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and cross-group network effects and decide which platform to join. We characterize
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1. Introduction

Recent decades have seen the emergence of large digital platforms, such as Alphabet, Amazon,

Apple, Meta, and Microsoft, that cater to two or more user groups. Some of their activities have

been increasingly scrutinized by legislators, competition watchdogs, and regulators. The assess-

ment of competition policy and regulatory interventions requires a framework of oligopolistic

platform competition that accommodates platforms of different sizes. What is more, asymme-

tries are also a common feature in platform markets in which Big Tech is not present. Yet, as

Jullien, Pavan and Rysman (2021, p. 522) note, “the literature still lacks a tractable model

of platform competition in asymmetric [...] markets.”1 This paper aims to fill this gap by

proposing a tractable yet flexible model of asymmetric oligopolistic platform competition.

We model two-sided platforms as firms that bring together users from two groups. Each

user cares about the participation of other users in their own group and/or in the other group;

for example, competing software packeages are made available to business and private users

and each user benefits from improved functionality as the number of other users of the service

increases. Every user in the same group obtains an average maximal utility (when network

effects play out fully) that is adjusted by the realized network size plus a utility realization

of their idiosyncratic taste. Then, each user makes a discrete choice between the different

(asymmetric) platforms; in other words, each user single-homes.

We analyze a multinomial logit demand model augmented by within-group and cross-group

network effects. While, for tractability reasons, most of the theoretical literature assumes

linear network effects, we assume that user benefits depend on the logarithm of the sizes of

the two user groups; this is a specification widely adopted in the empirical analysis of network

effects and platforms (e.g. Ohashi, 2003; Rysman, 2004, 2007; Zhu and Iansiti, 2012). In line

with our modelling choice, according to practitioners, the incremental benefit of additional

users typically declines with the user level; for instance, Chen (2021, p. 256) writes: “...

network effects become less incrementally powerful. In eBay’s case, when you search something

like ‘Rolex vintage daytona,’ the product experience (and associated conversion rate) improve

dramatically as you add the first few listings. It might even continue with a first few dozen.

But you don’t need the search to return 1,000 or 5,000 listings ...”

Platform competition with single-homing by users of each group is of high theoretical interest

because platforms directly compete for users in each group. It formalizes real-world markets

when heterogeneous users make a discrete choice between different systems, standards, or ap-

plications, and the providers of such offers price discriminate between user groups. We gave

the example of competing software packages with offers for business and private users. Another

1We removed the words “and/or partially covered” from this quote. In Section 6 we address partial coverage.
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is competing cloud storage services that are offered to business and private users where net-

work effects arise due to file-sharing possibilities. Yet another is enterprise resource planning

softwares (e.g. by Oracle or SAP) that cater to large and small enterprises.

Platforms are heterogeneous with respect to their costs and the average value they offer to

users (after controlling for network effects). They simultaneously set participation fees for both

user groups to maximize own profit. A platform’s profit function depends on the vector of all

the platforms prices for both group; in our setting it can be rewritten as one that depends on

two choice variables and their aggregates, which are the sum of the respective choice variables

over all platforms. We show that there exists an equilibrium in the pricing game and provide

several characterization results; in the case of multiple equilibria, these equilibria are ordered.

In line with earlier work (Armstrong, 2006; Tan and Zhou, 2021), the fees set by each platform

in each group feature a “discount” to attract users in the same or the other group, triggered by

within- and cross-group network effects. New to the literature, we establish conditions under

which the higher-quality platform sets higher fee for both user groups than a lower-quality

platform and conditions under which it does not. We also explore when one subset of platforms

subsidizes one user group, whereas another subset subsidizes the other group (and possibly a

third subset subsidizes neither).

Exogenous platform entry necessarily increases user surplus if there are no cross-group net-

work effects. In the presence of cross-group network effects, in our setting, one or both of the

user groups benefits from entry; however, it is possible that one of the groups suffers. Platform

entry can affect the price structures of incumbent platforms by influencing platform asymmetry

and thereby lead to incumbent platforms subsidizing one user group because of entry. Further-

more, we show by example that platform entry may lead to higher profits of the incumbent

platforms. Under endogenous entry, the number of fringe platforms depends on market condi-

tions and the strategic choices of incumbent platforms, such as changes in the quality of their

offers for at least one group of users. Under free entry such that some fringe platforms are

active, we show that, after a change of quality offered to one or both user groups by one or

several incumbent platforms, one of the two user groups is better off, while the other group is

worse off – this presents a strong and novel see-saw property.

Turning to the analysis of partial compatibility, we show that better compatibility in some

situations increases and in others decreases user surplus (assuming that there are no cross-group

network effects). With asymmetric networks, better compatibility is more likely to benefit users

by reducing the market power of a larger network. We also discuss how better compatibility

tends to affect the two user groups when they are connected through cross-group network

effects. Finally, we amend our framework in three different ways to allow for partial coverage

– that is, some users in each group choose the outside option.
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Related literature To tackle asymmetric firms, in our analysis we make use of the aggregative

game property of our model. Platform competition with two-sided single-homing implies that

we cannot resort to a single aggregate in contrast to the oligopoly models analyzed by Anderson,

Erkal and Piccinin (2020) and Nocke and Schutz (2018) as well as the platform models in

Anderson and Peitz (2020, 2023). Sato (2021b) uses our framework and shows that market

share and profit are not necessarily positively correlated (which is in line with Belleflamme,

Peitz and Toulemonde, 2022). Anderson and Peitz (2020) consider a competitive bottleneck

model with logit demand that can be written as an aggregative game – compared to two-sided

single-homing such a model is conceptually simpler since competition plays out on one side only

and thus can resort to one aggregate. In our construction, profits can be written as a function of

a platform’s actions (such that there is a one-to-one relationship between actions and platform

fees) and the corresponding aggregates as the sums of the actions over all platforms; thus, we

work with a two-dimensional aggregate.

This paper contributes to the literature on (two-sided) platform competition. This literature

has examined the importance of network effects in platform competition (see Jullien, Pavan

and Rysman, 2021, for a review of the literature), typically under symmetry. Prominent works

with two-sided single-homing include Armstrong (2006), Tan and Zhou (2021), and Jullien and

Pavan (2019). Armstrong (2006, section 4) proposes a model with linear cross-group network

effects and two symmetric platforms within a Hotelling setting on each side and examines

the pricing implications of cross-group network effects;2 Tan and Zhou (2021) examine the

welfare property of free entry equilibria in a model with general network effects and symmetric

platforms; Jullien and Pavan (2019) examine the pricing implications in duopoly with linear

cross-group network effects when platforms and users face uncertainty about the distribution

of users’ tastes and derive insights regarding the platforms’ information management policies.

Earlier literature focused on platforms catering to a single user group characterized by direct

network effects. Contributions within the multinomial logit setting include Anderson, de Palma

and Thisse (1992, chapter 7.8) and Starkweather (2003), both of which assumed linear direct

network effects. In these settings, there is no explicit solution for the participation game with

asymmetric platforms.3 We also contribute to this literature and characterize the unique price

equilibrium under asymmetric platform competition in the special case that cross-group network

effects are absent.

2For an empirical application to the German magazine market, see Kaiser and Wright (2006). The model with
asymmetric platforms is used to analyze platform taxation (Belleflamme and Toulemonde, 2018) and the
relationship between profits and market shares (Belleflamme et al., 2022).

3The operations research literature has looked at monopoly pricing and assortment problems in the presence of
direct network effects and multinomial logit demand; see e.g. Du, Cooper and Wang (2016) and Wang and
Wang (2017). Wang and Wang (2017) include an explicit solution of the participation game when network
effects are logarithmic.
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The paper is organized as follows. In Section 2, we present the model. In Section 3.1,

we characterize participation equilibria for any given platform fees and show that there is a

unique interior participation equilibrium; we identify this as the unique asymptotically stable

participation equilibrium and use this in the subsequent analysis. We then express profit

functions as functions of two choice variables and their aggregates and express user welfare as a

function of the aggregates (Section 3.2). In Section 3.3, we show that there exists an equilibrium

of the platform pricing game; all equilibria can be ranked by the surplus of one of the two

groups. We establish equilibrium uniqueness in two special cases: in the oligopoly with network

goods (i.e., absent cross-group network effects) and under one-sided pricing (Section 3.4). In

Section 4, we provide several characterization results. In Section 5, we provide comparative

statics results with respect to the set of active platforms (exogenous platform “entry”) and

incumbent platforms’ “quality” under free entry; we also mention results with respect to partial

compatibility, which is analyzed in more detail in the Appendix. In Section 6, we extend our

analysis to environments with partial coverage (details of this analysis are relegated to the

Appendix). Section 7 concludes. All proofs are relegated to the Appendix.

2. The platform oligopoly model

Consider M > 1 platforms competing for users from two groups, A and B. Each platform

i ∈ {1, ...,M} charges a membership or subscription fee pki ∈ R to users from group k ∈ {A,B}.

We consider the game in which, first, platforms simultaneously set participation fees pAi , p
B
i and

then a unit mass of users from both groups simultaneously decide which platform to join. We

solve for subgame perfect Nash equilibria (applying the selection criterion detailed below). In

the following, we describe the platforms’ problem and the user demand model.

2.1. Platforms

Each platform i incurs a constant marginal cost cki ≥ 0 for serving group-k users. We denote

platform i’s number of group-k users by nki and the vector of prices for group k by pk =

(pk1, . . . , p
k
M). Then, we can write platform i’s profit as πi(p

A, pB) = (pAi − cAi )n
A
i (p

A, pB) +

(pBi − cBi )n
B
i (p

A, pB), where nAi and nBi depend on the fees set by all platforms for both groups.

Our main focus is on two-sided pricing – that is, each platform i charges fees pAi and pBi to

each user group. We also consider one-sided pricing under which each platform i has to set a

fee of zero to one group (presuming that the marginal cost is zero for that group) or a fee equal

to marginal costs (when allowing for positive marginal costs for that group).
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2.2. Users

A unit mass of users from each group decide which platform to join. Each user’s utility from

joining a platform consists of a maximal value of the platform, network effects, and an idiosyn-

cratic preference for the platform. Formally, the utility of a group-k consumer from joining

platform i is given by

uki = aki − pki + αk log nki + βk log nli + εki . (1)

The first term aki −p
k
i is the expected value of platform i for group-k users if all users from both

groups joined this platform, where aki represents the “quality” of platform i for group k. The

second and third terms, αk log nki and βk log nli, capture within-group and cross-group network

effects, where αk ∈ [0, 1) and βk ∈ [0, 1) are the parameters that represent the importance of

platform-specific within-group and cross-group network effects, and nki and nli are the number

of group-k and group-l( ̸= k) users who join platform i. We call nki group k’s network size

of platform i. We note that the chosen logarithmic specification of network effects is broadly

adopted in the empirical literature (e.g., Ohashi, 2003; Rysman, 2004, 2007; Zhu and Iansiti,

2012).4

The last term, εki , is an idiosyncratic taste shock from an i.i.d. type-I extreme value distri-

bution. We assume that network effects are not too strong, that is, αk + βl < 1 hold for any

k, l ∈ {A,B}. Thus, max{αA, αB}+max{βA, βB} < 1. Table 1 summarizes the notation.

In e-commerce marketplaces, sellers and buyers constitute the two user groups and param-

eters βA and βB are positive, while, in the simplest version, αA = αB = 0. Here, there are

mutual cross-group network effects since buyers are attracted to platforms with many sellers

and sellers to platforms with many buyers. Similarly, for two-sided matching platforms such as

heterosexual online dating platforms. On some social networks and media platforms, content

providers (who monetize engagement themselves) and consumers constitute two user groups

A and B and, in its simplest version when consumers only care about content and not their

fellow consumers, βA and αB are positive and αA = βB = 0. For a discussion, see Belleflamme

and Peitz (2021). Our model also nests the standard logit oligopoly model without an outside

option (see e.g. Anderson, Erkal and Piccinin, 2020) – in this case, αA = αB = βA = βB = 0.

For given network sizes n̄ = (n̄Ai , n̄
B
i )i∈{1,...,M}, group-k consumer demand of platform i can

4Most of the existing theoretical literature postulates linear network effects (e.g., Armstrong, 2006). However,
in many real-world applications, a strictly concave function looks more plausible.
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Notation Meaning

k, l indices for the two user groups
aki group-k quality of platform i
cki marginal cost for group-k participation on platform i
pki group-k fee of platform i
nki group-k network size of platform i
αk parameter for within-group network effect of group k
βk parameter for cross-group network effect enjoyed by group k

Table 1: Notation

be written as

nki = Pr
(
uki ≥ ukj for all j ̸= i

)

=
exp(aki − pki )

(
n̄ki
)αk (

n̄li
)βk

∑M
j=1 exp(a

k
j − pkj )

(
n̄kj
)αk (

n̄lj
)βk

=: T ki (n̄). (2)

This is the multinomial demand structure with network sizes endogenously determining plat-

form quality.

3. Equilibrium analysis

We first characterize the participation equilibrium at stage 2 for given platform fees. We then

analyze subgame perfect Nash equilibria of the price-then-participation game.

3.1. Participation equilibrium

In a participation equilibrium, network sizes nki on the left-hand side are equal to n̄ki on the

right-hand side of equation (2) for all k ∈ {A,B} and i ∈ {1, ...,M}.

Due to complementarity in platform choices, there may be multiple participation equilibria,

an issue pointed out by Anderson et al. (1992, chapter 7.8) and Tan and Zhou (2021), among

others. In the present setting, equation (2) indicates that whenever users expect n̄ki = 0, such

an expectation will be self-fulfilling (for any platform prices). Therefore, there are several

equilibria in which some platforms are chosen with probability zero.

We will first characterize the unique participation equilibrium for a given set,M ⊆ {1, . . . ,M},

of active platforms (i.e., platforms with strictly positive demand for both groups). We call such

an equilibrium an interior participation equilibrium when all platforms are active.
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Proposition 1. For any given prices p = (pA1 , ..., p
A
M , p

B
1 , ..., p

B
M), there exists a unique partici-

pation equilibrium with the set of active platforms M ⊆ {1, . . . ,M}. Equilibrium participation

levels are given by

nki (p) =
exp[Γkk(aki − pki ) + Γkl(ali − pli)]∑

j∈M exp[Γkk(akj − pkj ) + Γkl(alj − plj)]
, (3)

for all i ∈ M and k, l ∈ {A,B} with l ̸= k, where Γkk and Γkl are given by

Γkk =
1− αl

(1− αk)(1− αl)− βkβl
≥ 1, and Γkl =

βk

(1− αk)(1− αl)− βlβk
≥ 0.

The demand system given by equation (3) is a logit demand system augmented by within-

group and cross-group network effects. First, in the special case that αk = βk = 0, equation

(2) gives the standard logit choice probabilities

nki =
exp(aki − pki )∑
j∈M exp(akj − pkj )

.

Second, consider the case of within-group network effects but no cross-group network effects

(αk > 0, βk = 0 for k ∈ {A,B}). Logit choice probabilities are then adjusted by those

within-group network effects:

nki =
exp

(
aki −p

k
i

1−αk

)

∑
j∈M exp

(
akj−p

k
j

1−αk

) .

Third, consider the case of cross-group network effects but no within-group network effects

(αk = 0, βk > 0 for k ∈ {A,B}). Logit choice probabilities are then:

nki =
exp

(
aki −p

k
i +β

k(ali−p
l
i)

1−βkβl

)

∑
j∈M exp

(
akj−p

k
j+β

k(alj−p
l
j)

1−βkβl

) .

