parameter values as before: c = 0.3, σ2 = 5, σ̃2 = 1, and

δ = 0.07. When ε is small, the spokes need to invest significantly in learning. However, as

ε grows, the hub’s signal gains importance, and active learning becomes less valuable for

the spokes. The hub responds to this behavior by adjusting her learning efforts. When ε

is small, she can rely on the spokes to aggregate some signals, so only a modest amount

of active learning is necessary. However, when ε grows large, the hub invests significantly

more in learning to compensate for the drop in the spokes’ contribution. Similarly, in a

department of a firm, the supervisor reacts to employees’ expertise, and the employees

invest in learning only when it is useful. If they only follow the supervisor’s orders, there

are no incentives for them to learn independently.

A

B C

D E

Figure 4: Star with five agents.

���� ��

xH
*

xS
*

0.2 0.4 0.6 0.8

ε
0.2

0.4

0.6

0.8

(xi )
*

Figure 5: Information acquisition, star.

It is worth noting that the complete graph, in which each agent weights herself as ε

and the other n − 1 agents as 1−ε
n−1

, yields the same levels of information acquisition as the

star with an own weight of ε.

We now move on to the class of core-periphery networks, which are characterized

by a “dense, cohesive core and a sparse, unconnected periphery”, as described in Borgatti
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and Everett (2000). Many relevant economic networks exhibit this structure, such as the

lending behavior of banks (Fricke and Lux, 2015) or international trade networks (Fagiolo,

Reyes, and Schiavo, 2010). Another example is the structure arising in Galeotti and Goyal

(2010): the “few” constitute the core while the rest of the network (the periphery) free-

rides on them. A particular case in which the core is formed by three individuals who

share their attention equally and three periphery agents who listen to one core agent each

is shown in Figure 6. The periphery agents put almost all of their weight (in this case,
9
10

) on the core agents, which causes their acquisition levels to rapidly drop to zero as δ

increases. As soon as there is a minimal amount of substitutability, the periphery agents

stop purchasing. On the other hand, the core agents acquire abundant information, as the

core acts as a k-regular network for them and it is independent from the periphery. The

results for k-regular networks hold and hence, the larger the core, the less information its

agents acquire. The acquisition choices are given by:

x∗
C =

2σ2 − 9c

2(σ2 + σ̃2)(2δ + 1)
if c ≤ 2σ2

9
; x∗

C = 0 otherwise,

x∗
P = max

{

0,
2σ2 − 100c

2(σ2 + σ̃2)
− 9δ(2σ2 − 9c)

2(σ2 + σ̃2)(2δ + 1)

}

.

The cost c is set to c = 0.06 in this example to illustrate the decay in the periphery agents’

acquisition levels. A value of c = 0.3 as above would lead to no acquisition even if δ = 0,

as periphery agents barely weight themselves.

A

B C

D

E F

Figure 6: Core-periphery network.
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Figure 7: Information acquisition as a
function of δ.

Next we discuss the criminal network from Ballester, Calvó-Armengol, and Zenou

(2006). The authors use the network from Figure 8 to highlight the fact that influence

is not necessarily equivalent to the number of connections (degree). They identify the

key criminal as agent A, who, when removed, leads to the highest aggregate reduction

in crime, despite not having the highest degree. Agent A plays a crucial role in bridging

two fully interconnected communities of five criminals each. In terms of information

acquisition, Figure 9 shows the active learning choices for this network. Assuming equal

shares of attention (i.e. each agent listens equally to every neighbor), there are three

12



different kinds of individuals: agent A, agents B, F, G and K (referred to as the B-class)

and agents C, D, E, I, H and J (C-class). Apart from listening to themselves, agent A

listens to the four B-class agents, B-class agents listen to agent A, one B-class individual

and three C-class individuals, and C-class agents listen to two B-class individuals and

two C-class individuals. Interestingly, the most influential agent for Ballester et al. (agent

A) is also the most informed. The B-class agents tend to free-ride on the rest. The best

reply functions are:

x∗
A = max {0, x̄A − 4δxB} ,

x∗
B = max {0, x̄B − δ(xA + xB + 3xC)} ,

x∗
C = max {0, x̄C − 2δ(xB + xC)} .

Classes A and C respond to class B’s choice, which is small in comparison. Information

acquisition choices are shown in Figure 9 as a function of δ. The parameters are set as

in the core-periphery example. Both A-class and C-class agents listen to five individuals

each, so x̄A = x̄C . However, as B-class agents listen to six neighbors and weigh their

own signal less, it holds that x̄B < x̄A. In the extreme case of δ = 0, A-class agents and

C-class agents purchase the same quantity, slightly more than B-class individuals. As

soon as δ increases, B-class agents take advantage of substitutability and free-ride on A

and the C-class agents. Agent A has only B-class neighbors, so although she extracts

information from them, she has to make up the difference. In contrast, C-class agents

have some C-class neighbors, so the free-riding behavior of B-class agents does not affect

them as severely. Figure 9 shows that x∗
A is higher than x∗

C for all δ > 0.

J

I

H G

K A F E

D

CB

Figure 8: Criminal network.
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Figure 9: Information acquisition for the criminal network.

3.2 Equilibrium characterization

Let us divide the agents into two groups: active (A) agents, who are active learners

(x∗
i > 0), and passive (P ) agents. An equilibrium in which all agents belong to A is

known as a distributed equilibrium, as effort is distributed among all agents. In contrast,

a specialized equilibrium is such that only a few individuals (the specialists) learn, while

the others free-ride.

This part mainly follows Bramoullé, Kranton, and D’Amours (2014). Without loss of

generality, we can reorder the agents such that the first r are active and the last n − r are

passive. As xj = 0 for all j ∈ P , for any individual i, we have
∑

j,i gijxj =
∑

j∈A\{i} gijxj.

Thus, for i ∈ 1, ..., r, an equilibrium requires that:

x∗
i = x̄i − δ

gii

∑

j∈A\{i}
gijx

∗
j > 0.

For i ∈ {r + 1, ..., n}, an equilibrium requires that:

x̄i − δ

gii

∑

j∈A\{i}
gijx

∗
j ≤ 0.