Finally, consider the case that αk and βk are positive. In a participation equilibrium, each

platform’s maximal average value in group k, aki − pki , is amplified by within-group and cross-

group network effects represented by Γkk and Γkl, respectively. These amplifiers translate the

base values of platform i in the two groups into the externality-adjusted group-k values of

platform i, which is given by Γkk(aki − pki ) + Γkl(ali − pli). In the participation equilibrium, it

turns out that users make a choice based on this externality-adjusted value rather than the

original values, leading to expression (3).

To summarize, we obtain a tractable closed-form expression of user participation with network
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effects because network effects are logarithmic in network size and demand takes the logit

form.5 The multiplicity of participation equilibria arises from the logarithmic specification of

the network effects, which makes an empty platform worthless for users; and thus the set of

active platforms is not pinned down. There are two ways to address this multiplicity. One

possibility is to postulate that for reasons outside the model there is a given set of active

platforms. Proposition 1 then characterizes equilibrium participation decisions for any set of

prices of these platforms.

The other possibility to address the multiplicity of participation equilibria is to propose a

particular selection criterion. We do so in the analysis that follows and provide a selection

criterion according to which all available platforms are active in equilibrium.

Equilibrium selection. We impose asymptotic stability of best-response dynamics as our se-

lection criterion and show that the only equilibrium that meets the selection criterion is the

interior participation equilibrium.6 The notion of best-response dynamics corresponds to that

used in the literature of population games (Sandholm, 2010, Chapter 6.2), and the notion of

asymptotic stability is used to capture the stability of dynamic systems (Luenberger, 1979,

Chapter 5.9).

Definition 1. Define the best-response dynamics and asymptotic stability of network sizes as

follows:

1. A best-response dynamics {nt}
∞
t=0 from the initial network sizes n0 =

(
nAi,0, n

B
i,0

)
i∈{1,...,M}

is defined by a sequence of network sizes nt =
(
nAi,t, n

B
i,t

)
i∈{1,...,M}

such that nki,t = T ki (nt−1)

according to the best-response functions T ki defined in equation (2) for all t ∈ {1, 2, . . . },

i ∈ {1, . . . ,M} and k ∈ {A,B}.

2. A network size vector n =
(
nAi , n

B
i

)
i∈{1,...,M}

is the limit of the best-response dynamics

{nt}
∞
t=0 from the initial network size n0 if n = limt→∞ nt.

5Linear demand models with linear network effects also give rise to closed-form demand functions (e.g., Arm-
strong, 2006). In a linear demand model with linear network effects, the choice probability can be written
as a linear function of expected network sizes, which makes it possible to use linear algebra to obtain the
closed-form solution for network sizes.

6Other selection criteria used in the literature on network effects in industrial organization include: Pareto
dominance (Katz and Shapiro, 1986; Fudenberg and Tirole, 2000), coalitional rationalizability or coalition
proofness (Ambrus and Argenziano, 2009; Karle, Peitz and Reisinger, 2020), potential maximization (Chan,
2021), and focality advantage or attached consumers (Caillaud and Jullien, 2003; Halaburda, Jullien and
Yehezkel, 2020; Biglaiser and Crémer, 2020). This includes dynamic consideration leading to incumbency
advantages in the cases of focality and attached consumers. In our model, for any cost-adjusted quality and
any prices, a platform facing unfavorable beliefs – in the sense that each user expects the smallest number to
join that is compatible with equilibrium – will not become active. If such unfavorable beliefs are associated
with the status of being an entrant, entry will not be possible. For further work on incumbency advantage
as a result of dynamic user choice in the presence of network effects, see Biglaiser, Crémer and Veiga (2022).
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3. A participation equilibrium with the equilibrium network sizes n is asymptotically stable

if for any strictly positive n0, n is the limit of the best-response dynamics from the initial

network sizes n0.

Definition 1 requires that the equilibrium network sizes are the result of best-response dy-

namics starting from any interior starting point. We call a participation equilibrium with

asymptotically stable network sizes an asymptotically stable participation equilibrium.

The following remark establishes that the interior participation equilibrium is the only equi-

librium that is asymptotically stable.

Remark 1. For any given prices p = (pA1 , ..., p
A
M , p

B
1 , ..., p

B
M), the interior participation equilib-

rium, characterized by equations (3) with M = {1, . . . ,M}, is the unique asymptotically stable

participation equilibrium.

3.2. Aggregates, profit functions, and user surplus

We will write platform profits as functions of own actions and corresponding aggregates. Fur-

thermore, we will write user surplus of the two groups as functions of these aggregates. To do

so, we define a platform’s own actions as

hAi := exp
[
ΓAA(aAi − pAi ) + ΓAB(aBi − pBi )

]
,

hBi := exp
[
ΓBB(aBi − pBi ) + ΓBA(aAi − pAi )

]
,

and the corresponding aggregates HA :=
∑M

j=1 h
A
j and HB :=

∑M
j=1 h

B
j . Thus, group-k demand

on platform i is nki = hki /H
k.

There is a one-to-one mapping between (pAi , p
B
i ) and (hAi , h

B
i ). As we show in the following

lemma, any (hAi , h
B
i ) induce prices (pAi (h

A
i , h

B
i ), p

B
i (h

A
i , h

B
i )).

Lemma 1. Platform fees can be written as functions of (hAi , h
B
i ):

pAi (h
A
i , h

B
i ) = aAi − (1− αA) log hAi + βA log hBi , (4)

pBi (h
A
i , h

B
i ) = aBi − (1− αB) log hBi + βB log hAi . (5)

Recall that platform i’s profit as a function of platform fees is (pAi − cAi )n
A
i + (pBi − cBi )n

B
i .

Since nki = hki /H
k and there is a one-to-one mapping between (pAi , p

B
i ) and (hAi , h

B
i ), the profit

of platform i can be written as the function of the two action variables hAi and hBi and their

9



aggregates HA and HB:

Πi(h
A
i , h

B
i , H

A, HB) = ΠA
i (h

A
i , h

B
i , H

A) + ΠB
i (h

A
i , h

B
i , H

B)

=
hAi
HA

[pAi (h
A
i , h

B
i )− cAi ] +

hBi
HB

[pBi (h
A
i , h

B
i )− cBi ],

where we defined Πk
i =

hki
Hk [p

k
i (h

k
i , h

l
i)− cki ], k, l ∈ {A,B}, l ̸= k.

Group-k user surplus CSk is given by the expected indirect utility of users, and the aggregate

user surplus CS is given by the sum of the user surplus in both groups:

CSk := log

[
M∑

i=1

exp(aki − pki )(n
k
i )
αk

(nli)
βk

]

= (1− αk) logHk − βk logH l,

CS := CSA + CSB

= (1− αA − βB) logHA + (1− αB − βA) logHB.

We observe that user surplus of group k, CSk, is increasing in the aggregate of this group,

Hk, and weakly decreasing in the aggregate of the other user group, H l; it is strictly decreasing

if and only if group l exerts a cross-group network effect. Total user surplus CS = CSA+CSB

increases in each of the two aggregates HA and HB.

3.3. Price equilibrium in asymmetric platform oligopoly

Using the demand system obtained from the participation equilibrium, we analyze price com-

petition between platforms using the continuation profits from the participation equilibrium at

stage 2.

We establish the following lemma that guarantees that we can restrict attention to the first-

order conditions of profit maximization when analyzing platform pricing.

Lemma 2. For any given HA
−i =

∑
j ̸=i h

A
j and HB

−i =
∑

j ̸=i h
B
j , there is a unique solution to

the first-order conditions of profit maximization of Πi(h
A
i , h

B
i , h

A
i +HA

−i, h
B
i +HB

−i) with respect

to hAi , h
B
i , and this solution is a global maximizer of platform i’s pricing problem.

The derivative of Πi with respect to hAi is

∂Πi

∂hAi
=

(
1

HA
−
∂HA

∂hAi

hAi
(HA)2

)
[pAi (h

A
i , h

B
i )− cAi ] +

hAi
HA
i

∂pAi
∂hAi

+
hBi
HB

∂pBi
∂hAi

=
1

hAi

[
hAi
HA

(
1−

hAi
HA

)
[pAi (h

A
i , h

B
i )− cAi ]− (1− αA)

hAi
HA

+ βB
hBi
HB

]
.

10



Therefore, from ∂Πi/∂h
A
i = 0, we have the characterization of the price-cost margins:

pAi (h
A
i , h

B
i )− cAi =

1

1−
hAi
HA

(
1− αA − βB

hBi
HB

HA

hAi

)
=

1

1− nAi

(
1− αA − βB

nBi
nAi

)
.

In the standard multinomial logit model without network effects (αk = βk = 0, for all k ∈

{A,B}), the price-cost margin is equal to 1/(1− nki ). In the presence of within-group network

effects αk > 0, the price-cost margin is reduced by αk. The lower price-cost margin is due to the

larger price elasticity of demand arising from within-group network effects. In the presence of

cross-group network effect βl > 0, the price-cost margin for group k is reduced by the amount

βlnli/n
k
i . Here, the lower price-cost margin is due to the cross-subsidization incentive of the

platform: it expands participation of group k to attract users in group l; this is in line with the

formulas for price-cost margins in symmetric platform oligopoly reported in Armstrong (2006)

and Tan and Zhou (2021).

In an equilibrium, the system of first-order conditions

aAi − cAi − (1− αA) log hAi + βA log hBi =
1

1−
hAi
HA

(
1− αA − βB

hBi
HB

HA

hAi

)

aBi − cBi − (1− αB) log hBi + βB log hAi =
1

1−
hBi
HB

(
1− αB − βA

hAi
HA

HB

hBi

)

must be satisfied for all i ∈ {1, 2, . . . ,M}. As shown in the following lemma, for each i, this

defines implicit best replies (hAi (H
A, HB), hBi (H

A, HB)).

Lemma 3. For any (HA, HB), the system of first-order conditions defines implicit best replies

(hAi (H
A, HB), hBi (H

A, HB)) for each platform i ∈ {1, . . . ,M}.

Summing over all i, an equilibrium satisfies

M∑

i=1

hki (H
A, HB) = Hk, (6)

for k, l ∈ {A,B}, l ̸= k. With the following proposition, we establish that there exists a price

equilibrium and that, whenever multiple equilibria exist, these are ordered in terms of surplus

of one of the two user groups: if one equilibrium features higher surplus for one group, the

other equilibrium features a higher surplus for the other group.

Proposition 2. There exists a price equilibrium pinned down by aggregates (HA∗, HB∗). When

there are multiple price equilibria for a given set of active platforms, we obtain the ranking for

11



(a) (b)

Figure 1: Shapes of H̃A(HB) and H̃B(HA).

any pair of equilibrium aggregates given by (HA∗
1 , HB∗

1 ) and (HA∗
2 , HB∗

2 ) with associated user

surpluses (CSA∗1 , CSB∗
1 ) and (CSA∗2 , CSB∗

2 ): CSA∗1 > CSA∗2 holds if and only if CSB∗
1 < CSB∗

2 .

We note that the equilibrium is always unique if platforms are symmetric.7 A price equilib-

rium is characterized by the pair of aggregates (HA∗, HB∗) that satisfy the system of equations

(6), which implicitly defines functions H̃k(H l). An intersection of these two functions consti-

tutes an equilibrium, as illustrated by the two numerical examples in Figure 1.8

Since the surplus of group-k users, CSk = (1 − αk) logHk − βk logH l, depends only on

aggregates (HA, HB), the characterization of equilibrium aggregates directly characterizes user

surplus in equilibrium. We note that in the aggregative-games frameworks of price competition

in standard oligopoly (Anderson, Erkal and Piccinin, 2020) and platform competition with

competitive bottlenecks (Anderson and Peitz, 2020) consumer surplus (i.e., user surplus on the

single-homing side) depends on a one-dimensional aggregate. Under two-sided single-homing,

user surplus depends positively on the aggregate of this group and negatively on the aggregate

of the other group.

A technical issue in the equilibrium existence results with price competition is how to obtain

a compact strategy space. In a standard logit model without network effects, Nocke and Schutz

(2018, forthcoming) directly show that setting too high prices is always unprofitable, thereby

7While we could not rule out multiple price equilibria with asymmetric platforms, all the numerical examples
that we looked at have a unique equilibrium.

8The figures illustrate the shape of (H̃A, H̃B) for parameter values αA = αB = 0.1 and βA = βB = 0.3. Panel
(a) does so with M = 2, (vA1 , v

B
1 ) = (3, 0), and (vA2 , v

B
2 ) = (0, 3), where vki = aki − cki , panel (b) with M = 3,

(vA1 , v
B
1 ) = (0, 1) and (vA2 , v

B
2 ) = (vA3 , v

B
3 ) = (0, 0.5).
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obtaining upper bounds on the strategy space. In the logit demand with within-group network

effects (i.e., αA, αB > 0 but βA = βB = 0), we obtain an upper bound on prices in the same

way as Nocke and Schutz (2018, forthcoming). With cross-group network effects (i.e., βA > 0

or βB > 0), we also have to worry about a lower bound on prices because, in theory, platforms

could choose to turn towards negative infinite fees for one group and positive infinite fees for

the other group at the same time. In the proof, we show that this strategy is always dominated

as long as αk + βl < 1 for k, l ∈ {A,B} with l ̸= k.

We postulated that within- and cross-group network effects are non-negative. However, in

some real-world environments, some network effects are arguably negative. We note that all of

our analysis is applicable to the case with negative within-group network effects (i.e., αk < 0).9

However, our analysis fails to apply with negative cross-group network effects (i.e, βk < 0) due

to our logarithmic specification. With negative cross-group network effects experienced by one

group – for instance, group A – a platform can charge an unboundedly high fee to group-B

users to increase βA log nBi without bounds and then enjoy a monopoly profit from group-A

users.

In Section 4, for a given set of active platforms, we provide equilibrium characterization

results – they hold for any price equilibrium, no matter how it is selected. In Section 5, we

derive comparative statics results under a given selection rule at the pricing stage (e.g., always

selecting the price equilibrium with maximal surplus for group k with k ∈ {A,B}).

3.4. Special cases: Network goods and platforms with one-sided pricing

It is insightful to consider the special case of only within-group network effects (i.e., βA = βB =

0). In other words, we analyze the asymmetric logit model with network effects. Users in one

group do not care about user participation in the other group and it is sufficient to consider

group A. The pricing equation for platform i becomes pAi − cAi = aAi − cAi − (1 − αA) log hAi .

Thus, the first-order condition of profit maximization for group A can be written as

(1− αA)
HA

HA − hAi
= (aAi − cAi )− (1− αA) log hAi . (7)

Note that the right-hand side is decreasing in hAi , while the left-hand side is increasing in

hAi . Thus, for any HA there is a unique hAi (H
A). Note also that the right-hand side does not

depend on HA, while the left-hand side is shifted downward after an increase in HA. Hence,

hAi (H
A) is increasing in HA.

9In this case, we strengthen our assumption that αk+βl < 1 to |αk|+βl < 1 for all k, l ∈ {A,B}, which implies
that |αk| < 1, k ∈ {A,B}, and ensures the asymptotic stability of the interior participation equilibria. See
footnote 24 in Appendix A.1 for detail.
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Remark 2. There exists a unique price equilibrium when βA = βB = 0.

Participation may be free for one user group. For example, shopping malls and flea markets

typically charge retailers but often not end users. This may be because platforms would charge

negative fees (or fees below costs) and such fees are not feasible. Alternatively, platforms would

like to charge end user fees but such positive fees would go hand-in-hand with high transaction

costs or are simply not possible (as in traditional free-to-air radio or television broadcasting).

As mentioned in Section 2.1, we assume that marginal costs are zero for users in the group

with a zero fee. If we were to allow positive symmetric marginal costs also for this group, our

analysis applies if instead of a zero fee we were to consider a fee equal to marginal costs.

Suppose that group B is the zero-fee group. Using the equations from Lemma 1, we then

must have

pAi (h
A
i , h

B
i ) = aAi − (1− αA) log hAi + βA log hBi ,

0 = aBi − (1− αB) log hBi + βB log hAi .

We rewrite the second equation as log hBi = aBi /(1−αB)+ (βB/(1−αB)) log hAi and substitute

into the first equation to obtain (with an abuse of notation, we write pAi as a function of hAi )

pAi (h
A
i )− cAi = aAi − cAi − (1− αA) log hAi + βA

[
aBi

1− αB
+

βB

1− αB
log hAi

]

= ãAi − cAi − (1− α̃A) log hAi (8)

where ãAi := aAi +
βA

1−αB a
B
i and α̃A := αA+ βAβB

1−αB . In the special case that users in the group with

monetization (group A) do not care about the participation of the other group (i.e., β = 0),

prices are the same as in the model with network goods.

Platform i’s profit as a function of hAi and its aggregate is

Πi(h
A
i , H

A) =
hAi
HA

[pAi (h
A
i )− cAi ] =

hAi
HA

[ãAi − cAi − (1− α̃A) log hAi ].

Then the analysis for platforms with only direct network effects for group A applies after a

change of variables from (aAi , α
A) to (ãAi , α̃

A), where α̃A < 1 holds because this is equivalent to

βAβB < (1− αA)(1− αB) and implied by our assumption αk + βl < 1 for k, l ∈ {A,B}, l ̸= k.

Thus, with the change of variables, Remark 2 applies and a unique price equilibrium exists.

Remark 3. There exists a unique price equilibrium under one-sided pricing.

The equivalence between the pricing of network goods and one-sided pricing is reminiscent
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of and extends the equivalence between direct and “indirect” network effects in the literature

on network effects (e.g., Katz and Shapiro, 1985, and Church and Gandal, 1992, in oligopoly

models different from ours), where positive indirect network effects would be the case that

αA = αB = 0 and βA > 0, βB > 0.

Note that, in contrast to the setting with two-sided pricing, our analysis under one-sided

pricing carries over to the case with negative cross-group network effects (as long as they are

not too large), because the model can be translated into the model of network goods. This

means that our framework can cover purely ad-funded media platforms under two-sided single-

homing.

4. Equilibrium characterization results

Platform type and market share The relative position of a platform with respect to the size

of its user groups is determined by its “type” (vAi , v
B
i ) where v

k
i = aki − cki is the cost-adjusted

quality that platform i offers to group-k users. Thus, vki stands for the platform’s ability to

provide value to group-k users. Proposition 2 allows us to conduct an equilibrium analysis of

platform oligopoly with arbitrary heterogeneity of platforms with respect to their cost-adjusted

quality on each side. We first take a look at an individual platform (we make use of this lemma

in the proofs of several of the following propositions).

Lemma 4.

1. For any given aggregates (HA, HB) and network size (nAi , n
B
i ) ∈ (0, 1)2, there exists a type

(vAi , v
B
i ) such that hki (H

A, HB)/Hk = nki for both k ∈ {A,B}.

2. For any given type (vAi , v
B
i ) and network size (nAi , n

B
i ) ∈ (0, 1)2 of platform i, there exists a

unique pair of aggregates (HA, HB) such that hki (H
A, HB)/Hk = nki for both k ∈ {A,B}.

Furthermore, for any market structure, we can find a profile of cost-adjusted qualities that

decentralizes any market share allocation as an equilibrium outcome, as we formally establish

in the following remark, where we define the aggregate type for group-k users with v̄k :=

log
∑M

j=1 exp{v
k
i } for k ∈ {A,B}.

Remark 4. Pick any profile of network sizes (nAi , n
B
i )i∈{1,...,M} such that

∑M
j=1 n

k
j = 1 for

k ∈ {A,B}.

1. In addition, pick any aggregates (HA, HB) ∈ R
2
++. There exists a unique type profile

(vAi , v
B
i )i∈{1,...,M} such that the equilibrium network sizes and aggregates in the price equi-

librium are (nAi , n
B
i )i∈{1,...,M} and (HA, HB), respectively.
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2. In addition, pick any aggregate type (v̄A, v̄B) ∈ R
2. There exists a unique type profile

(vAi , v
B
i )i∈{1,...,M} generating aggregate type (v̄

A, v̄B) ∈ R
2 such that the equilibrium network

sizes are (nAi , n
B
i )i∈{1,...,M}.

In the following, we address the question of how market shares, price-cost margins, and

profits differ across different platforms when they are asymmetric with respect to what they

offer to users in one group. We start with market shares.

Comparison of market shares In the following result we establish that the platform with

higher cost-adjusted quality for one user group has a strictly larger market share for this user

group and a weakly larger market share for the other user group – it is strictly larger if at least

one of the cross-group network effects is positive (βA > 0 or βB > 0).

Proposition 3. Take any two platforms i and j with vAi > vAj and vBi = vBj . Then, in

equilibrium, nAi > nAj and nBi ≥ nBj . Furthermore, nBi > nBj if and only if βA > 0 or βB > 0.

We also note that if a platform is of higher type for both groups (i.e., vAi > vAj and vBi > vBj ),

then nAi > nAj and nBi > nBj for any network effects.

Our findings under two-sided single-homing can be contrasted to what happens under com-

petitive bottleneck in Anderson and Peitz (2020). In that setting, platforms are asymmetric

regarding the quality offered to single-homing users (say group A). When platforms set the

participation level for multi-homing users (group B) and participation fees for single-homing

users,10 the higher-quality platform admits fewer multi-homing users.11 In that setting, the

higher-quality platform does not admit as many group-B users as its lower-quality competitor

and still attracts more single-homing users in equilibrium. Such a reduced number of group-B

users is attractive for the higher-quality platform because this raises revenues from the multi-

homing group.

Comparison of price-cost margins We next look at the pricing implications for users in one

user group (group B in the proposition below) when platforms are asymmetric with respect

to the other group. To do so, we consider two polar cases: (i) only the other group benefits

from cross-group network effects and (ii) the reverse; that is, the group for which platforms

are symmetric with respect to the cost-adjusted quality they offer to that group benefits from

cross-group network effects.

10We take note that the models differ not only with respect to the homing assumption. Most importantly, An-
derson and Peitz (2020) do not allow for setting the participation fee on the multi-homing side, which would
complicate their analysis because of feedback loops, but instead assume that platforms set participation
levels.

11See Proposition 11 in the online appendix of Anderson and Peitz, 2020. The relevant case for comparison is
the one with positive cross-group network effects, which means that γ < 0 according to their notation.
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Proposition 4. Take any two platforms i and j with vAi > vAj and vBi = vBj . (i) Suppose

that βA > 0 and βB = 0. Then, the price-cost margin from group-B users is smaller on the

higher-quality platform i than on j. (ii) Suppose that βA = 0 and βB > 0. Then, the price-cost

margin from group-B users is larger on the higher-quality platform i than on j.

Thus, it depends on the direction of cross-group network effects whether the user group that

considers two platforms to be symmetric in their cost-adjusted quality (say group B) faces

a higher or lower price-cost margin on the platform with higher cost-adjusted quality for the

other user group (say group A). If only group A benefits from cross-group network effects

(βA > 0, βB = 0), the platform with the higher cost-adjusted quality for group A sets a lower

price-cost margin for group B than the competing platform. This lower price-cost margin for

group-B users fosters the participation of those users. Since βA > 0, this gives an extra push

to group-A users to join this platform. The platform with the higher (ex ante) cost-adjusted

quality benefits more from this. This implies that the asymmetry between platforms for group

A is amplified.

In the opposite case, in which only group B benefits from cross-group network effects (βA =

0, βB > 0), the platform with the higher cost-adjusted quality for group A will have more

group-A participation, which translates into an endogenous quality advantage for group B,

βB(log nAi − log nAj ). In equilibrium, this results a higher price-cost margin to group-B users

than the one charged by the competing platform.

Next, we take a look at the user group that experiences different cost-adjusted qualities

across platforms. One might expect that the platform that offers the higher cost-adjusted

quality always has a higher price-cost margin for the same group (as would happen absent

network effects, as shown in Proposition 1 in Anderson and de Palma, 2001 and Proposition

4 in Anderson et al., 2020). While this is correct under a number of conditions (parameter

conditions or outcome variables), we show by example that this is not always the case.

Remark 5. Take any two platforms i and j with vBi = vBj . Then, the price-cost margin for

group-A users is larger on platform i with the higher cost-adjusted quality vAi > vAj if cross-

group network effects are not mutual, that is, (1) βA = 0 or (2) βB = 0, (3) platforms i and j

attract weakly more users from group A than B, or (4) platforms set fees above costs for both

user groups. However, there are environments in which the platform with the lower quality has

a higher price-cost margin for group-A users; this can only happen if βA > 0, βB > 0 and, in

equilibrium, nBi > nAi .

We conclude that cost-adjusted quality differences between platforms for one user group

(when cost-adjusted quality for the other user group is the same across platforms) give rise

to non-trivial differences in user participation across platforms in the presence of cross-group
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network effects. This hints at platform asymmetry shaping the pricing structures of two-sided

platforms. We can write the relation between market shares and price-cost margins as

µAi =
1

1− nAi

(
1− αA − βB

nBi
nAi

)
, (9)

µBi =
1

1− nBi

(
1− αB − βA

nAi
nBi

)
, (10)

where µki := pki − cki , k ∈ {A,B}. Equations (9) and (10) show that it depends on the relative

size nAi /n
B
i of platform i on the two sides whether the price-cost margin is positive or negative.

These price-cost margins can be related to cost-adjusted qualities, which are the primitives

of our model. We introduce subsets of platforms MA,MB,MAB ⊆ {1, 2, . . . ,M}, where

the superscript indicates the user group(s) for which the platform charges positive price-cost

margins; that is µAi ≥ 0 µBi < 0 for all i ∈ MA, µAi ≥ 0 and µBi ≥ 0 for all i ∈ MAB, and

µAi ≥ 0 and µBi < 0 for all i ∈ MB.

Proposition 5. Suppose that βB ≥ βA, vBi = vB for all i = 1, . . . ,M , and vA1 ≥ vA2 ≥ · · · ≥ vAM .

Suppose also that βB > 0. Consider any two platforms i and j belonging to different subsets

MA, MB, and MAB.

(i) If i ∈ MA and j ∈ MAB, then i < j.

(ii) If i ∈ MAB and j ∈ MB, then i < j.

(iii) If i ∈ MA and j ∈ MB, then i < j.

Furthermore, MA ∪MB ∪MAB = {1, 2, . . . ,M} and for any M ≥ 3 and βA > 0, there exist

cost-adjusted qualities such that none of the subsets is empty.

In Proposition 5 it is postulated that platforms are asymmetric only with respect to the

cost-adjusted quality that each platform offers to group-A users. In such a case, platforms with

high group-A net quality regard group A as the money side and group B as the subsidy side

because they earn more from the group-A users. By contrast, platforms with low group-A net

quality regard the other group (group B) as the money side and group A as the subsidy side.

Those with intermediate group-A net quality charge positive price-cost margins to both groups.

In monopoly settings, it has been shown that platforms tend to set a high price to the group

that is less price sensitive (e.g., Armstrong, 2006; Weyl, 2010). Our novel result in asymmet-

ric oligopoly is that different price sensitivities endogenously arise due to quality differences,

thereby endogenously leading to opposing price structures across platforms.
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Profit comparison Our framework also allows for a simple and intuitive characterization of

profit rankings: the larger the net quality of a platform on one side, the larger is the equilibrium

profit of the platform.

Proposition 6. Consider two platforms i and j with vAi > vAj and vBi = vBj . Then, in

equilibrium, platform i obtains higher profit than platform j.

By Proposition 3, the higher-quality platform has larger market shares for both groups and,

by Proposition 6, larger profits. The finding that market shares and profits are positively

associated has been obtained in oligopoly with price competition and differentiated products

absent network effects (Proposition 1 in Anderson and de Palma, 2001 and Proposition 4 in

Anderson et al., 2020). It thus extends to platform oligopoly with two-sided single-homing in

which user decisions in the two groups are interdependent through cross-group network effects,

when platforms are ranked by cost-adjusted quality on one side. More generally, two platforms

may be asymmetric with respect to both groups. Then, it might well be the case that a platform

with lower market shares in both groups makes a higher profit than a rival (as was mentioned

in the introduction and shown in Sato, 2021b confirming Belleflamme et al., 2022, the latter

analyzing a linear duopoly setting).

In the proof of Proposition 6, we also establish that platform profit is decreasing in the

equilibrium user surpluses (CSA, CSB). This fact is used in the proofs of some of the results

in Section 5.

Network goods and two-sided platforms with one-sided pricing In this subsection, we ask

which of the results in the previous section depend on the platform’s ability to charge both user

groups. We continue to assume that platforms are asymmetric regarding the primitives of the

model with respect to one of the two user groups. We then have to make the case distinction

whether or not the asymmetry is on the zero-pricing side.

As a backdrop, let us study asymmetries in the model with a network good.

Remark 6. In the model with network goods, take any two platforms with vi > vj for some

i, j. Then, in the unique equilibrium, ni > nj, pi − ci > pj − cj > 0, and Πi > Πj > 0.

Thus, within-group network effects do not overturn the cross-section result in oligopoly mod-

els without any network effects. We now turn to the model with two user groups and one-sided

pricing (i.e., max{βA, βB} > 0) under the assumption that marginal costs are zero for the

non-paying user group (i.e., the zero pricing side).

First, suppose that the zero pricing side is asymmetric (group A according to the condition in

the previous subsection) and symmetric for users who are charged (group-B users, which implies
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that aBi −c
B
i = aBj −c

B
j ≡ vB for all i, j). We recall that the model is equivalent to the model with

network effects in group B after a change of variables to ãBi = aBi +(βB/(1−αA))aAi and α̃B =

αB + βAβB/(1− αA). We write the new cost-adjusted quality as ṽBi := vB + (βB/(1− αA))aAi .

Since marginal costs for group-A users are zero, the platform asymmetry is due to differences

in aA only. Thus, as long as users in group B care about the participation of group-A users

(βB > 0), any asymmetry of the primitives in group A gives rise to an induced asymmetry in

group B – that is, aAi > aAj implies that ṽBi > ṽBj if and only if βB > 0. Then, we obtain from

Proposition 6 that the platform with the larger aA has a larger market share of group-B users,

a higher price-cost margin on group-B users, and larger profits. In particular, if a platform

offers a larger quality than its rival on the zero-pricing side, this will translate into a larger

market share for the corresponding user group and, thus, also lead to a larger market share

in the market for group-B users. Otherwise, if βB = 0, group B is isolated from the group-A

asymmetry and the outcome for group A will be symmetric: all platforms have the same price-

cost margin, the same market share, and the same profit, irrespective of the fact that nAi > nAj .

This fact follows from the exogenous asymmetry vAi > vAj , which always enters the equation,

and the endogenous asymmetry nBi > nBj that reinforces the original asymmetry if and only if

βA > 0 and βB > 0.