Let x̄A = (x̄1, ..., x̄r) and x̄P = (x̄r+1, ..., x̄n). The diagonal of a matrix A is denoted by

dA. Let GA be the r × r minor corresponding to the active agents of the network, while

GP is the (n − r − 1) × (n − r − 1) minor of G corresponding to the passive agents. The

(n − r − 1) × r minor GP,A of G is given by (gij) where i ∈ P and j ∈ A. Rearranging

the above expressions, we obtain the following result:

Proposition 3.2. The profile of information levels x = (x∗
1, ..., x∗

n) = (xA, 0) with xA =
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(x∗
1, ..., x∗

r) ∈ (0, 1]r constitutes an equilibrium if and only if







dGAx̄A =
[

(1 − δ)dGA + δGA
]

xA,

dGP x̄P ≤ δGP,AxA.
(3)

Note that given n agents, there are 2n potential partitions. Obtaining all possible

equilibria requires solving the system (3) for each partition. This can be done in two

steps:

(i) First, solve for xA in d
G

Ax̄A =
[

(1 − δ)d
G

A + δGA
]

xA. The solution is unique if

and only if det[(1 − δ)d
G

A + δGA] , 0.

(ii) Then, check whether all components of xA are strictly positive and d
G

P x̄P ≤
δGP,AxA.

If the diagonal elements of G are identical, i.e., gii = gjj for all i, j, the number of

equilibria is weakly lower than 2n and can be computed in exponential time. In this case,

the condition det[(1 − δ)d
G

A + δGA] = 0 simplifies to det
[

− (δ−1)gii

δ
Id + GA

]

= 0, which

holds if and only if GA has an eigenvalue λ = (δ−1)gii

δ
. Consequently, for almost all δ, the

equation has a unique solution. While Bramoullé, Kranton, and D’Amours (2014) assume

not only dG = dId but also matrix symmetry, we have shown that these assumptions are

not necessary to obtain an explicit expression for equilibria.

3.3 Equilibrium uniqueness

In general, there might be multiple equilibria in this model. We present two examples.

The first example is a three-agent network that is incomplete and can also be visualized

as a star. The weights of the connections between the agents are represented by the

matrix G. Figure 10 shows the graph corresponding to this network, with thicker arrows

indicating larger weights.

A

B C

Figure 10: Incomplete three-agent network.

G =








1/3 1/3 1/3

2/3 1/3 0

2/3 0 1/3








Since gAA = gBB = gCC , it follows that x̄A = x̄B = x̄C = x̄. Assuming δ = 1
2
, the best
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reply functions become:

xA = max{0, x̄ − xB + xC

2
},

xB = max{0, x̄ − xA},

xC = max{0, x̄ − xA}.

There are two distributed equilibria: (x∗
A, x∗

B, x∗
C) = ( x̄

2
, x̄

2
, x̄

2
) and (x∗

A, x∗
B, x∗

C) = ( x̄
3
, 2x̄

3
, 2x̄

3
).

Additionally, there exist specialized equilibria where either agent A or both agents B and

C purchase x̄ while the others free-ride. Another similar example holds for δ = 1
k

and a

star with k agents, demonstrating that the multiplicity of equilibria does not depend on

the extreme assumption that δ = 1
2

(which is extreme in the sense that it implies σ̃2 = 0).

The second example is a four-agents eye, shown in Figure 11. Weights are given by

the matrix G′.

A

B C

D

Figure 11: Four-agents eye.

G′ =











1/4 1/4 1/4 1/4

3/8 1/4 0 3/8

3/8 0 1/4 3/8

1/4 1/4 1/4 1/4











Once again, we assume δ = 1
2
. Since x̄i = x̄ for all i, the best replies are as follows:

xA = max
{

0, x̄ − xB + xC + xD

2

}

,

xB = max

{

0, x̄ − 3(xA + xD)

4

}

,

xC = max

{

0, x̄ − 3(xA + xD)

4

}

,

xD = max
{

0, x̄ − xA + xB + xC

2

}

.

There are two specialized equilibria:
(

2
3
x̄, 0, 0, 2

3
x̄
)

and (0, x̄, x̄, 0). The rough idea behind

multiplicity is that agents can be divided into two distinct groups so that active learning

contributions vary between them. When one group learns more, the other decreases its

effort, and vice versa. We will discuss this in detail in Subsection 3.3.2.

Next, we seek a structural condition on the network that guarantees uniqueness. It

turns out that, given δ, the positive definiteness of a matrix that we denote Q ensures
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equilibrium uniqueness. This matrix Q can be determined from G in a one-to-one corre-

spondence once δ is fixed.

Recall that agent i’s expected payoffs are given by the following equation:

ui(x1, ..., xn) = E




−



µ −
n∑

j=1

gij((1 − xj)sj + xjIj)





2



− xic.

Proposition 3.3. The profile of active learning choices x∗ = (x∗
1, ..., x∗

n) is an equilibrium

of the game if and only if

(θ − Q̂x∗)T (x∗ − x′) ≥ 0 (4)

for any x′ ∈ [0, 1]n, with the matrix

Q̂ = (σ2 + σ̃2)











2g2
11 2δg11g12 ... 2δg11g1n

2δg22g21 2g2
22 ... 2δg22g2n

...
...

. . .
...

2δgn1gnn 2δgn2gnn ... 2g2
nn











and the vector

θ = (2σ2g2
11 − c, ..., 2σ2g2

nn − c).

Proof. First, the following equivalence is established: the profile x∗ is an equilibrium if

and only if
∂

∂xi

[

ui(x
∗
i , x∗

−i)
]

(x′
i − x∗

i ) ≤ 0

for all i and x′
i ∈ [0, 1].

Fixing a profile x∗ ∈ [0, 1]n and an agent i, let us define

g(t) := ui(x
′
i + t(x∗

i − x′
i), x∗

−i)

for 0 ≤ t ≤ 1 and x′
i ∈ [0, 1]. The derivative with respect to t is given by g′(t) =

∂
∂xi

(ui(xi, x∗
−i))|xi=x′

i
+(x∗

i
−x′

i
)(x

∗
i − x′

i). If x∗ is an equilibrium, g(t) has a maximum at t = 1

and g′(1) ≥ 0. Hence,
∂

∂xi

[

ui(x
∗
i , x∗

−i)
]

(x′
i − x∗

i ) ≤ 0.