Second, suppose that the zero pricing side (group A) is symmetric (i.e., aAi = aAj ≡ aA). The

change of variable in quality then is ṽBi := vBi + (βB/(1 − αA))aA, which leads to a parallel

shift of ṽBi compared to the setting with βB = 0. Thus, as directly follows from Proposition

6, vBi > vBj implies that nBi > nBj , p
B
i − cBi > pBj − cBj > 0, and Πi > Πj. For βA > 0, the

asymmetry of primitives regarding group B also leads to an asymmetric outcome for group A;

that is, vBi > vBj implies that nAi > nAj . By contrast, for βA = 0, market shares regarding

group-A users must be symmetric because the platform does not have any price instrument for

this group of users.

It is obvious that negative price-cost margins for group-B users can not be an equilibrium

outcome under one-sided pricing because this necessarily leads to losses of the platform. This

implies that the possibility of heterogenous cross-subsidization strategies in equilibrium (as

shown in Proposition 5) can not arise under one-sided pricing.

Qualitative results on market shares under one-sided pricing are broadly in line with those

under two-sided pricing. However, there are some differences: As follows from Proposition 3, if

cost-adjusted qualities are asymmetric in group B only, then under two-sided pricing, vBi > vBj

implies that nAi > nAj if and only if βA > 0 or βB > 0. Under one-sided pricing, we have that

nAi > nAj if and only if βA > 0, since platforms lack a pricing instrument for group A. Thus,

for βB = 0 and βA > 0 we have that vBi > vBj implies that nAi > nAj under two-sided pricing

but nAi = nAj under one-sided pricing.
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The restriction to one-sided pricing does not affect the profit ranking with one exception: A

platform that provides a higher cost-adjusted quality for one user group (and the same for the

other group) makes higher profits under one-sided as well as under two-sided pricing, unless

the asymmetry applies to the non-paying group and this group does not exert a positive cross-

group effect on the paying group in which case each platform makes the same profit despite the

asymmetry.

5. Active platforms, platform quality, and compatibility

In this section, we investigate comparative statics properties of three shocks or interventions:

changes to the set of active platforms, changes to the incumbent platforms’ characteristics

under free entry, and partial compatibility.

5.1. Active platforms

We provide comparative statics results about the effects of an additional platform becoming

active. In other words, the number of active platforms increases from M ≥ 2 to M + 1

platforms. Under the selection criterion of asymptotic stability at the participation stage, this

is equivalent to exogenous entry of a new platform. Using an alternative selection criterion,

adding a platform to the set of active platforms amounts to an additional platform overcoming

the curse of unfavorable user beliefs.12 For ease of exposition, in what follows we speak of

platform entry when an additional platform becomes element of the set of active platforms.

It is instructive to first consider the case in which all platforms are symmetric. In the

symmetric setting with M platforms, we must have nAi = nBi = 1/M for all i ∈ {1, . . . ,M} in

any equilibrium. Profit maximization requires that ∂Πi/∂h
k
i = 0 for all i ∈ {1, . . . ,M} and

k ∈ {A,B}. Using symmetry (nAi = nBi = 1/M), first-order conditions for group A become

(
1−

1

M

)[
vA − (1− αA) log

(
1

M

)
+ βA log

(
1

M

)
− CSA

]
− 1 + αA + βB = 0.

These first-order conditions can be rewritten as price-cost margins

pk∗ − ck∗ =
M

M − 1

(
1− αk − βl

)
,

12See footnote 6. If an entrant can not overcome this curse, it can not successfully use divide-and-conquer
strategies according to which it would subsidize one group to make sure that some users from this group
join and monetize through the other group (on the use of divide-and-conquer strategies with homogeneous
platforms, see e.g. Caillaud and Jullien, 2003). Under our logarithmic network effect functions even extreme
subsidization does not achieve this (despite the fact that platforms are horizontally differentiated) and active
platforms do not adjust their prices in response to entry by an entrant facing unfavorable beliefs.
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for k, l ∈ {A,B}, l ̸= k. This leads to the equilibrium profit and group-k user surplus:

Π∗ =
1

M − 1

(
2− αA − αB − βA − βB

)

CSk∗ = vk + (1− αk − βk) logM − (1− αk − βl)
M

M − 1
.

Taking derivatives of the equilibrium outcomes with respect to M , we obtain

∂pk∗

∂M
= −

(1− αk − βl)

(M − 1)2
< 0,

∂Π∗

∂M
= −

(2− αA − αB − βA − βB)

(M − 1)2
< 0,

∂CSk∗

∂M
=

1− αk − βk

M
+

1− αk − βl

(M − 1)2
> 0.

Thus, exogenous platform entry always leads to lower prices, lower platform profits, and higher

user benefits for each group in symmetric environments, which is in line with findings in stan-

dard oligopoly. By contrast, Tan and Zhou (2021) provide an example in a symmetric setting

such that exogenous entry can lead to higher prices, higher platform profits, and lower user

benefits.

To understand the difference between our finding and the one in Tan and Zhou (2021) of the

effect of entry on prices, consider the special case that cki = 0, k ∈ {A,B}. However, suppose

that the network effect takes the more general form γkl(nli) – in our model, γkk(nki ) = αk log nki

and γkl(nli) = βk log nli for l ̸= k. As Tan and Zhou (2021) show, the symmetric equilibrium

price pk∗ can be written as

pk∗ =
M

M − 1
−

1

M − 1

∑

k′∈{A,B}

(
∂γk

′k(nk∗i )

∂nki

∣∣∣∣
nk
i =1/M

)
. (11)

The first term is the standard market power term, which is decreasing in M but the second

term may be increasing in M depending on the shape of γk
′k(·). The second term reflects the

fact that network effects drive pricing incentives, which depend on the number of active firms.

Entry reduces the relative size advantage of a platform that attracts an additional unit mass of

group-k users since each of the M − 1 competitors loses 1/(M − 1). Holding marginal network

benefits constant, entry lowers the incentives to reduce price. When marginal network benefits

are not constant, the extent to which size advantage matters depends on the marginal network

benefit functions (∂γk
′k/∂nki )nk

i =1/M . Tan and Zhou (2021) use an example with linear network

benefit functions (i.e., γkk(x) = ᾱkx for ᾱk ≥ 0 and γkl(x) = β̄kx for l ̸= k) and show that

pk∗ and Π∗ are increasing in M for M sufficiently small and ᾱk + β̄l sufficiently large (see their
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Example 4). While the second term continues to be increasing in entry in our setting (as in

the linear case), for any parameter values satisfying our assumption αk + βl < 1, it is always

dominated by the decrease of the first term, leading to price-decreasing entry.13 Intuitively,

with a strictly concave network benefit function, platforms have a stronger incentive to reduce

price after entry than with a linear network benefit function since the marginal network benefit

increases with entry.

We turn to the case in which platforms are asymmetric. We establish below that in that

case, one user group may be worse off after a new platform enters (while the other group is

better off).

Proposition 7. Consider the effect of entry of platform E on user surplus.

1. For any given entry of a platform with (aAE, c
A
E, a

B
E , c

B
E), there exists a value β such that

entry increases user surplus for both groups if βA < β and βB < β.

2. For any given βA > 0, there exists a type of platform with (aAE, c
A
E, a

B
E , c

B
E) such that the

minimal user surplus of group A or group B decreases after entry.

3. Entry increases the minimal or maximal user surplus of at least one user group.

Proposition 7-1 shows that in the absence of cross-group network effects (βA = βB = 0),

Hk increases with entry and, thus, user surplus must go up. While this property is satisfied

in standard oligopoly models without network effects, it is a priori not obvious that this result

carries over to a model with network effects. The reason is that, under full participation, the

entering platforms attract users from the incumbent platforms reducing the network benefits

of the users active on incumbent platforms due to reduced participation on those platforms.

Nonetheless, in our setting, entry of a new platform always benefits users if cross-group network

effects are zero (or sufficiently weak). Proposition 7-1 establishes this result.

In the presence of cross-group network effects, entry of a platform may hurt one of the

user groups, as established in Proposition 7-2. The proof of Proposition 7-2 indicates that an

instance of entry that lowers the user surplus for one group (group A) is the entry of a platform

that primarily caters to the needs of the other user group (aBE − cBE large, and aAE − cAE small

and possibly negative); one may call such a platform “highly focused” on one user group. In

such a case, entry will not add surplus to group-A users, but reduces the market shares of the

incumbent platforms. This reduces the network benefits that group-A users enjoy from joining

13With a logarithmic network benefit function, our assumption αk+βl < 1 is needed to obtain compact strategy
sets and prevent a platform from setting infinitely low price on one side to enjoy monopoly power on the
other side.
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existing platforms or the incumbent platforms’ incentive to attract group-A users. Then, such

entry lowers group-A user surplus.

Although entry may harm one user group, Proposition 7-3 establishes that at least one user

group benefits from entry. Our results indicate that the welfare effects of entry of a two-sided

platform crucially depend on the characteristics of the entrant. Entry of a highly focused

platform may hurt the users in the group that the entrant is not focused on.

According to the existing literature, entry may hurt users even under platform symmetry

(Tan and Zhou, 2021, Example 4). Other works address welfare effects of platform entry in

different market environments. Correia-da-Silva, Jullien, Lefouili and Pinho (2019) consider

homogeneous-product Cournot platform models and examine the welfare effects of exogenous

entry. They find that platform entry may reduce consumer surplus of all groups due to the

fragmentation of network benefits; Gama, Lahmandi-Ayed and Pereira (2020) find such a re-

sult when the platform caters to a single user group and this group experiences network effects.

Anderson and Peitz (2020) consider an asymmetric platform oligopoly in which one user group

multi-homes and the other single-homes (competitive bottleneck) and study the consumer wel-

fare effect of platform entry (see footnote 14).

With mutual cross-group network effects and asymmetric platforms, entry might affect the

platforms’ price structure qualitatively differently than for networks (i.e., settings with within-

group network effects only). The following example illustrates such a possibility (we provide a

proof in the Appendix).

Example 1 (Entry into a previously symmetric market). Suppose that two symmetric plat-

forms with the cost-adjusted quality (vAI , v
B
I ) were active before entry. Then, in the pre-entry

equilibrium, price-cost margins are positive for both groups. If βA > 0 and βB > 0, there exist

entrant types (vAE , v
B
E ) such that there is a post-entry equilibrium in which µBI < 0 and µAE < 0

and other entrant types such that µAI < 0 and µBE < 0.

Hence, the asymmetry induced by entry or exit qualitatively affects the price structure of

competing platforms. Platform entry may lead to negative price-cost margins of incumbent

platforms for one user group in situations in which their margins were positive absent entry.

Here subsidization of one group is a response to entry of a platform that is more attractive to

that group.

Next, we turn to the effect of platform entry on profit. As we show in the following proposi-

tion, entry may increase the profit of incumbent platforms due to the asymmetry it introduces

in the market. This also implies that industry profits increase.

Proposition 8. There exist pairs of a pre-entry conditions, entrant types, and a post-entry

equilibrium such that entry increases the profit of incumbent platforms. In such a case, entry
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necessarily reduces the user surplus of one group.

Proposition 8 establishes that incumbent platforms may benefit from entry of another plat-

form. For example, when incumbents are symmetric before the entry, they compete rather

fiercely with each other for both user groups. After entry, the incumbent platforms sacrifice

a large share of one user group (say group B) even though they now subsidize that group

because they offer much lower cost-adjusted quality than the entrant to this group. At the

same time, because the incumbent platforms have become less inclined to compete for group-B

users through an increase of their group-A user base, they increase their margins for group A

but lose rather few group-A users to the entrant because the entrant offers a low cost-adjusted

quality to that group. This softening of competition for group-A users increases incumbents’

profits from that group, which may dominate the profit loss in the market for group-B users.

We present a numerical example to illustrate this finding. Prior to entry there are two

symmetric incumbents. Suppose that αA = αB = 0, βA = βB = 0.95, and the incumbents’ type

(vAI , v
B
I ) = (0, 0). Since platforms are symmetric, we have that nAI = nBI = 0.5. Furthermore,

the two groups are symmetric, and therefore, price-cost margins are the same for the two

groups. The pre-entry outcome is reported in Table 2. Suppose now that an entrant of type

(vAE , v
B
E ) ≃ (−7.43, 9.66) enters. Thus, the entrant is more attractive for group-B users and less

attractive for group-A users. The equilibrium reflects these differences: The entrant makes large

inroads in the market for group-B users (market share of 80 %) and obtains a smaller market

share than the incumbents in the market for group-A users (market share of 20 %) even though

it subsidizes group-A users and affords a high price-cost margin for group-B users (we find that

µAE ≃ −3.5 and µBE ≃ 3.812). This leads to losses in the market for group-A users and profits in

the market for group-B users (ΠA
E ≃ −0.7 and ΠB

E ≃ 3.05). Entry is profitable, but also raises

profits of the incumbents’ profits, as can be seen from the last column in Table 2. The striking

feature is that the incumbents can double their profits even though they face an entrant with

a far superior cost-adjusted quality for one group such that it makes much higher profits than

each of the two incumbents. Furthermore, such entry lowers the user surplus for one group:

Before entry, the equilibrium user surplus of each of the two groups is CSA∗ = CSB∗ ≃ −0.065.

After entry, we have CSA∗∗ ≃ −2.54 and CSB∗∗ ≃ 4.54. Hence, platform entry in this example

benefits group-B users but hurts group-A users.

This result stands in stark contrast to results in standard oligopoly: Entry increases the

competitive pressure and therefore reduces incumbents’ price-cost margins and profits. It also

stands in contrast to the setting with within-group network effects only, where entry always

increases the equilibrium aggregate, as follows from Proposition 7-1. As a result, price-cost

margins and platform profits are necessarily lower after entry in the model with network goods.
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nAI nBI µAI µBI ΠA
I ΠB

I ΠI

Pre-entry 0.5 0.5 0.10 0.10 0.05 0.05 0.10
Post-entry 0.4 0.1 1.27 -3.11 0.51 -0.31 0.20
Difference -0.1 -0.4 1.17 -3.01 0.46 -0.36 0.10

Table 2: A numerical example illustrating Proposition 8 with αA = αB = 0, βA = βB = 0.95,
and (nAI , n

B
I ) = (0.4, 0.1).

Furthermore, since the setting with cross-group network effects and one-sided pricing presented

in Section 3.4 only requires a change of variable in the setting with within-group network effects

only, price-cost margins and platform profits are also lower after entry under one-sided pricing.

Our finding in Proposition relates to the finding by Tan and Zhou (2021) that in their more

flexible but symmetric setting, platform entry can increase incumbent platforms’ profits – in

our model, such an increase can not happen under platform symmetry.

5.2. Shocks to incumbent platforms under free entry

To study long-run competition, we consider platform competition under free entry of “fringe”

platforms. To this end, we extend the baseline framework by incorporating symmetric entrants

as in Anderson, Erkal and Piccinin (2013).

Suppose that, along with MI ≥ 1 incumbents {1, . . . ,MI}, M̄E ≥ 1 (potential) entrants

E := {MI + 1, . . . ,MI + M̄E} choose whether to enter. Entrants e ∈ E all have the same

characteristics
(
aAE, a

B
E , c

A
E, c

B
E

)
and incur entry cost K > 0 to become active. Incumbent plat-

form i ∈ {1, . . . ,MI} has characteristics (aAi , a
B
i , c

A
i , c

B
i ) that may differ from those of other

platforms. We assume that entry costs are such that some of the potential entrants become

active and the number of potential entrants M̄E is sufficiently large to ensure that the number

of active entrants ME is less than M̄E. In our analysis we ignore integer constraints.

Let πE
(
HA, HB

)
be the post-entry profit of an entrant when it optimally chooses the action

variables (hAE, h
B
E) and the values of the aggregates are given by (HA, HB). Specifically, the

post-entry profit with aggregates (HA, HB), πE
(
HA, HB

)
, is given by

πE(H
A, HB) := ΠE(h

A
E(H

A, HB), hBE(H
A, HB), HA, HB)

Using this notation, we define the free-entry equilibrium as follows.

Definition 2. The number of active entrants ME constitutes a free-entry equilibrium if the
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triple
(
HA, HB,ME

)
satisfies the following conditions:

πE
(
HA, HB

)
−K = 0, (12)

MI∑

i=1

hAi
(
HA, HB

)
+MEh

A
E

(
HA, HB

)
= HA,

MI∑

i=1

hBi
(
HB, HA

)
+MEh

B
E

(
HB, HA

)
= HB.

The definition of free-entry equilibrium endogenizes the number of active entrantsME through

the zero-profit condition (12). Entrants sequentially enter as long as the post-entry profit ex-

ceeds the entry cost, and the entry stops once additional entry becomes unprofitable. Using

Definition 2, we examine the welfare effects of a shock to the incumbent platforms’ character-

istics, which is captured by a change in (aAi , a
B
i , c

A
i , c

B
i ) for i ∈ {1, . . . ,MI}.

In the aggregative game analysis of standard oligopoly, the zero-profit condition of entrants

uniquely pins down the value of single aggregate (e.g., Davidson and Mukherjee, 2007; Ino and

Matsumura, 2012; Anderson et al., 2013, 2020). Because consumer surplus is determined solely

by the value of the aggregate, any change in the competitive environment, such as incumbents’

investment and platform mergers does not affect consumer surplus, as long as there is at least

some entry. By contrast, with two-sided platforms, the zero profit condition (12) only pins down

the relation between the two aggregates (HA, HB). Therefore, the competitive environments

are no longer necessarily neutral to the user surplus in each group and the total user surplus.

In a particular setting, we establish a strong see-saw property : any change in the competitive

environment that increases user surplus of one group reduces user surplus of the other group.

For instance, suppose that an incumbent invests in group-A benefit aAi so that entrants’

network size on group A decreases. In a standard oligopoly, competition for group-A users

becomes more intense due to the incumbent’s investment. As an equilibrium response, fewer

entrants will join, so the competition for group-A users becomes weaker. In two-sided markets,

a more subtle strategic interaction may exist due to network effects and implied changes in the

two-sided pricing structure.

Proposition 9. Consider a free-entry equilibrium with a non-empty set of entrants.Then, any

change in competitive environments that increases the surplus of one user group decreases the

surplus of the other user group. Formally, holding the parameters (αA, αB, βA, βB, aAE, a
B
E , c

A
E, c

B
E , K)

fixed, compare two free-entry equilibria that differ in other parameters. Denoting the equilibrium

surplus of the two user groups under the two settings by (CSA∗, CSB∗) and (CSA∗∗, CSB∗∗), we

have that (
CSA∗ − CSA∗∗

) (
CSB∗ − CSB∗∗

)
< 0.
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Because the post-entry profit of ΠE is decreasing in user surpluses (CSA, CSB), to keep

ΠE constant, any increase in CSA must be compensated by a corresponding decrease in CSB.

Hence, Proposition 6 establishes a strong see-saw property in user surplus.

The strong see-saw property poses a challenge to competition authorities evaluating business

practices of large incumbent platforms in an environment with fringe platforms. Because an

incumbent platform’s practice generically benefits users in one group at the expense of those

in the other group, the competition authority must decide which group to protect (or which

weights to give them in an overall consumer welfare ranking). In the context of e-commerce,

some authorities focus on private consumers, which is in line with a narrow interpretation of

the consumer welfare standard. For instance, Khan (2017) argues that such an approach fails

to recognize other harms of incumbent platforms’ practices, including the harm to third-party

sellers, which can be included under a broader interpretation of the consumer welfare standard.

Proposition 9 establishes that there is a conflict between what benefits users of one group and

what benefits the other. This conflict is inevitable in two-sided platform competition with free

entry of the type studied in this paper.14

Regarding the welfare property of free entry, note that Tan and Zhou (2021) show the follow-

ing: When taste shocks follow the type-I extreme value distribution, platform entry is socially

excessive (see their Lemma 2 and the following paragraph). Thus, platform entry is socially

excessive in our model when platforms are symmetric.15

5.3. Partial compatibility

In this section we address how an increase of the degree of compatibility affects market shares,

prices, and user surplus. Suppose that there are only within-group network effects and, thus,

each user group can be analyzed in isolation. Partial compatibility implies that a fraction of

network effects are industry-wide. It is gained if some of the functionalities are available to

all users, not only those on the same platform, but also those on competing platforms. The

fraction of functionalities available to all users is denoted by λ, the degree of compatibility. An

example of a regulatory intervention with the goal to increase compatibility is Article 7 in the

Digital Markets Act (DMA) in the European Union. According to this regulation, a gatekeeper

of a number-independent interpersonal communications service must “make the basic function-

14Anderson and Peitz (2020) establish a strong see-saw property of exogenous entry for purely ad-funded media
platforms in competitive bottleneck with advertisers exerting a negative effect on consumers. As they show,
their competitive bottleneck model fails to give rise to the see-saw property if consumers benefit from more
advertisers (i.e., advertisers exert a positive cross-group network effect on consumers) or if media platforms
can set a fee on the consumer side.

15For conditions on the distribution function of the taste shocks that lead to excessive entry, see also Tan and
Zhou (2024, Proposition 2).
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alities of its number-independent interpersonal communications services interoperable with the

number-independent interpersonal communications services of another provider.”16

Partial compatibility allows users to benefit from the presence of users on different platforms.

uki = aki − pki + λαk log
M∑

j=1

nkj + (1− λ)αk log nki + εki

= aki − pki + (1− λ)αk log nki + εki .

By Remark 2 there exists a unique price equilibrium for any value of λ ∈ [0, 1].

How does the equilibrium depend on the degree of compatibility λ? The general answer is

the following and has been formalized by Crémer, Rey and Tirole (2000) in the Katz-Shapiro

model: A decrease in compatibility increases the quality differentiation between two asymmetric

platforms. The larger platform, which relies relatively less on access to the other platform’s

users, gains a competitive advantage, and competition between the two platforms is softened.17

Our framework provides related insights (for more details and additional insights see Ap-

pendix A.2).18 When the degree of compatibility is increased, lower-quality platforms gain

market share while higher-quality platforms lose and, thus, industry concentration (e.g., mea-

sured by the HHI) goes down (Proposition A.1 in Appendix A.2). If the asymmetry between

platforms is sufficiently small, increased compatibility reduces the intensity of price competition

and platforms set higher prices. Nevertheless, users benefit from increased compatibility since

the direct effect dominates the effect on prices. As we establish in the duopoly case, if the

asymmetry is sufficiently large, the platform with the higher cost-adjusted quality sets a lower

price after an increase in compatibility (Proposition A.2 in Appendix A.2).

Restricting attention to the duopoly case, we also address the effect of compatibility on

industry concentration under cross-group network effects, where we consider the case that

partial compatibility applies to both user groups. Confirming the result derived under within-

group network effects only, we show that compatibility mitigates industry concentration – that

is, for each user group k ∈ {A,B}, an increase of the degree of compatibility decreases the

16The provision applies only to gatekeeper platforms and interoperability has to be offered upon the request of
another provider. As a caveat, our model does not accommodate the situation that some but not all of the
competing providers ask for interoperability.

17Crémer, Rey and Tirole (2000) study connectivity between asymmetric internet backbone providers in the
Katz-Shapiro model (Katz and Shapiro, 1985). Our statement is a minor rephrasing of their explanation that
“connectivity creates a quality differentiation between the two networks. The larger backbone, which relies
relatively less on access to the other backbone’s customers, gains a competitive advantage, and competition
between the two backbones is softened.” (Crémer, Rey and Tirole, 2000, p. 435)

18There is an important difference in the nature of the asymmetry in our framework compared to the one
considered by Crémer, Rey and Tirole (2000). In the latter, full compatibility makes platforms symmetric,
as the asymmetry between platforms is due to size differences in the installed base. By contrast, in our
framework, even under full compatibility, platforms are asymmetric.
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group-k market share of the platform that is of higher cost-adjusted quality for each user group

(see Proposition A.3 in Appendix A.2).

Multi-homing is alternative way for each user to “better” interact with other users. The

more users multi-home, the larger is the number of users any single-homing user has access to

(for given relative market shares of platforms among single-homing users). However, our model

of partial compatibility does not translate into a model in which a fraction λ of users multi-

home.19 A single-homing user has then access to all single-homing users on the same platform

and all multi-homing users and the network benefit function becomes αk log(λ + (1 − λ)ni) =

αk log(λ
∑M

j=1 n
k
j + (1− λ)ni), which is different from the function under partial compatibility,

λαk log
∑M

j=1 n
k
j + (1− λ)αk log ni = (1− λ)αk log ni. Furthermore, we can not use aggregative

games tools in such a model. We note that under linear network effects, the two functions

would be the same.20

6. Partially covered markets

One version to analyze partial coverage is to assume that the outside option is also subject to

the same network effects and idiosyncratic taste shocks as the for-profit platforms (for details,

see Appendix A.3.1). This applies if choosing the outside option consists in choosing a non-

commercial offer that is free of charge. For example, this could be an open-source software

platform or programming language that is provided free of charge and brings together users

and developers. Our model in Section 2 can easily be generalized and accommodate such a free

platform by adding platform 0 that offers quality ak0 to side k ∈ {A,B} at zero price, pk0 = 0.

Following our change of variables, platform 0 then offers (hA0 , h
B
0 ), which is independent of

the choices offered by the for-profit platforms, and we write Hk =
∑M

i=0 h
k
i . The equilibrium

characterization of the participation game (Remark 1) and the existence of a non-empty ordered

set of price equilibria (Proposition 2) generalize to the introduction of such an outside option.

Also, the characterization results of a price equilibrium in Section 4 continue to hold. In the

presence of outside options for each user group, it is of interest to consider comparative statics

in the attractiveness of the outside options: As the outside option becomes more attractive for

group-k users, user surplus of this group will increase, whereas user surplus of the other group

will (weakly) decrease.

19For example, such partial multi-homing may be the result of users having installed a multi-homing device
such a meta search engine that allows them to access all platforms or may reflect an environment in which
a fraction of users has chosen the option to be visible on different messaging services, while others declined
the offer.

20Even with linear network effects, there may be an interesting interplay between multi-homing and compati-
bility; for an analysis in symmetric Hotelling duopoly with linear network effects, see Doganoglu and Wright
(2006).
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Another version to analyze partial coverage is to assume that users make an opt-in decision

upfront – that is, before observing their taste realization and before observing the prices set by

the platforms (for details, see Appendix A.3.2). The idiosyncratic outside option is given by

ak0 + θε
k
0, where, for each group-k user, εk0 is an i.i.d. draw from some distribution function. We

adopt the concept of fulfilled expectation equilibrium in the spirit of Katz and Shapiro (1985),

where users make opt-in decisions by forming an expectation over preferences and prices, and

platforms take the aggregate user base (NA, NB) as given when they set prices. We characterize

the unique interior participation equilibrium for given platform prices (Proposition A.4) and

illustrate for the case that outside options are exponentially distributed. We also show the

existence of a non-empty ordered set of price equilibria (Proposition A.4) and that (under some

condition) price equilibria are ordered by group-k user surplus such that the CSk-maximal

equilibrium is the CSl-minimal equilibrium for k, l ∈ {A,B}, l ̸= k (Proposition A.5). The

characterization results of a price equilibrium in Section 4 continue to hold, but comparative

statics analysis in this setting is generally complicated. Nevertheless, if users enjoy within-

group network effects alone, we provide a comparative statics result with respect to the base

attractiveness of the outside option ak0 for group-k users. A higher ak0 reduces user participation

and thereby the network benefits that can be obtained. As we show for the case in which the

idiosyncratic component of the outside option is exponentially distributed, given ak0 sufficiently

larger, this may end up hurting users overall (Remark A.3) because users who decide not to

opt in exert a negative externality on users who opt in. We note that this result is not driven

by platform asymmetry and can also be obtained under symmetry.

A third version to analyze partial coverage is to assume that users simultaneously decide

whether and which platform to join, after observing platform prices (for details, see Appendix

A.3.3). We characterize the interior participation equilibrium in this setting, in which the ag-

gregates from the setting with full coverage are replaced by augmented aggregates that account

for the fact that some users abstain from joining a platform (Proposition A.6). The existence

of a price equilibrium holds for sufficiently unattractive outside options. While this version

appears to be a natural way to introduce outside options, we did not find it tractable.

7. Discussion and conclusion

We propose a two-sided single-homing model of platform competition that features differences

between platforms with respect to (i) marginal costs incurred for users of the two groups and

(ii) the utility that platforms offer to their users (for given participation rates by both groups).

Incorporating platform asymmetries provides a rich setting that allows us to explore the relative

outcomes of platforms in equilibrium and the impact of exogenous shocks on the performance
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of different platforms. After establishing the existence and uniqueness of the participation

equilibrium for a given set of active platforms, we characterize the equilibrium outcome under

price competition and obtain insights with respect to exogenous platform entry, incumbent

platform investments under free entry, and mandated partial compatibility. Our analysis makes

use of the IIA structure of the demand systems of both groups. Platform profits can be written

as functions of two action variables and their aggregates (as the sum of action variables across

platforms).

We follow the seminal work on platform competition and focus on the platform’s pricing

decisions. Our analysis can be extended to cover other design decisions if these decisions are

taken concurrently with the pricing decision.21 It is also interesting to extend the analysis

to environments in which platforms do not charge any fees to one user group, but can use

non-price strategies that directly affect the attractiveness of the platform for that group. For

example, social media platforms typically charge advertisers but do not charge end users and

devise non-price strategies to attract end users. We leave extensions in this direction for future

work, as they are outside the canonical platform competition model.

We make the functional form assumption that network effects enter as logarithmic functions of

participation numbers of each group into user utility and that users experience taste shocks that

lead to a logit structure. This specification can be seen as a special case of the model of Tan and

Zhou (2021). While such a logarithmic specification of network effects is popular in empirical

work, most previous theoretical work assumed linear network effects and few theoretical studies

allow for more general forms of network effects (Hagiu, 2009; Weyl, 2010; Belleflamme and

Peitz, 2019; Tan and Zhou, 2021). Within the logit demand setting, any generalization beyond

logarithmic network effects would make it impossible to obtain closed-form solutions for the

participation equilibrium and to subsequently write the platforms’ profit functions as a function

of their action variables and the aggregates thereof.

In our framework, users draw idiosyncratic taste shocks that enter their utility function as a

stand-alone value. Users may also be heterogeneous regarding their sensitivity to network size

(i.e., group-k users may differ in their network effect parameters αk and βk). Unfortunately, the

aggregative game framework is not sufficiently malleable to accommodate such a heterogeneity.

We can think of our analysis as analyzing the model in which all users are of the “average” type

(E[αk],E[βk]). Presuming that there is an equilibrium also with heterogeneous network effects,

we conjecture that our characterization results hold by continuity in a setting close to the

limit when the heterogeneity disappears. We also conjecture that introducing heterogeneous

21In this case, platforms compete in utilities ūk
i = aki − pki for users and platforms may increase value aki .

In particular, suppose that there is a one-to-one relationship between value aki and per-user cost cki that
depends on the user group and the identity of the platform. Thus, we can write cki (a

k
i ), and platforms set

aki such that cki (a
k
i )

′ = 1.
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network effects would lead to composition effects: In the case of heterogeneous cross-group

network effects, a platform that has a higher share of group-A users than another platform will

attract relatively more group-B users that are particularly sensitive to network effects.22

Arguably, the canonical model of platform competition features two-sided single-homing.