Now, let us show the converse. Concavity of g follows from the concavity of ui,
8 and

then g(t) ≤ g(y) + g′(y)(t − y) for any t, y ∈ [0, 1]. Choosing t = 0 and y = 1, we see

that g(0) ≤ g(1) − g′(1). Moreover, g′(1) ≥ 0 by assumption, so that −g′(1) ≤ 0 and

8 The function ui is clearly twice differentiable with respect to xi and ∂2ui

∂x2

i

= −2(−gii(Ii − si))
2 < 0.
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g(0) ≤ g(1). This inequality implies that

ui(x
∗
i , x∗

−i) ≥ ui(x
′
i, x∗

−i)

for all x′
i ∈ [0, 1], and x∗ is an equilibrium.

Summing up with respect to all agent yields

n∑

i=1

(

∂

∂xi

[

ui(x
∗
i , x∗

−i)
]

(x′
i − x∗

i )

)

≤ 0.

Denoting by
(

∂
∂xi

ui(x
∗
i , x∗

−i)
)

i
the vector given by stacking up all ∂ui

∂xi
, the previous in-

equality can be rewritten as

(

∂

∂xi

[ui(x
∗
i , x∗

−i)]

)T

i

(x’ − x∗) ≤ 0.

The profile of active learning choices x∗ is an equilibrium if and only if this inequality

holds for any x′ ∈ [0, 1]n.9 It just remains to explicitely derive the vector components,

which are given by

∂

∂xi

[ui(x
∗
i , x∗

−i)] = 2g2
iiσ

2 − 2g2
iix

∗
i (σ

2 + σ̃2) − 2αgii

∑

j,i

gijx
∗
j − c.

Finally, it is a mere verification to check that defining Q̂ and θ as above, x∗ is an equi-

librium if and only if

(θ − Q̂x∗)T (x∗ − x′) ≥ 0.

�

If Q̂ is positive definite, there is just one vector of information levels x∗ that satisfies

(4). This is the sufficient condition for equilibrium uniqueness.

Proposition 3.4. If the matrix Q̂ is positive definite, the equilibrium is unique.

Proof. Suppose x∗
1 and x∗

2 are two different equilibria. Then, (θ − Q̂x∗
1)

T (x∗
1 − x∗

2) ≥ 0

and (θ − Q̂x∗
2)

T (x∗
2 − x∗

1) ≥ 0. Summing up both inequalities yields (θ − Q̂x∗
1)

T (x∗
1 −

9 If x̂ is not an equilibrium, then there is some agent j such that

∂

∂xj

(uj(x̂j , x̂−j)) (x′
j − x̂j) > 0

for some x′
j ∈ [0, 1]. Hence, defining the profile x̃ as x̃j = x′

j and x̃i = x̂i for i , j,

∑

i

(
∂

∂xi

(ui(x̂i, x̂−i)

)

(x̃i − x̂i) =
∂

∂xj

(uj(x̂j , x̂−j)) (x′
j − x̂j) > 0.
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x∗
2) + (θ − Q̂x∗

2)
T (x∗

2 − x∗
1) ≥ 0, which holds if and only if

(x∗
2 − x∗

1)
T Q̂(x∗

2 − x∗
1) ≤ 0.

But Q̂ is positive definite, i.e. xT Q̂x > 0 for all x , 0. Consequently, x∗
1 = x∗

2 and the

equilibrium is unique. �

Dividing Q̂ by σ2 + σ̃2 does not change its definiteness and simplifies the expression—

recall that σ2 + σ̃2 > 0.10 Thus, Q is given by

Q =
1

σ2 + σ̃2
Q̂ =











2g2
11 2δg11g12 ... 2δg11g1n

2δg22g21 2g2
22 ... 2δg22g2n

...
...

. . .
...

2δgn1gnn 2δgn2gnn ... 2g2
nn











. (5)

The following result shows that Q is completely determined by G, once δ is fixed. Con-

sequently, equilibrium uniqueness for this model depends solely on the influence network

G.

Proposition 3.5. Given δ, there is a one-to-one correspondence between Q and G.

Proof. Given δ, the matrix Q is defined element-wise from G as in (5). Assume δ is fixed

and denote this transformation by φδ. Let us show that it is possible to recover G from

Q. Denoting by qij the elements in Q, let us define (element-wise) the transformation

τδ by τδ(qii) =
√

qii for all i and τδ(qij) = qij

δ
√

qii
for all i , j. It is trivial to check that

τδ(φδ(G)) = G and φδ(τδ(Q)) = Q. �

In general, the matrix Q is an n × n matrix that need not be symmetric. Note that

xT Qx = 1
2
xT (Q + QT )x, and Q is positive definite if and only if A := 1

2
(Q + QT )

is positive definite. Since A is symmetric, we can use the characterization of positive

definiteness in terms of eigenvalues: a symmetric matrix is positive definite if and only if

all of its eigenvalues are positive. Let λ1(A) denote the lowest eigenvalue of A.

Corollary 3.6. If λ1(A) > 0, then the equilibrium is unique.

The explicit expression for A is given by:

A =











2g2
11 δ(g12g11 + g21g22) ... δ(g1ng11 + gn1gnn)

δ(g21g22 + g12g11) 2g2
22 ... δ(g2ng22 + gn2gnn)

...
...

. . .
...

δ(gn1gnn + g1ng11) δ(gn2gnn + g2ng22) ... 2g2
nn











.

10 It would be possible to divide by 2(σ2 + σ̃2) instead, but keeping the factor 2 simplifies the expression
for the matrix A later.
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Note that this sufficient condition is independent of the cost c of active learning but de-

pends on the influences between agents and the substitutability of information acquisition.

The scope of this condition is the focus of our subsequent analysis. We will make

more restrictive assumptions on the model to explore particular cases of interest, which

will eventually lead to a result similar to that of Bramoullé, Kranton, and D’Amours

(2014). Later, we will apply the sufficient condition to the examples in Section 3.1. We

first prove an auxiliary lemma.

Lemma 3.7. Let A be a symmetric matrix and β, δ > 0. The matrix βId+δA is positive

definite if and only if λ1(A) ≥ −β

δ
.

Proof. The matrix β Id + δA is positive definite if and only if all the solutions λ to

det[λId−(β Id+δA)] = 0 are strictly positive. The equation is equivalent to det[λ−β

δ
Id−

A] = 0. Note that the eigenvalues of A are the solutions t to the equation det[t Id−A] = 0.