This specification is widely adopted by the literature, including by Armstrong (2006), Jullien

and Pavan (2019), and Tan and Zhou (2021). In various real-world environments, however,

some users in one or both groups can multi-home (see e.g. Armstrong, 2006, section 5, and

Anderson and Peitz, 2020, section 6, for the former and Bakos and Halaburda, 2020, Adachi,

Sato and Tremblay, 2023, and Teh, Liu, Wright and Zhou, 2023, for the latter).23 As pointed

out in Section 5.3, when a fraction of users multi-homes, our model loses the aggregative game

property and our analysis does not extend to such more-complex homing decisions.

22In a model in which users are only heterogeneous with respect to their sensitivity to network size, Ambrus and
Argenziano (2009) show in a symmetric duopoly setting the emergence of asymmetric equilibria: Platform
1 sets a lower price for group-k users than platform 2 and a higher price for uses of the other group l.
Less-sensitive group-k then buy from platform 1, whereas more-sensitive group-k users from platform 2.
Because of the heterogeneity, there is endogenous differentiation between platforms, which allows them to
make positive profits in equilibrium.

23Work on ad-funded media platforms has also looked at the effects of viewer multi-homing; see, e.g., Ambrus,
Calvano and Reisinger (2016) and Anderson, Foros and Kind (2019).
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A. Appendix

A.1. Relegated proofs

Proof of Proposition 1. Denote yki = exp(aki − pki ). Since, in equibrium, nki = n̄ki , equations (2)

can be written as

nki =
yki
(
nki
)αk (

nli
)βk

∑M
j=1 y

k
j

(
nkj
)αk (

nlj
)βk

, (A.1)

nli =
yli
(
nli
)αl (

nki
)βl

∑M
j=1 y

l
j

(
nlj
)αl (

nkj
)βl

. (A.2)

Using the above conditions, for each j and i in M, we have

nki
nkj

=

(
yki
ykj

)(
nki
nkj

)αk (
nli
nlj

)βk

⇐⇒
nki
nkj

=

(
yki
ykj

) 1

1−αk
(
nli
nlj

) βk

1−αk

=

(
yki
ykj

) 1

1−αk



(
yli
ylj

) 1

1−αl
(
nki
nkj

) βl

1−αl




βk

1−αk

⇐⇒

(
nki
nkj

) (1−αk)(1−αl)−βkβl

(1−αk)(1−αl)

=

(
yki
ykj

) 1

1−αk
(
yli
ylj

) βk

(1−αk)(1−αl)

⇐⇒
nki
nkj

=

(
yki
ykj

)Γkk (
yli
ylj

)Γkl

.

By substituting the last equation into equation (A.1), we obtain the equation

nki =

(
yki
)1+αkΓkk+βkΓlk (

yli
)αkΓkl+βkΓll

∑
j∈M

(
ykj
)1+αkΓkk+βkΓlk (

ylj
)αkΓkl+βkΓll

. (A.3)

Noting that

1 + αkΓkk + βkΓlk =
(1− αk)(1− αl)− βkβl + αk(1− αl) + βkβl

(1− αk)(1− αl)− βkβl
= Γkk,

αkΓkl + βkΓll =
αkβk + βk(1− αk)

(1− αk)(1− αl)− βkβl
= Γkl,
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equation (A.3) can be written as

nki =

(
yki
)Γkk (

yli
)Γkl

∑
j∈M

(
ykj
)Γkk (

ylj
)Γkl

Finally, noting that

(
yki
)Γkk (

yli
)Γkl

= exp
(
Γkk(aki − pki ) + Γkl(ali − pli)

)
,

we obtain equation (3).

Proof of Remark 1. Start with an initial value of the vector of network sizes (nAi,0, n
B
i,0)i=1,...,M

such that nki,0 > 0 for all i ∈ {1, . . . ,M} and k ∈ {A,B}. For each t > 0, update the network

sizes based on the value of network sizes in the previous iteration t− 1. Then, the sequence of

network sizes {(nti)i=1,...,M}t=0.... is obtained. Here, for any t > 0, we have

nki,t
nkj,t

=
yki
ykj

(
nki,t−1

nkj,t−1

)αk (
nli,t−1

nlj,t−1

)βk

By taking the logarithm and letting xkt := log(nki,t/n
k
j,t) and σ

k := log(yki /y
k
j ), we have

(
xAt

xBt

)
= J

(
xAt−1

xBt−1

)
+

(
σA

σB

)
,

where

J =

[
αA βA

βB αB

]
.

If any eigenvalue of J has an absolute value less than 1, (xAt , x
B
t ) converges to a unique value

(xA, xB) regardless of the initial value (xA0 , x
B
0 ) (see Luenberger, 1979, Chapter 5.9). At such

value, we must satisfy xkt = xkt−1 = xk. Solving for xk, we have

xk =
(1− αl)σk + βkσl

(1− αk)(1− αl)− βkβl
.

Then, using the relation limt→∞(nki,t/n
k
j,t) = nki /n

k
j = exp(xk), we obtain the relation (A.1).

Therefore, from any starting value of positive network sizes, the best-response dynamics con-

verges to the interior participation equilibrium.

Lastly, we show that any eigenvalue of J has an absolute value less than 1. A scalar b is an
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eigenvalue of J if and only if it is the solution to the quadratic equation

ξ(b) = b2 − (αA + αB)b+ (αAαB − βAβB) = 0.

Because ξ(b) is quadratic, ξ(b) = 0 has at most two solutions. Furthermore, because

ξ(−1) = (1 + αA)(1 + αB)− βAβB > 0,

ξ

(
αA + αB

2

)
= −

(αA − αB)2

4
− βAβB < 0,

ξ(1) = (1− αA)(1− αB)− βAβB > 0,

There are two solutions to ξ(b) = 0 that lie in (−1, 1), which completes the proof.24

Thus, the demand for platform in group k is the group-k network size of platform i given by

equation (3) with M = {1, . . . ,M}.

Proof of Lemma 1. The expressions for hAi and hBi can be rewritten as

log hAi = ΓAA(aAi − pAi ) + ΓAB(aBi − pBi ),

log hBi = ΓBB(aBi − pBi ) + ΓBA(aAi − pAi ).

Rewriting the second equation as

aBi − pBi =
1

ΓBB
log hBi −

ΓBA

ΓBB
(aAi − pAi ),

the first equation can be rewritten as

log hAi =

[
ΓAA −

ΓABΓBA

ΓBB

]
(aAi − pAi ) +

ΓAB

ΓBB
log hBi

=
ΓAAΓBB − ΓABΓBA

ΓBB
(aAi − pAi ) +

ΓAB

ΓBB
log hBi

=
1

(1− αA)(1− αB)− βAβB
1

ΓBB
(aAi − pAi ) +

βA

1− αA
log hBi .

=
1

1− αA
(aAi − pAi ) +

βA

1− αA
log hBi .

Therefore, we obtain the values of (pAi , p
B
i ) as a function of (hAi , h

B
i ), given by equations (4)

and (5).

Proof of Lemma 2. In the first part of the proof, we show that any solution to the first-order

24For αk < 0, this argument goes through if |αk| < 1 for k ∈ {A,B}.
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conditions of profit maximization is a global maximizer. Define

fAi (h
A
i , h

B
i ) :=

(
1−

hAi
HA

)[
pAi (h

A
i , h

B
i )− cAi

]
− 1 + αA + βB

hBi
HB

HA

hAi
,

fBi (h
A
i , h

B
i ) :=

(
1−

hBi
HB

)[
pBi (h

A
i , h

B
i )− cBi

]
− 1 + αB + βA

hAi
HA

HB

hBi

and, thus, ∂Πi/∂h
k
i = fki (h

A
i , h

B
i )/H

k, for k ∈ {A,B}. Hence, ∂2Πi/(∂h
k
i )

2 = −
fki (h

A
i ,h

B
i )

(Hk)2
+

1
Hk

∂fki
∂hki

. When the first-order conditions of profit maximization hold, the first term on the

right-hand side is zero. Then, Πi(h
A
i , h

B
i , h

A
i +HA

−i, h
B
i +HB

−i) is a local maximizer in (hAi , h
B
i )

at any point at which the first-order conditions of profit maximization hold if ∂fAi /∂h
A
i < 0,

∂fBi /∂h
B
i < 0, and (∂fAi /∂h

A
i )(∂f

B
i /∂h

B
i ) − (∂fAi /∂h

B
i )(∂f

B
i /∂h

A
i ) > 0. Furthermore, this

establishes that the Jacobian of (fAi , f
B
i )) is a P -matrix. This implies that (fAi , f

B
i ) is injective

on (0,∞)2 (Gale and Nikaido, 1965) and, therefore, a solution to the first-order conditions of

profit maximization is a global maximizer, provided that such a solution exists.

To see that the three inequalities hold, first note that

∂fAi
∂hAi

=
1

hAi

[
−nAi (1− nAi )[p

A
i − cAi ]− (1− αA)(1− nAi )− βB(1− nAi )

nBi
nAi

]

=
1

hAi

[
−nAi

(
1− αA − βB

nBi
nAi

)
− (1− nAi )

(
1− αA + βB

nBi
nAi

)]

= −
1

hAi

[
1− αA − βBnBi + βB(1− nAi )

nBi
nAi

]
< 0,

which establishes the first inequality above. Correspondingly, the second inequality holds.

Third, we establish (∂fAi /∂h
A
i )(∂f

B
i /∂h

B
i )− (∂fAi /∂h

B
i )(∂f

B
i /∂h

A
i ) > 0. To do so, note that

∂fAi
∂hBi

=
1

hBi

[
βA(1− nAi ) + βB(1− nBi )

nBi
nAi

]
> 0.

Without loss of generality, assume that βA ≥ βB. Recall that 1−max{αA, αB} > max{βA, βB}.
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Therefore, 1− αA > βA and 1− αB > βA. Then, we have

hAi h
B
i

(
∂fAi
∂hAi

∂fBi
∂hBi

−
∂fAi
∂hBi

∂fBi
∂hAi

)

=
(
1− αA − βBnBi

) (
1− αB − βAnAi

)

+
(
1− αA − βBnBi

)
βA(1− nBi )

nAi
nBi

+
(
1− αB − βAnAi

)
βB(1− nAi )

nBi
nAi

−(βA)2(1− nAi )
2n

A
i

nBi
− (βB)2(1− nBi )

2n
B
i

nAi
− βAβB(1− nAi )(1− nBi )

> (βA − βBnBi )β
A(1− nAi )︸ ︷︷ ︸

(i)

+(βA − βBnBi )β
A(1− nBi )

nAi
nBi︸ ︷︷ ︸

(ii)

+ βAβB(1− nAi )
2n

B
i

nAi︸ ︷︷ ︸
(iii)

− (βA)2(1− nAi )
2n

A
i

nBi︸ ︷︷ ︸
(iv)

− (βB)2(1− nBi )
2n

B
i

nAi︸ ︷︷ ︸
(v)

− βAβB(1− nAi )(1− nBi )︸ ︷︷ ︸
(vi)

.

Every pair (nAi , n
B
i ) belongs to one of three cases, and we show that the above expression is

positive in each case.

1. First, consider the case with nAi ≥ nBi . In this case, (ii) > (iv), (iii) > (v), and (i) > (vi),

so the expression under consideration is positive.

2. Next, consider the case with nBi ∈ (nAi , n
A
i β

A/βB]. In this case, we have βBnBi < βAnAi ,

so (i) > (iv), (iii) > (vi), and (ii) > (v), so the expression under consideration is positive.

3. Finally, consider the case with nBi > nAi β
A/βB. Because βA ≥ βB, we have (i) ≥ (vi).

Next we show that (ii) + (iii) > (iv) + (v). Noting that (ii)− (iv) ≥ −(βA)2(nAi /n
B
i )[(1−

nAi )
2 − (1− nBi )

2] and (iii)− (v) ≥ (βA)2[(1− nAi )
2 − (1− nBi )

2] when nBi > nAi β
A/βB, we

have

(ii) + (iii)− [(iv) + (v)] ≥ (βA)2[(1− nAi )
2 − (1− nBi )

2]

(
1−

nAi
nBi

)
> 0,

which shows that the expression under consideration is positive. This completes the first

part of the proof.

In the second part of the proof, we show that there always exists a solution to the system of

equations (
fAi (h

A
i , h

B
i )

fBi (h
A
i , h

B
i )

)
=

(
0,

0.

)
(A.4)

Step 1: existence of a solution h̃Bi (h
A
i ) to f

B
i (h

A
i , h

B
i ) = 0 given hAi . Fix h

A
i and consider the
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solution to the equation fBi (h
A
i , h

B
i ) = 0 given hAi , denoted by h̃Bi (h

A
i ). We show that h̃Bi (h

A
i )

exists in (0,∞), for any given hAi ∈ (0,∞). To see this, note that we have

lim
hBi →0

fBi (h
A
i , h

B
i )

= lim
hBi →0

[
aBi − cBi − (1− αB) log hBi + βB log hAi

]
− 1 + αB + lim

hBi →0

(
βA

hAi
hAi +HA

−i

hBi +HB
−i

hBi

)

= ∞ > 0,

lim
hBi →∞

fBi (h
A
i , h

B
i )

= lim
hBi →∞

[
HB

−i

hBi +HB
−i

[
aBi − cBi − (1− αB) log hBi + βB log hAi

]]
− 1 + αA + βB

hAi
HA

= −1 + αA + βB
hAi

hAi +HA
−i

< 0.

Hence, by the intermediate value theorem, the solution h̃Bi (h
A
i ) ∈ (0,∞) exists for any given

hAi ∈ [0,∞]. Note that such a solution is unique and continuous in hAi . To see this, note that

we already established that we have ∂fBi /∂h
B
i < 0 whenever fBi = 0 holds. Hence, h̃Bi (h

A
i ) is

unique and, from the implicit function theorem, continuous.

Step 2: preliminaries on the existence of solution to equation fAi (h
A
i , h̃

B
i (h

A
i )) = 0. We show

that there exists a solution to the equation fAi (h
A
i , h̃

B
i (h

A
i )) = 0. As preliminaries, we show the

following four limit results: limhAi →0 h̃
B
i (h

B
i ) = 0, limhAi →∞ h̃Bi (h

A
i ) = ∞, limhAi →0

hAi
h̃Bi (hAi )

= 0,

limhAi →∞
hAi

h̃Bi (hAi )
= ∞.

First, we show that limhAi →0 h̃
B
i (h

A
i ) = 0. Suppose to the contrary that limhAi →0 h̃

B
i (h

A
i ) > 0.

Then, there exists hBi > 0 such that limhAi →∞ h̃Bi (h
A
i ) = hBi , and we would have

lim
hAi →0

fBi (h
A
i , h̃

B
i (h

A
i ))

=
HB

−i

hBi +HB
−i

[
aBi − cBi − (1− αB) log hBi + βB lim

hAi →0

(
log hAi

)]
− 1 + αB

= −∞

< 0,

contradicting the definition of h̃Bi (h
A
i ). Hence, limhAi →0 h̃

B
i (h

A
i ) = 0.

Second, we show that limhAi →∞ h̃Bi (h
A
i ) = ∞. Suppose to the contrary that limhAi →∞ h̃Bi (h

A
i ) <
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∞. Then, there exists h
B
<∞ such that limhAi →∞ h̃Bi (h

A
i ) = h

B

i , and we would have

lim
hAi →∞

fBi (h
A
i , h̃

B
i (h

A
i ))

=
HB

−i

h
B

i +HB
−i

[
aBi − cBi − (1− αB) log h

B

i + βB lim
hAi →∞

log hAi

]
− 1 + αB + βA

HB

h
B

i

= ∞ > 0,

contradicting the definition of h̃Bi (h
A
i ). Hence, limhAi →∞ h̃Bi (h

A
i ) = ∞.