Consequently, as t = λ−β

δ
, the condition λ > 0 can be translated into all eigenvalues t of

A verifying t > −β

δ
. This is precisely the condition λ1(A) > −β

δ
. �

Next, we consider two particular cases that are worth exploring. Assuming that all

agents pay the same attention to themselves, i.e., gii = gjj for all i, j, we can denote the

diagonal terms of G by β := gii > 0. We define Ā as

Ā =












0 g12+g21

2
. . . g1n+gn1

2

g21+g12

2

. . . . . . g2n+gn2

2
... . . .

. . .
...

gn1+g1n

2
gn2+g2n

2
. . . 0












.

Using Lemma 3.7, we see that λ1(A) > 0 if and only if λ1(Ā) > −β

δ
. Note that Ā is

simply Ā = 1
2
(G + GT ) − βId. Here, Ā reflects the average flow of information between

a pair of networks, or the undirected network associated with G.

Now, assume that the network displays reciprocal relations, i.e., gij = gji, in addition

to same self-importance across agents. This means that the influence of agent i on agent j

is the same as that of agent j on agent i, and so the matrix G is symmetric and can be seen

as undirected. Again, λ1(A) > 0 if and only if λ1(Ā) > −β

δ
, but Ā is now simply G−βId.

The matrix Ā = G − β Id can be seen as a generalization of the matrix G in Bramoullé,

Kranton, and D’Amours (2014), where āij ∈ [0, 1] instead of gij ∈ {0, 1}. The sufficient

condition is equivalent to theirs. However, to derive such a result they use the potential

theory developed by Monderer and Shapley (1996), which requires symmetry—this is why

we cannot apply it to the general model.

Proposition 3.8. The sufficient condition for the uniqueness of equilibrium can be spe-

cialized to two particular cases:
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• If self-importance is equal across agents (gii = gjj = β for all i, j), the condition

becomes λ1(Ā) > −β

δ
with Ā = 1

2
(G + GT ) − βId.

• If on top of that the influences are reciprocal (gij = gji for all i, j), the condition

becomes λ1(Ā) > −β

δ
with Ā = G − βId.

This proposition summarizes the results obtained so far, which show that the condition

for the uniqueness of equilibrium can be specialized for two particular cases: when all

agents have the same level of self-importance and when the network exhibits reciprocal

relations between agents. In both cases, the condition involves the eigenvalue of a matrix

Ā, which can be calculated based on the properties of the network. The precise definition

of Ā is given for each case.

3.3.1 Examples: Uniqueness

The networks analyzed in Section 3.1 are reviewed again to apply the equilibrium unique-

ness condition.

First, we revisit the class of k-regular graphs with n agents that share their attention

homogeneously. Proposition 3.8 applies, and the lowest eigenvalue of Ā is λ1(Ā) = − 1
k
.

The equilibrium is unique if δ < 1, which always holds. As an example of this class of

networks, the matrix Ā associated with the complete graph is given by

Ā =












0 1
n

. . . 1
n

1
n

0 . . .
...

... . . .
. . . 1

n
1
n

1
n

. . . 0












.

Next, we consider the class of stars. Due to the asymmetry of Q and the different

terms in the diagonal (self-importance is not equal across agents), only Corollary 3.6

applies. The equilibrium is unique if λ1(A) > 0, which depends on both δ and ε. Matrix

A is given here by:

A =











2
n2 δ((1 − ε)ε + 1

n2 ) . . . δ((1 − ε)ε + 1
n2 )

δ((1 − ε)ε + 1
n2 ) 2(1 − ε)2 . . . 0

... . . .
. . .

...

δ((1 − ε)ε + 1
n2 ) 0 . . . 2(1 − ε)2











.

Figure 12 shows the values for which a unique equilibrium is ensured—every pair (δ, ε)

such that the blue surface is above the orange plane.
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Figure 12: The lowest eigenvalue of the star.

A particular network structure belonging to the class of core-periphery networks

was set in Figure 6. Here,

A =

















2
9

δ 2
81

δ 2
81

δ 9
100

0 0

δ 2
81

2
9

δ 2
81

0 δ 9
100

0

δ 2
81

δ 2
81

2
9

0 0 δ 9
100

δ 9
100

0 0 2
100

0 0

0 δ 9
100

0 0 2
100

0

0 0 δ 9
100

0 0 2
100

















.

and we apply Corollary 3.6. It turns out that λ1(A) > 0 for all δ ∈ [0, 1
2
], so the

equilibrium is always unique.11

The criminal network from Ballester, Calvó-Armengol, and Zenou (2006) was rep-

resented in Figure 8. Proceeding as before, we calculate the lowest eigenvalue of A.12 We

find that λ1(A) > 0 for all δ < 0.45011, which guarantees a unique equilibrium for such

values.

Finally, we consider the incomplete network depicted in Figure 10. Recall that

11 The explicit expression for the lowest eigenvalue of A is λ1(A) = 981−100δ−
√

670761−163800δ+541441δ2

8100 .
We see that λ1(A) is a decreasing function of δ in [0, 1/2]. As it is strictly positive at δ = 1/2,
λ1(A) > 0 for all δ ∈

[
0, 1

2

]
.

12 Let y1(δ), y2(δ) and y3(δ) be the three roots of −32400 − 97200δ + 259200δ3 + (3096 + 6192δ −
7200δ2)y + (−97 − 97δ)y2 + y3. Let y1(δ) be the smallest root in δ ∈

[
0, 1

2

]
. Then, λ1(A) = 1

450 y1(δ)
and λ1(A) > 0 ⇔ δ < 0.45011.
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δ = 1
2

and all diagonal terms are equal: β = 1
3
. To apply Proposition 3.8, we compute

Ā =








0 1
2

1
2

1
2

0 0
1
2

0 0








.

The uniqueness condition λ1(Ā) > −β

δ
is not satisfied because λ1(Ā) = − 1√

2
< −2

3
.

This was expected, as we had already obtained two different equilibria for this particular

network.

3.3.2 The lowest eigenvalue

The present subsection explores the meaning of the uniqueness condition and provides

an intuition. A network is bipartite if agents can be divided into two sets, say R and S,

such that if i ∈ R, i is not connected to any j ∈ R except for herself. The network is

completely bipartite if every i ∈ R is connected to all j ∈ S. Bipartite networks represent

disjoint or independent communities. An affiliation network is a classic example. Another

bipartite network might be found when representing supervisor-candidate communication.

A complete bipartite network represents one extreme of two-sidedness. The other extreme

is the complete regular graph. In this subsection, we talk about two-sidedness as an

intuitive measure of how close a network is to the complete bipartite graph.