Third, we show that limhAi →0[h
A
i /h̃

B
i (h

A
i )] = 0. Otherwise, there exists a constant κ > 0 such

that limhAi →0[h
A
i /h̃

B
i (h

A
i )] = κ, and

lim
hAi →0

fBi (h
A
i , h̃

B
i (h

A
i ))

= aBi − cBi − (1− αB − βB) lim
hAi →0

log h̃Bi (h
A
i ) + βB log κ− 1 + αB + βAκ

HB
−i

HA
−i

= ∞

Hence, we have limhAi →0[h
A
i /h̃

B
i (h

A
i )] = 0.

Fourth, we show that limhAi →∞[hAi /h̃
B
i (h

A
i )] = ∞. Otherwise, there exists κ < ∞ such that

limhAi →∞[hAi /h̃
B
i (h

A
i )] = κ. Then, we would have

lim
hAi →∞

fBi (h
A
i , h̃

B
i (h

A
i ))

= lim
hAi →∞

[
HB

−i

h̃Bi (h
A
i ) +HB

−i

(
aBi − cBi − (1− αB − βB) log h̃Bi (h

A
i ) + βB log κ

)]
− 1 + αB + βA

= −1 + αB + βA < 0,

contradicting the definition of h̃Bi (h
A
i ). Hence, we have limhAi →∞[hAi /h̃

B
i (h

A
i )] = ∞.

Step 3: proof of the existence of a solution to equation fAi (h
A
i , h̃

B
i (h

A
i )) = 0. To show the

existence of the solution to the equation fAi (h
A
i , h̃

B
i (h

A
i )) = 0, we show that

lim
hAi →0

fAi (h
A
i , h̃

B
i (h

A
i )) > 0,

lim
hAi →∞

fAi (h
A
i , h̃

B
i (h

A
i )) < 0.

Then, the intermediate value theorem implies that there exists a solution to the equation.
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We first show that limhAi →0 f
A
i (h

A
i , h̃

B
i (h

A
i )) > 0. To see this, note that we can write fAi as

fAi (h
A
i , h

B
i ) =

HA
−i

hAi +HA
−i

[
aAi − cAi − (1− αA) log hAi + βA log hBi

]
− 1 + αA + βB

hBi
hAi

hAi +HA
−i

hBi +HB
−i

=
HA

−i

hAi +HA
−i

[
aAi − cAi − (1− αA − βA) log hAi − βA log

(
hAi
hBi

)]

−1 + αA + βB
hBi
hAi

hAi +HA
−i

hBi +HB
−i

.

Hence, because limhAi →0 h̃
B
i (h

A
i ) = 0 and limhAi →0[h

A
i /h̃

B
i (h

A
i )] = 0, we have

lim
hAi →0

fAi (h
A
i , h̃

B
i (h

A
i ))

= aAi − cAi + lim
hAi →0

[
−(1− αA − βA) log hAi − βA log

(
hAi

h̃Bi (h
A
i )

)
− 1 + αA + βB

h̃Bi (h
A
i )

hAi

]

= ∞.

Next, we show that limhAi →∞ fAi (h
A
i , h̃

B
i (h

A
i )) < 0. To see this, note that

fAi (h
A
i , h

B
i )

=
hAi

hAi +HA
−i

HA
−i

hAi

[
aAi − aAi − (1− αA) log hAi + βA log hBi

]
− 1 + αA + βB

hBi
hBi +HB

−i

hAi +HA
−i

hAi
.

Hence, because limhAi →∞ h̃Bi (h
A
i ) = ∞ and limhAi →∞[hAi /h̃

B
i (h

A
i )] = ∞, we have

lim
hAi →∞

fAi (h
A
i , h̃

B
i (h

A
i ))

= lim
hAi →∞

(
log hAi
hAi

)
+ lim

hAi →∞

(
log h̃Bi (h

A
i )

h̃Bi (h
A
i )

h̃Bi (h
A
i )

hAi

)
− 1 + αA + βB

= −1 + αA + βB < 0.

Put together, there exists a solution to the equation fAi (h
A
i , h̃

B
i (h

A
i )) = 0. Letting hA∗i be

a solution and hB∗
i := h̃Bi (h

A∗
i ), the pair (hA∗i , hB∗

i ) is a solution to the system of equations

(A.4).

Proof of Lemma 3. Let

f̃Ai (h
A
i , h

B
i , H

A, HB) =

(
1−

hAi
HA

)[
pAi (h

A
i , h

B
i )− cAi

]
− 1 + αA + βB

hBi
HB

HA

hAi
,

f̃Bi (h
A
i , h

B
i , H

A, HB) =

(
1−

hBi
HB

)[
pBi (h

A
i , h

B
i )− cBi

]
− 1 + αB + βA

hAi
HA

HB

hBi
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By the implicit function theorem, implicit best replies are well-defined, if the matrix




∂f̃Ai
∂hAi

∂f̃Ai
∂hBi

∂f̃Bi
∂hAi

∂f̃Bi
∂hBi




has a determinant different from zero. Then, taking (HA, HB) as given, we have

∂f̃Ai
∂hAi

=
1

hAi

[
−nAi (p

A
i − cAi )− (1− αA)(1− nAi )− βB

nBi
nAi

]

=
1

hAi

[
−

nAi
1− nAi

(
1− αA − βB

nBi
nAi

)
− (1− αA)(1− nAi )− βB

nBi
nAi

]

= −
1

hAi

1

1− nAi

{[
(1− nAi )

2 + nAi
]
(1− αA)− βBnB

(
1−

1− nAi
nAi

)}
< 0,

which can be shown as follows: (1− nAi )
2 + nAi takes positive value, is minimized at nAi = 1/2,

and increasing in nAi > 1/2, while 1− (1−nAi )/n
A
i is increasing, takes value zero at nAi = 1 and

is maximized at nAi = 1. Thus, for nAi ≤ 1/2 the derivative must be negative. For nAi > 1/2,

since 1−αA > βB by assumption, it is sufficient to show that (1−nAi )
2+nAi ≥ 1−

1−nA
i

nA
i

which

is equivalent to (1− (nAi )
2)(1− nAi ) ≥ 0 and, thus, always holds. Note that we can write

∂f̃Ai
∂hAi

= −
1

hAi

{
(1− nAi )

2 + nAi
1− nAi

(1− αA)− βB
nBi

1− nAi
+ βB

nBi
nAi

}
.

Also, we have

∂f̃Ai
∂hBi

=
1

hBi

[
βA(1− nAi ) + βB

nBi
nAi

]
.

Therefore,

hAi h
B
i

(
∂f̃Ai
∂hAi

∂f̃Bi
∂hBi

−
∂f̃Ai
∂hBi

∂f̃Bi
∂hAi

)

=

{[
1− nAi +

nAi
1− nAi

]
(1− αA) +

nBi
nAi

βB −
nBi

1− nAi
βB
}

×

{[
1− nBi +

nBi
1− nBi

]
(1− αB) +

nAi
nBi

βA −
nAi

1− nBi
βA
}

−

(
βA(1− nAi ) + βB

nBi
nAi

)(
βB(1− nBi ) + βA

nAi
nBi

)
.

Suppose without loss of generality that βA ≥ βB. Then, because min{1 − αA, 1 − αB} ≥ βA,
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the last expression is greater than

{[
1− nAi +

nAi
1− nAi

]
βA +

(
nBi
nAi

−
nB

1− nAi

)
βB
}
βA
[
1− nBi +

nBi
1− nBi

−
nAi

1− nBi
+
nAi
nBi

]

−

(
βA(1− nAi ) + βB

nBi
nAi

)(
βB(1− nBi ) + βA

nAi
nBi

)
,

which, by dividing by (βA)2, has the same sign as

{[
1− nAi +

nAi
1− nAi

]
+

(
nBi
nAi

−
nB

1− nAi

)
βB

βA

}[
1− nBi +

nBi
1− nBi

−
nAi

1− nBi
+
nAi
nBi

]

−

(
(1− nAi ) +

βB

βA
nBi
nAi

)(
βB

βA
(1− nBi ) +

nAi
nBi

)

=

(
1− nAi +

nBi
nAi

βA

βB

)(
1− nBi +

nAi
nBi

)
+

nAi
1− nAi

(
1−

βB

βA
nBi
nAi

)(
1− nBi +

nAi
nBi

)

+
nBi

1− nBi

(
1−

nAi
nBi

)(
1− nAi +

nBi
nAi

βB

βA

)
+

(nAi )
2

(1− nAi )(1− nBi )

(
1−

βB

βA
nBi
nAi

)(
nBi
nAi

− 1

)

−

(
1− nAi +

βB

βA
nBi
nAi

)[
βB

βA
(1− nBi ) +

nAi
nBi

]

=

(
1− nAi +

βB

βA
nBi
nAi

)(
1−

βB

βA

)
(1− nBi )

+
nAi

1− nBi

(
1− nAi +

βB

βA
nBi
nAi

)(
nBi
nAi

− 1

)

+
nAi

1− nAi

(
1− nBi +

nAi
nBi

)(
1−

βB

βA
nBi
nAi

)

+
(nAi )

2

(1− nAi )(1− nBi )

(
nBi
nAi

− 1

)(
1−

βB

βA
nBi
nAi

)

=
(1− nAi )(1− nBi )

2

(1− nAi )(1− nBi )

[
1− nAi +

βB

βA
nBi
nAi

](
1−

βB

βA

)

+
nAi

(1− nAi )(1− nBi )
(1− nAi )

(
1− nAi +

βB

βA
nBi
nAi

)(
nBi
nAi

− 1

)

+
nAi

(1− nAi )(1− nBi )
(1− nBi )

(
1− nBi +

nAi
nBi

)(
1−

βB

βA
nBi
nAi

)

+
nAi

(1− nAi )(1− nBi )
nAi

(
nBi
nAi

− 1

)(
1−

βB

βA
nBi
nAi

)
,
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which is positive if

(1− nAi )

(
1− nAi +

βB

βA
nBi
nAi

)(
nBi
nAi

− 1

)

︸ ︷︷ ︸
(i)

+ (1− nBi )

(
1− nBi +

nAi
nBi

)(
1−

βB

βA
nBi
nAi

)

︸ ︷︷ ︸
(ii)

+ nAi

(
nBi
nAi

− 1

)(
1−

βB

βA
nBi
nAi

)

︸ ︷︷ ︸
(iii)

is positive. Any value of nAi belongs to one of three cases, and we show that (i)+ (ii)+ (iii) > 0

for each case.

1. The first case we consider is nAi ≥ nBi . In this case, we have nBi /n
A
i − 1 ≤ 0 and

(i) + (ii) + (iii)

=

(
1−

nBi
nAi

)[
(1− nBi )

2 − (1− nAi )
2 + (1− nBi )

nAi
nBi

− (1− nAi )
βB

βA
nBi
nAi

−

(
nAi −

βB

βA
nBi

)]

+
nBi
nAi

(
1−

βB

βA

)[
(1− nBi )

2 + (1− nBi )
nAi
nBi

]

=

(
1−

nBi
nAi

)[
(nAi − nBi )(2− nAi − nBi ) + (1− nBi )

nAi
nBi

− (1− nAi )
βB

βA
nBi
nAi

−

(
nAi −

βB

βA
nBi

)]

+
nBi
nAi

(
1−

βB

βA

)[
(1− nBi )

2 + (1− nBi )
nAi
nBi

]

=

(
1−

nBi
nAi

)[
(nAi − nBi )(2− nAi − nBi ) + (1− nBi )

nAi
nBi

− nAi +
βB

βA
nBi

]

+
nBi
nAi

(1− nBi )
2

(
1−

βB

βA

)
+ (1− nBi )

(
1−

βB

βA

)

≥

(
1−

nBi
nAi

)[
(nAi − nBi )(2− nAi − nBi ) + (1− nBi )

nAi
nBi

−
βB

βA
(1− nBi )

]

>0

44



where, for the third equation, we used

(1− nBi )
nAi
nBi

= (1− nAi )
nAi
nBi

+ (nAi − nBi )
nAi
nBi

= (1− nAi )
βB

βA
nBi
nAi

+ (1− nAi )

(
nAi
nBi

−
βB

βA
nBi
nAi

)
+ (nAi − nBi )

nAi
nBi

= (1− nAi )
βB

βA
nBi
nAi

+
nAi
nBi

nAi −
βB

βA
nBi
nAi

+ (1− nAi )
nAi
nBi

− nAi +
βB

βA
nBi

= (1− nAi )
βB

βA
nBi
nAi

+ nAi −
βB

βA
nBi
nAi

+

(
nAi
nBi

− 1

)
nAi + (1− nAi )

nAi
nBi

− nAi +
βB

βA
nBi

= (1− nAi )
βB

βA
nBi
nAi

+ nAi −
βB

βA
nBi
nAi

+ (1− nBi )
nAi
nBi

− nAi +
βB

βA
nBi

and, for the inequality

1− nBi ≥ 1−
nBi
nAi

,

1−
βB

βA
− nAi ≥ −

βB

βA
.

2. The second case is nAi ∈ [nBi β
B/βA, nBi ). In this case, (i) > 0, (ii) ≥ 0, and (iii) ≥ 0.

3. The third case is nAi < nBi β
B/βA. In this case, we have nBi /n

A
i −1 > (βBnBi )/(β

AnAi )−1 >

0. Therefore,

(i) + (ii) + (iii)

=

(
nBi
nAi

− 1

){
(1− nAi )

2 − (1− nBi )
2 + (1− nAi )

βB

βA
nBi
nAi

− (1− nBi )
nAi
nBi

− nAi

(
βB

βA
nBi
nAi

− 1

)}
,

which is positive if and only if

(1− nAi )
2 − (1− nBi )

2 + (1− nAi )
βB

βA
nBi
nAi

− (1− nBi )
nAi
nBi

− nAi

(
βB

βA
nBi
nAi

− 1

)

=(nBi − nAi )

(
2− nBi − nAi +

nAi
nBi

)
+ (1− nAi )

(
βB

βA
nBi
nAi

−
nAi
nBi

)
− nAi

(
βB

βA
nBi
nAi

− 1

)
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is positive. Note that we have

(nBi − nAi )

(
2− nBi − nAi +

nAi
nBi

)
+ (1− nAi )

(
βB

βA
nBi
nAi

−
nAi
nBi

)
− nAi

(
βB

βA
nBi
nAi

− 1

)

≥(nBi − nAi )
nAi
nBi

+ (1− nAi )

(
βB

βA
nBi
nAi

−
nAi
nBi

)
− nAi

(
βB

βA
nBi
nAi

− 1

)

=
βB

βA
nBi
nAi

−
nAi
nBi

−
βB

βA
nBi + nAi − nAi

(
βB

βA
nBi
nAi

− 1

)

=
βB

βA
nBi
nAi

−
nAi
nBi

+ 2nAi − 2
βB

βA
nBi .

At nAi = βBnBi /β
A, the last expression above is

1−
βB

βA
≥ 0.

Furthermore, for any region where nAi ≤ βBnBi /β
A, the expression under consideration

has the following derivative with respect to nAi :

−
1

nAi

nBi
nAi

βB

βA
−

1

nBi
+ 2 < 0.

Therefore, for any given nBi and any nAi < βBnBi /β
A, the expression under consideration

is positive.