First, let us briefly characterize λ1(A).13 By definition, λ1(A) = min{λ ∈ R : ∃ǫ ∈
R

n satisfying λǫ = Aǫ}. Assuming ǫ , 0, λǫ = Aǫ implies ǫT λǫ = ǫT Aǫ, which leads

to λǫT ǫ = ǫT Aǫ, and finally to λ||ǫ||2 = ǫT Aǫ. So, if ||ǫ|| = 1, then λ = ǫT Aǫ. Hence,

λ1(A) = min
{

λ ∈ R : λ = ǫT Aǫ and ||ǫ|| = 1
}

.

Following Bramoullé, Kranton, and D’Amours (2014), we can use an eigenvector ǫ

associated to λ1(A) to separate the agents into two groups. If ǫi ≥ 0, agent i belongs to

set R. Otherwise, she belongs to set S. This leads to the decomposition

λ1(A) = εT Aε =

>0
︷          ︸︸          ︷
∑

i,j∈R

ǫiǫjqij +

>0
︷          ︸︸          ︷
∑

i,j∈S

ǫiǫjqij +

<0
︷                ︸︸                ︷

2
∑

i∈R,j∈S

ǫiǫjqij .

The greater the lowest eigenvalue, the more weight the network puts within sets and the

less it puts between sets. Hence, the size of λ1(A) is related to the two-sidedness of the

graph A. The closer the network is to the complete bipartite graph, the lower λ1(A).

This is because transferring weight from links within R or S to links between both sets

decreases λ1(A). Creating new links between sets or removing links within R or S belong

to that kind of weight transfer. Thus, making the graph more two-sided decreases the

lowest eigenvalue.

13 Remember that when Q is symmetric, then A = Q.
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Let us show how the division of agents into the two groups is induced by agents’

listening structures. We have λ1(A) = ǫtAǫ =
∑

i,j qijǫiǫj with ||ǫ|| = 1. Without loss

of generality, let us assume that λ1(A) > 0 (if not, a similar reasoning holds). Then,

agent i belongs to R if and only if λ1(A)ǫi > 0. Since λ1(A)ǫi = Aǫi, we see that i ∈ R if
∑n

j=1 qijǫj ≥ 0. Consequently, if the listening structures of two agents are similar, they will

belong to the same set. For example, if (qij)j and (qkj)j are similar, then
∑n

j=1 qijǫj > 0,
∑n

j=1 qkjǫj > 0, and both i and k belong to R. Hence, the division of agents into two

groups induced by λ1(A) responds to their listening structures.

Recall that λ1(A) > 0 ensures uniqueness. The less two-sided the network is, the

higher the chances of a unique equilibrium. Roughly, two-sided networks allow the agents

from R and S to switch contributions in different equilibria. This occurs because the

effects of substitutability (namely, the fact that if an agent contributes more, her neighbors

contribute less and so on) accumulate and lead to several equilibrium configurations.

When the network is not two-sided, this rebounding effect collapses, and there is only one

equilibrium.

A

B C

Figure 13: The extra link makes the
network complete.

G′ =








1/3 1/3 1/3

2/3 − ε 1/3 ε

2/3 − ε ε 1/3








As an example, consider the incomplete network with three agents from Figure 10.

Recall that for δ = 1
2

the network features multiple equilibria. The lowest eigenvalue

is λ1(Q) = 2−3
√

2δ
9

, and an associated eigenvector is (−
√

2, 1, 1). Thus, the partition is

given by R = {A} and S = {B,C}.14 The network is considerably two-sided. What would

happen if we add a link between agents B and C, slightly decreasing the two-sidedness

of the network according to ε? The resulting network, shown in Figure 13, would be less

similar to the bipartite network of three agents. In fact, it turns out that for all ε > 0.057,

λ1(Q
′) > 0 and the equilibrium is unique, where Q′ is the matrix induced by G′. The

network is less two-sided, and multiplicity disappears.

Furthermore, it is worth noting that gii > 0 for all i and self-importance (which

14 Note that (
√

2, −1, −1) is also an eigenvector associated to the eigenvalue 2−3
√

2δ
9 . The partition

induced by it is the equivalent to the one above: R = {B, C} and S = {A}.
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represent the influence an agent exert on herself) contribute to the positivity of λ1(Q).

For example, consider the case gii = gjj = β for all i, j. In this case, Proposition 3.8

simplifies the uniqueness condition to λ1(Ā) > −β

δ
, where Ā = 1

2
(G + GT ) − βId. Then,

λ1(Ā) = ǫT Āǫ =
∑

i,j

(
gij+gji

2

)

ǫiǫj. The equilibrium is unique if

∑

i,j∈R

(gij + gji)ǫiǫj +
∑

i,j∈S

(gij + gji)ǫiǫj +
∑

i∈S,j∈S

(gij + gji)ǫiǫj > −β

δ
.

As agents put more weight on their own signals (i.e., as β grows), the network becomes

less bipartite, which contributes to potential equilibrium uniqueness.

4 Social Welfare

So far, agents have behaved individually. Now, the focus is shifted to a social perspective

that maximizes aggregated welfare in the network. We can think of a utilitarian social

planner who decides on the levels of active learning to pursue this goal.

The vector of learning levels xUO = (xUO
1 , ..., xUO

n ) that maximizes the sum of agents’

utilities (the utilitarian optimum) is given by

xUO
i = max






0,

2σ2 − c/(
∑n

j=1 g2
ji)

2(σ2 + σ̃2)
− δ

∑n
j=1 gji

∑n
j=1 g2

ji

∑

j,i

gijxj






. (6)

Agent i’s learning target in the utilitarian optimum is

x̃i =
2σ2 − c/(

∑n
j=1 g2

ji)

2(σ2 + σ̃2)
.

Now, we compare the target x̃i to the target in equilibrium, x̄i. The sum of the squares

of i’s influences is greater than the square of her self-influence:
∑n

j=1 g2
ji ≥ g2

ii. Then,
c∑n

j=1
g2

ji

≤ c
g2

ii

, and directly from the definitions of targets, we get

x̃i ≥ x̄i.

Thus, in the utilitarian optimum, each agent would like to learn strictly more, except

in the trivial case where she is isolated. This effect is due to
∑n

j=1 g2
ji, which substitutes

g2
ii in the target expression. Before, each agent just cared about self-benefit: the more

she listened to her signal, the more information she needed. Now, the goal is shifted, and

individuals must care about the influence they have on others. The term
∑n

j=1 g2
ji is a

measure of i’s total impact on the network. The larger the influence, the higher the target

x̃i.

However, the utilitarian level of active learning xUO
i need not be higher than the

equilibrium choice x∗
i . The last term in (6) indicates the amount of information agent i
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does not need to purchase because of the substitutability effect. Substitutability is driven

here by δ

∑n

j=1
gji

∑n

j=1
g2

ji

, whereas it was driven by the factor δ 1
gii

in equilibrium. Hence, it might

be the case that an agent who engages in high levels of active learning in equilibrium

is not influential at all (i.e.,
∑n

j=1 gji is small), and the planner asks her to decrease her

effort. Even though every agent desires to become more informed (the target is higher),

utilitarian maximization implies a more efficient share of effort in global terms. Thus, in

general, there is no ranking regarding acquisition decisions. Formally,

xUO
i ≥ x∗

i ⇔ c

2(σ2 + σ̃2)

(

1

g2
ii

− 1
∑n

j=1 g2
ji

)

≥ δ





∑n
j=1 gji

∑n
j=1 g2

ji

n∑

j=1

gjix
UO
j −

∑n
j=1 gijx

∗
j

gii



 .

On the one hand, we observe that the inequality would hold for networks in which atten-

tion is homogenously shared. On the other hand, it would also hold for networks with

low levels of substitutability. This condition can be formalized.

Proposition 4.1. For every network structure G there exists some δ̄ ∈ (0, 1) such that

if δ ≤ δ̄, then xUO
i ≥ x∗

i for every agent i.

The intuition behind this result is simple: for low levels of substitutability, every agent

relies on her information target, which is always higher under the utilitarian planner. To

illustrate the relation between network balance and the ranking in acquisition choices

we provide an example. Suppose we have the network shown in Figure 10, and let the

parameter values be δ = 0.2, c = 0.1, σ2 = 3, and σ̃2 = 1. The network matrix and the

equilibrium and utilitarian optimal choices are

G =








1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3








,
x∗ = (0.23, 0.23, 0.23),

xUO = (0.50, 0.51, 0.51).

Here, the network is balanced, meaning weights are shared similarly among agents, and

the utilitarian optimal choices are larger. However, if agent 1 becomes stubborn (i.e., g11

is close to 1), the network becomes unbalanced:

G′ =








8/10 1/10 1/10

1/3 1/3 1/3

1/3 1/3 1/3








,
(x∗)′ = (0.69, 0, 0),

(xUO)′ = (0.57, 0.39, 0.39).

In this case, agent 1 is the only one exerting effort in equilibrium, while the others free-

ride. From a social point of view, this is not efficient, and agent 1 has to decrease her

contribution while agents 2 and 3 increase theirs significantly.

Finally, we show by example that, in general, there is no Pareto dominance between

the utilitarian optimum and equilibria—not even for low values of δ. Consider the above

networks G and G′ for the same parameter values again, focusing on agent 1. In G, agent
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1’s utilities in the utilitarian optimum and the unique equilibrium are

U1(x
∗) = −2.322,

U1(x
UO) = 0.017,

while in G′, agent 1 utilities are given by

U1((x
∗)′) = 0.025,

U1((x
UO)′) = 0.008.

In such an unbalanced network, agent 1 strictly prefers the equilibrium allocation: as her

self-importance is large, the increase in agent 2 and 3 information purchases does not

make up for the decrease in hers under the utilitarian optimum. Thus, xUO maximizes

the sum of utilities, but in general it does not improve the well-being of every agent.

5 Extension to multiple periods

So far, we have considered a scenario where agents communicate only once. However,

if we introduce multiple communication periods, agents can obtain information not only

from their immediate neighbors but also from neighbors’ neighbors. As time progresses,

the DeGrootian posterior signal incorporates signals from individuals located at increasing

distances. After t periods, each agent holds a belief containing signals from all individuals

who live within t degrees of separation. One significant advantage of DeGroot updating

is that the weights of period t are simply given by the stochastic matrix Gt. This implies

that the information acquisition problem for t periods is identical to the one considered

so far, except that the matrix G is now replaced by Gt.

The limiting case t → ∞ corresponds to long-run communication. There, each agent’s

posterior signal aggregates information from everyone in the network. Under very mild

conditions there is convergence, meaning that different agents’ posterior signals coincide.

The n×n stochastic matrix G is said to be convergent if limt→∞ Gtv exists for all v ∈ Rn.

In this case, there exists a unique left eigenvector π = (π1, ..., πn) of G whose entries sum

to 1 such that (limt→∞ Gtv)i = π
tv for every i and all v ∈ Rn,15 that is:

lim
t→∞

Gt =








π
t

...

π
t








.

The components of π indicate how much each agent is listened to in the long-run. Again,

this is equivalent to a public goods game, as there are n agents privately deciding how

15 This result is taken from Golub and Jackson (2010).

27



much to collaborate towards a common payoff. Thus, an influential individual, i.e., an

individual with a large πi, will purchase a significant amount of information, while another

whose influence vanishes will just free-ride.

Requiring one agent to put positive weight on her belief (i.e., at least one gii > 0)

is enough to ensure convergence for a stochastic matrix.16 Hence, every network matrix

analyzed in this paper is convergent. Equilibrium efforts for t → ∞ are given by

x∗
i = max






0,

2σ2 − c/π2
i

2(σ2 + σ̃2)
− δ

πi

∑

j,i

πjxj






.

All results shown so far hold for the long run with the corresponding matrix limt→∞ Gt.

The utilitarian optimum is given by

xUO
i = max






0,

2σ2 − c/(nπ2
i )

2(σ2 + σ̃2)
− δ

πi

∑

j,i

πjxj






.

It is worth noting that x∗
i ≤ xUO

i for all agents i and every network, in stark contrast

to the one-shot game. In the limit, neighborhoods disappear and each agent i influences

every other agent, including herself, in the same manner: πi. Hence, the substitutability

of information is identical under both the utilitarian optimum and the equilibrium alloca-

tion. However, as the information target is always higher under the utilitarian optimum,

the levels of information acquisition are also higher. However, the utilitarian optimum

is not always a Pareto improvement. In a setting with very low (almost negligible) sub-

stitutability levels, for example, agents would prefer the equilibrium allocation to the

utilitarian optimum.

5.1 Examples: Infinitely many communication periods

The networks analyzed in Section 3.1 are reviewed again assuming that agents communi-

cate for infinitely many periods before acquisition decisions are made. Here, the network

matrix G is substituted with the matrix limt→∞ Gt, which is well-defined since every

network matrix analyzed in this paper converges.

First, let us revisit the case of k-regular graphs with n agents that share their

attention homogeneously. Given a fixed n, the specific limiting matrix limt→∞ Gt depends

not only on k ≤ n but also on the network configuration. Agents not belonging to a cycle

in the graph (excluding loops) will not be listened to in the long run, resulting in πj = 0

for such agents j. The remaining agents (whose number we denote by k̃) share attention

16 If there is one agent i such that gii > 0, then the matrix is aperiodic. For strongly connected matrices,
aperiodicity is necessary and sufficient for convergence; see Golub and Jackson (2010).
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homogeneously. It holds that k̃ ≥ k. Then,

πj =







0 if there is no cycle to which j belongs,
1
k̃

otherwise.

And hence,

x∗
j =







0 if there is no cycle to which j belongs,
2σ2−k̃2c

2(σ2+σ̃2)(−δ+δk̃+1)
if j belongs to a cycle and2σ2 − k̃c ≥ 0

0 otherwise.

Comparing this with the one-shot communication version, we observe that fewer agents

acquire information in the long run. Additionally, as k̃ ≥ k, the information acquisition

levels decrease. This happens because, over time, all agents become connected to those

who acquire information, and thus there is no need to acquire as much as before.

Now, we move to the class of stars. There, the hub pays homogeneous attention to

the spokes, who, in turn, pay her attention ε. In the limit,

π =

(

nε

(n − 1) + nε
,

1

(n − 1) + nε
, ...,

1

(n − 1) + nε

)

.

As the hub pays attention to the spokes, the star maintains the importance of all its

members in the long run. Therefore, everyone is listened to, and, in principle, everyone

acquires information—although the extent of information acquisition will also depend on

the specific parameters involved. The hub is still the most influencial if ε is not too small.

The acquisition levels in equilibrium are given by:

x∗
H =

2σ2 + 1
ε2n2 (2δεn(1 + ε(n − 2))n)σ2 − c(εn + n − 1)2(1 − δ(2 + (−1 + ε(n − 1))n))

2(σ2 + σ̃2)(ε − 1)((n − 1)εδ2 + ε − 1)

if c ≤ (2δεn(1 + ε(n − 2))n)σ2

(εn + n − 1)2(1 − δ(2 + (−1 + ε(n − 1))n))
; x∗

H = 0 otherwise,

x∗
S =

2σ2εn(δεn − 1) − c(δ − εn)(εn + n − 1)2

2(σ2 + σ̃2)(ε − 1)((n − 1)εδ2 + ε − 1)εn
if c ≤ 2σ2εn(δεn − 1)

(δ − εn)(εn + n − 1)2
;

x∗
S = 0 otherwise.

Now, revisiting the core-periphery network, it is important to note that agents in

the core do not listen to peripheral agents, rendering the latter with no weight in the limit

vector π. If the core is composed by k agents, πj = 1
k

if j belongs to the core and πj = 0

if j is peripheral. For the specific configuration from Section 3.1, acquisition levels are:

x∗
C =

2σ2 − 9c

2(σ2 + σ̃2)(2δ + 1)
if c ≤ 2σ2

9
; x∗

C = 0 otherwise,

x∗
P = 0.
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Core agents acquire the same information, but peripheral agents do not. Long-run com-

munication does not affect core agents because they were already sharing information

homogeneously (the restriction of G to the core is invariant under exponentiation to the

power of t). Peripheral agents, in contrast, take into account their information in the

one-shot game, but, with multiple communication rounds, their weight vanishes. Thus,

they find it unprofitable to privately acquire information.

Finally, let us reexamine the criminal network from Ballester, Calvó-Armengol, and

Zenou (2006). The limiting vector π is given by

π =
(

5

59
,

6

59
,

5

59
,

5

59
,

5

59
,

6

59
,

6

59
,

5

59
,

5

59
,

5

59
,

6

59

)

.

In the long run, only in-degree matters, but not network position. Hence, agent A no

longer has a distinct role and there are just two classes of agents: B-class and C-class (to

which agent A belongs now). B-class agents have in-degree 6, and πj = 6
59

, and C-class

agents have in-degree five, so πj = 5
59

. Best reply functions are given by:

x∗
B = max

{

0, x̄B − δ
59

6
(3xB + 7xC)

}

,

x∗
C = max

{

0, x̄C − δ
59

5
(4xB + 6xC)

}

.

Similar to the one-period communication game, B-class agents acquire less information.

In particular, for the configuration of parameters used in Section 3.1, we can observe

in Figure 14 that B-class agents completely free-ride on C-class agents. This happens

because B-class agents consider acquiring private information too costly, relying instead

on the information obtained from the seven C-class agents.

������

xB
*

xC
*

0.2 0.4 0.6 0.8 1.0

δ
0.1

0.2

0.3

0.4

(xi )
*

 

n

Figure 14: Acquisition for the criminal network in the long-run.

Finally, the examples from Section 3.3 are trivial in the long run. The incomplete

three-agent network converges to a matrix characterized by the limit vector π =
(

1
2
, 1

4
, 1

4

)

,
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while the four-agents eye converges to a matrix characterized by the limit vector π =
(

3
10

, 1
5
, 1

5
, 3

10

)

. Both cases lead to unique equilibrium configurations.

6 Conclusion

This paper has analyzed the behavior of DeGroot updaters in a networked environment

and studied the impact of substitutability and network structure on information acquisi-

tion and welfare. We have shown that the substitutability of agents’ active learning efforts

induces free-riding behavior and can lead to multiple equilibria. We have also provided

a sufficient condition for equilibrium uniqueness in terms of the lowest eigenvalue of the

matrix A, which is determined by G and the parameter of substitutability δ. When this

eigenvalue is positive, the equibrium is unique. Even if there are multiple equilibria, we

have proposed a procedure for calculating them.

In terms of welfare, we have found that the information target is lower in equilibria

than under the utilitarian paradigm. This is significant since the target is precisely the

level of information an agent will have at the end of the game. We have shown that it is

socially desirable to increase the information level of every agent. While increasing agents’

active learning may seem like a solution, we show that in the one-shot game it is not.

Not only the ranking in targets does not imply a ranking in acquisition levels, but the

utilitarian optimum does not Pareto dominate the equilibrium allocation. Nevertheless,

over the long run, neighborhood frictions are eliminated and the utilitarian allocation

always exceeds the equilibrium allocation.

An interesting avenue for further research would be the implementation problem of a

planner trying to incentivize DeGroot updaters to move from equilibrium levels of active

learning to the utilitarian optimum. Public information policies, such as subsidizing

external information sources, rewarding learning contributions, or creating new links to

foster communication, could also be explored.
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Bramoullé, Y., R. Kranton, et al. (2007): “Public goods in networks,” Journal of

Economic Theory, 135(1), 478–494.

Chandrasekhar, A. G., H. Larreguy, and J. P. Xandri (2020): “Testing models

of social learning on networks: Evidence from two experiments,” Econometrica, 88(1),

1–32.

Corazzini, L., F. Pavesi, B. Petrovich, and L. Stanca (2012): “Influential listen-

ers: An experiment on persuasion bias in social networks,” European Economic Review,

56(6), 1276–1288.

Dasaratha, K., and K. He (2020): “Network structure and naive sequential learning,”

Theoretical Economics, 15(2), 415–444.

DeGroot, M. H. (1974): “Reaching a Consensus,” Journal of the American Statistical

Association, 69(345), 118–121.

DeMarzo, P. M., D. Vayanos, and J. Zwiebel (2003): “Persuasion bias, social

influence, and unidimensional opinions,” Quarterly Journal of Economics, 118(3), 909–

968.

Denti, T. (2017): “Network effects in information acquisition,” working

paper, available at https: // drive. google. com/ file/ d/ 1iAEILmFa5F_

ihdaZSVQMnIWX235b3Nfs/ view? usp= sharing .

Fagiolo, G., J. Reyes, and S. Schiavo (2010): “The evolution of the world trade web:

a weighted-network analysis,” Journal of Evolutionary Economics, 20(4), 479–514.

Fricke, D., and T. Lux (2015): “Core–periphery structure in the overnight money

market: evidence from the e-mid trading platform,” Computational Economics, 45(3),

359–395.

Galeotti, A., and S. Goyal (2010): “The law of the few,” American Economic Review,

100(4), 1468–92.

Golub, B., and M. O. Jackson (2010): “Naive learning in social networks and the

wisdom of crowds,” American Economic Journal: Microeconomics, 2(1), 112–49.

32

https://drive.google.com/file/d/1iAEILmFa5F_ihdaZSVQMnIWX235b3Nfs/view?usp=sharing
https://drive.google.com/file/d/1iAEILmFa5F_ihdaZSVQMnIWX235b3Nfs/view?usp=sharing


Golub, B., and M. O. Jackson (2012): “How homophily affects the speed of learning

and best-response dynamics,” Quarterly Journal of Economics, 127(3), 1287–1338.

Grimm, V., and F. Mengel (2020): “Experiments on belief formation in networks,”

Journal of the European Economic Association, 18(1), 49–82.

Mailath, G. J. (1998): “Do people play Nash equilibrium? Lessons from evolutionary

game theory,” Journal of Economic Literature, 36(3), 1347–1374.

Molavi, P., A. Tahbaz-Salehi, and A. Jadbabaie (2018): “A theory of non-

Bayesian social learning,” Econometrica, 86(2), 445–490.

Monderer, D., and L. S. Shapley (1996): “Potential games,” Games and Economic

Behavior, 14(1), 124–143.

Mueller-Frank, M., and C. Neri (2013): “Social learning in networks: Theory and

experiments,” working paper, available at SSRN: https: // ssrn. com/ abstract=

2328281 .

(2021): “A general analysis of boundedly rational learning in social networks,”

Theoretical Economics, 16(1), 317–357.

Myatt, D. P., and C. Wallace (2019): “Information acquisition and use by networked

players,” Journal of Economic Theory, 182, 360–401.

Samuelson, L. (2002): “Evolution and game theory,” Journal of Economic Perspectives,

16(2), 47–66.

Appendix: Quasi-Bayesian Foundation

Regarding agents’ cognitive sophistication, this paper follows the boundedly rational ap-

proach, which assumes that agents have limited cognitive resources and do not possess

precise knowledge of their environment. Nonetheless, it is useful to connect the assump-

tions of this paper to the standard Bayesian framework. In this appendix, we provide

a pure theoretical motivation for DeGroot updating in networks, following DeMarzo,

Vayanos, and Zwiebel (2003). DeGroot updating can be viewed as a Bayesian updating

process for agents that receive normally distributed signals but do not know the true

variances of their neighbors’ signals.

Consider n agents who want to estimate some unknown parameter µ ∈ R. Agent i

receives an independent signal x0
i ∼ N (µ, σ2

i ), and she assigns some precision πij = 1
Vari(x0

j
)

to agent j’s signal, which may or may not be the true precision. Note that this assumption

does not align with the standard Bayesian approach, which assumes that agents have

precise knowledge of the signal structure. Agents communicate according to a social
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network G̃, which is a directed graph that indicates whether agent i listens to agent j;

g̃ij = 1 if agent i listens to agent j, and g̃ij = 0 otherwise. Each agent knows her own

information, so g̃ii = 1. Truthful reporting is assumed. Given normality and the assigned

precisions, a sufficient statistic for the signals is their weighted average, with weights given

by the precisions. DeMarzo, Vayanos, and Zwiebel (2003) denote such a statistic by x1
i ,

and refer to it as agent i’s belief after communication:

x1
i =

n∑

j=1

g̃ijπij
∑n

j=1 g̃ijπij

x0
j .

The sufficiency of the statistic x1
i comes from the application of the Fisher-Neyman fac-

torization theorem. Defining gij :=
∑n

j=1
g̃ijπij∑n

j=1
g̃ijπij

, we obtain the stochastic matrix

G = (gij). A DeGrootian population communicating according to G holds the same

beliefs as the quasi-Bayesian population from DeMarzo, Vayanos, and Zwiebel (2003).17

This insight provides additional motivation for the model described in this paper.

17 We say quasi-Bayesian because the critical assumption of potentially misperceived variances is not
standard Bayesian. In a fully Bayesian world, agents would know the true precisions, and hence
πij = πkj = 1

Var(x0

j
)

for all i, k. This would imply gij = gkj in the equivalent DeGrootian network.
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