Proof of Proposition 2. To show the existence of the equilibrium, recall from Section 3.2 that

CSA = (1− αA) logHA − βA logHB and CSB = (1− αB) logHB − βB logHA.

Denote market share for group k as a function of the aggregates by

nki (H
A, HB) =

hki (H
A, HB)

Hk
.

Noting that log hAi = log nAi + logHA, we can rewrite the first-order condition for (hAi , h
B
i ) as

the condition for (nAi , n
B
i ) in the following way:

gAi =(1− nAi )[a
A
i − cAi − (1− αA) log nAi + βA log nBi − CSA]− 1 + αA + βB

nBi
nAi

= 0, (A.5)

gBi =(1− nBi )[a
B
i − cBi − (1− αB) log nBi + βB log nAi − CSB]− 1 + αB + βA

nAi
nBi

= 0. (A.6)

The solution can be written as (ñAi (CS
A, CSB), ñBi (CS

A, CSB)). By the implicit function
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theorem, we have

Sign

[
ñki
∂CSl

(CSA, CSB)

]

k,l∈{A,B}

= −Sign




∂gBi
∂nB

i

−
∂gAi
∂nB

i

−
∂gBi
∂nA

i

∂gAi
∂nA

i



(

∂gAi
∂CSA 0

0
∂gBi
∂CSB

)

Thus,

Sign

(
∂ñAi
∂CSA

)
= Sign

(
−

∂gAi
∂CSA

∂gBi
∂nBi

)
< 0,

and

Sign

(
∂ñBi
∂CSA

)
= Sign

(
∂gAi
∂CSA

∂gBi
∂nAi

)
≤ 0,

where

∂gAi
∂nAi

= −
1

nAi

[
nAi (p

A
i − cAi ) + (1− αA)(1− nAi ) + βB

nBi
nAi

]
< 0,

∂gAi
∂nBi

=
1

nBi

[
βA(1− nAi ) + βB

nBi
nAi

]
≥ 0

and

∂gAi
∂CSA

= −(1− nAi ) < 0,
∂gAi
∂CSB

= 0,

∂gBi
∂CSB

= −(1− nBi ) < 0,
∂gBi
∂CSA

= 0.

Fix CSA and let ĈS
B
(CSA) be the solution to the equation

∑

i=1,...,M

ñBi (CS
A, CSB) = 1.

Because ñBi is decreasing in CSB, there exists a unique solution to the above equation, provided

that it exists. To show existence, we establish that (1) limCSB→∞ ñBi (CS
A, CSB) = 0 and (2)

limCSB→−∞ ñBi (CS
A, CSB) = 1.

On (1): to satisfy gBi = 0 while letting CSB → ∞, we must have (1−αB) log nBi −β
B log nAi →

∞ or nAi /n
B
i → ∞. In the former case, we must have (1− αA) log nAi − βA log nBi → −∞ and

thus gAi → ∞, violating the requirement that gBi = 0. Hence, we must have nAi /n
B
i → ∞,

implying that limCSB→∞ ñBi (CS
A, CSB) = 0.

On (2): suppose that CSB → −∞. In this case, we must have ñBi (CS
A, CSB) → 1, because
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gBi → ∞ otherwise.

Thus, we have shown that

lim
CSB→∞

M∑

i=1

ñBi (CS
A, CSB) = 0 < 1,

lim
CSB→−∞

M∑

i=1

ñBi (CS
A, CSB) =M > 1.

By the intermediate value theorem and the monotonicity of ñBi in CSB, there exists a unique

value ĈS
B
(HA) that satisfies the equation

∑M
i=1 ñ

B
i (CS

A, CSB) = 1 given any CSA.

Next, let CSA vary while requiring that CSB = ĈS
B
(CSA). Let CSA → ∞. We must have

(1 − αA) log nAi − βA log nBi → −∞ or nBi /n
A
i → ∞. Both of these conditions require that nAi

converges to 0. As CSA → −∞, we must have that for each i,

(1− nAi )
[
(1− αA) log nAi − βA log nBi + CSA

]

is finite, which requires that either nBi → 0 or nAi → 1. Suppose that there exists a platform

with nBi → 0. This implies that ĈS
B
(CSA) → ∞, because gBi → ∞ otherwise. However, then

we must have ñBj → 0 for all j, which contradicts the condition
∑M

i=1 ñ
B
j (CS

A, ĈS
B
(CSA)) = 1.

Thus, there can be no i such that nBi → 0 as CSA → −∞. Therefore,

lim
CSA→−∞

ñAi (CS
A, ĈS

B
(CSA)) = 1

for all i ∈ {1, . . . ,M}. Hence, we have

lim
CSA→∞

M∑

i=1

ñAi (CS
A, ĈS

B
(CSA)) = 0 < 1,

lim
CSA→−∞

M∑

i=1

ñAi (CS
A, ĈS

B
(CSA)) =M > 1.

As the last step to establish equilibrium existence, the intermediate value theorem implies that

there exists a solution to the equilibrium condition

M∑

i=1

ñAi (CS
A, ĈS

B
(CSA)) = 1.
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To establish that equilibria are ordered in terms of user surplus, we note that

∂ĈS
B
(CSA)

∂CSA
= −

∑M
i=1

∂ñB
i (CSA,CSB)

∂CSA

∑M
i=1

∂ñB
i (CSA,CSB)

∂CSB

≤ 0.

For any equilibrium values of CSA, CSA∗1 and CSA∗2 such that CSA∗1 > CSA∗2 , we have

CSB∗
1 = ĈS

B
(CSA∗1 ) < ĈS

B
(CSA∗2 ) = CSB∗

2 .

Therefore, equilibria are ranked in terms of group-A or group-B user surplus.

There exists CSA-maximal and CSA-minimal equilibria, the former of which minimizes CSB,

and the latter maximizes it.

Proof of Remark 2. We rewrite the first-order condition as

F (hAi , H
A) := (1− αA)

HA

HA − hAi
− (aAi − cAi ) + (1− αA) log hAi = 0.

By the implicit function theorem,

dhAi
dHA

= −

∂F (hAi ,H
A)

∂HA

∂F (hAi ,H
A)

∂hAi

.

Since
∂F (hAi ,H

A)

∂hAi
= (1 − αA) HA

(HA−hAi )2
+ (1 − αA) 1

hAi
= (1 − αA)

hAi H
A+(HA−hAi )2

hAi (HA−hAi )2
and

∂F (hAi ,H
A)

∂HA =

−(1− αA)
hAi

(HA−hAi )2
, we have that

dhAi
dHA

=

hAi
(HA−hAi )2

hAi H
A+(HA−hAi )2

hAi (HA−hAi )2

=
(hAi )

2

hAi H
A + (HA − hAi )

2
> 0

The equilibrium is unique if
∑

i
dhAi
dHA < 1. Hence, uniqueness is implied by inequalities

(hAi )
2

hAi H
A + (HA − hAi )

2
<

hAi
HA

for all i ∈ {1, . . . ,M}, which is always satisfied. To see this, we rewrite inequalities as hAi H
A <

hAi H
A + (HA − hAi )

2, which is equivalent to 0 < (HA − hAi )
2.

Proof of Lemma 4. Consider the type (τAi , τ
B
i ) with τ

k
i := exp{vki } of a platform that is consis-

tent with the network sizes (nAi , n
B
i ) and aggregates (HA, HB). Solving explicitly for (τAi , τ

B
i )
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that is consistent with (nAi , n
B
i ) and (HA, HB), we obtain the solution

τ ki =

(
nkiH

k
)1−αk

(
nliH

l
)βk

exp

[
1

1− nki

(
1− αk − βl

nli
nki

)]
.

This completes the first part of the proof.

By rewriting the above equation, we obtain

Hk =

(
τ ki
)Γkk (

τ li
)Γkl

nki
exp

[
−

Γkk

1− nki

(
1− αk − βl

nli
nki

)
−

Γkl

1− nli

(
1− αl − βk

nki
nli

)]
,

which completes the second part of the proof.

Proof of Remark 4. Again, we rewrite platform types as (τAi , τ
B
i ) with τ

k
i = exp{vki }. The first

part of the proposition immediately follows from Lemma 4-1.

Letting n = (nAi , n
B
i )i∈{1,...,M}, we can write

M∑

j=1

τ kj = T k(n)
(
Hk
)1−αk (

H l
)−βk

,

where

T k(n) =
M∑

j=1

(
nkj
)1−αk (

nlj
)−βk

exp

[
1

1− nkj

(
1− αk − βl

nlj
nkj

)]

For the chosen (τ̄A, τ̄B), set

Hk =

(
τ̄ k

T k(n)

)Γkk (
τ̄ l

T l(n)

)Γkl

,

we obtain the type profiles (τAi , τ
B
i )i∈{1,...,M} such that

∑M
j=1 τ

k
j = τ̄ k, and the network sizes are

consistent with the aggregates (HA, HB), which completes the second part of the proof, with

v̄k = log τ̄ k.

Proof of Proposition 3. Using the definitions of f̃ki from the proof of Lemma 3, we have

∂f̃Ai
∂vAi

= 1− nAi ,

∂f̃Bi
∂vAi

= 0

By applying the implicit function theorem, it can easily be shown that, as an equilibrium

property, ∂hAi /∂v
A
i > 0 and ∂hBi /∂v

A
i ≥ 0, as shown in the proof of Lemma 2. We note
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that ∂hBi /∂v
A
i > 0 if and only if βA or βB is strictly positive. Since nki = hki /H

k, the result

follows.

Proof of Proposition 3. Recall that the definitions of (gAi , g
B
i ) from the proof of Proposition 2

are given by

gAi =(1− nAi )[a
A
i − cAi − (1− αA) log nAi + βA log nBi − CSA]− 1 + αA + βB

nBi
nAi

= 0, (A.7)

gBi =(1− nBi )[a
B
i − cBi − (1− αB) log nBi + βB log nAi − CSB]− 1 + αB + βA

nAi
nBi

= 0. (A.8)

These equations imply that vAi := aAi − cAi and CSA affects nAi and nBi only through vAi −CSA.

Hence, we have ∂nki /∂v
k
i = −∂nki /∂CS

k > 0 and ∂nki /∂v
l
i = −∂nki /∂CS

l ≥ 0 for k, l = A,B,

where ∂nki /∂CS
k < 0 ∂nki /∂CS

l ≤ 0 are established in the proof of Proposition 2.

Proof of Proposition 4. We consider vAi > vAj , v
B
i = vBj . Denote price-cost margin for group k

as µki = pki − cki . Differences across platform depend only on cost-adjusted quality offered to

group A, vAi = aAi − cAi . We can write

µk(vAi ) = µk(vAj ) +
∫ vAi
vAj

dµk(vA)
dvA

dvA.

Hence, µk(vAi ) > µk(vAj ) is implied by dµk(vA)
dvA

> 0. We express price-cost margins using the

formula from Lemma 1.

pBi (h
A
i , h

B
i )− cBi = vBi − (1− αB) log hBi + βB log hAi .

As in Proposition 3, we use the definitions of f̃ki from the proof of Lemma 3,Sign

(
d[pBi (hAi ,h

B+
i )−cBi ]

dvAi

)
=

Sign
(
∂hAi
∂vAi

βB

hAi
−

∂hBi
∂vAi

1−αB

hBi

)
which is positive if and only if

βB
{
(1− nBi )

2 + nBi
1− nBi

(1− αB)− βA
nAi

1− nBi
+ βB

nAi
nBi

}
− (1− αB)

[
βB(1− nBi ) + βA

nAi
nBi

]

is positive. This simplifies to

nBi
1− nBi

βB(1− αB)− βAβB
nAi

1− nBi
+ (βB)2

nAi
nBi

− (1− αB)βA
nAi
nBi

> 0.

We now prove the statement of the proposition. (i) If βA > 0 and βB = 0, the above

expression is negative, so pBi − cBi is decreasing in vAi , implying that pBi − cBi < pBj − cBj when

vAi > vAj and vBi = vBj . (ii) If β
B > 0 and βA = 0, the above expression is positive, so pBi − cBi

is increasing in vAi , implying that pBi − cBi > pBj − cBj when vAi > vAj and vBi = vBj .
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Proof of Remark 5. Similar to the proof of Proposition 4, this proof relies on small variations

of the cost-adjusted platform quality, to establish how the price-cost margin given in Lemma

1, pAi (h
A
i , h

B
i )− cAi = vAi − (1− αA) log hAi + βA log hBi , reacts. We have

Sign

(
d[pAi (h

A+
i , pB+

i )− cAi ]

dvAi

)

= Sign


1− (1− nAi )

−(1− αA) 1
hAi

∂f̃Bi
∂hBi

− βA 1
hBi

∂f̃Bi
∂hAi

∂f̃Ai
∂hAi

∂f̃Bi
∂hBi

−
∂f̃Ai
∂hBi

∂f̃Bi
∂hAi




After some calculations, it turns out that the above expression has the same sign as

[
nAi (p

A
i − cAi ) + βB

nBi
nAi

] [
nBi (p

B
i − cBi ) + βA

nAi
nBi

+ (1− αB)(1− nBi )

]

− βB
[
βA + βB

nBi
nAi

(1− nBi )

]

=

[
nAi

1− nAi
(1− αA) + βB

nBi
nAi

(
1−

nAi
1− nAi

)][(
nBi

1− nBi
+ 1− nBi

)
(1− αB) + βA

nAi
nBi

(
1−

nBi
1− nBi

)]

− βB
[
βA + βB

nBi
nAi

(1− nBi )

]

≥

[
βB

(1− nBi )n
B
i + (nAi − nBi )

2

(1− nAi )n
A
i

] [(
nBi

1− nBi
+ 1− nBi

)
(1− αB) + βA

nAi
nBi

(
1−

nBi
1− nBi

)]

− βB
[
βA + βB

nBi
nAi

(1− nBi )

]

where we obtain the last expression from the following calculation:

nAi
1− nAi

(1− αA) + βB
nBi
nAi

(
1−

nAi
1− nAi

)

=
(nAi )

2(1− αA) + βBnBi (1− 2nAi )

(1− nAi )n
A
i

≥ βB
(nAi )

2 + nBi − 2nAi n
B
i

(1− nAi )n
A
i

= βB
(1− nBi )n

B
i + (nAi − nBi )

2

(1− nAi )n
A
i

.

In the following cases, d(pAi − cAi )/dv
A
i positive:

1. When βB = 0: this is straightforward.
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2. When βA = 0: to see this, for βA = 0, the expression under consideration is

[
nAi

1− nAi
(1− αA) + βB

nBi
nAi

(
1−

nAi
1− nAi

)](
nBi

1− nBi
+ 1− nBi

)
(1− αB)

−(βB)2
nBi
nAi

(1− nBi )

> (βB)2
nBi
nAi

nBi + (1− nBi )
2 − (1− nBi )

(1− nAi )n
A
i

> 0.

3. When nAi ≥ nBi : to see this, the expression under consideration is greater than

βB
(1− nBi )n

B
i

(1− nAi )n
A
i

[
βA

(1− nAi )n
A
i

(1− nBi )n
B
i

+ βB(1− nBi )

]

= βB
[
βA +

(1− nBi )

(1− nAi )
βB

nBi
nAi

(1− nBi )

]

≥ βB
[
βA + βB

nBi
nAi

(1− nBi )

]

because (1− nBi )/(1− nAi ) ≥ 1 when nAi ≥ nBi .

Therefore, if corresponding values of (nA, nB) satisfy nA ≥ nBi for all vA ∈ [vAj , v
A
i ], we

have the desired result. To establish this, it suffices to examine that d(nA/nB)/dvA > 0

at vA such that nA = nB. To see this, note that

Sign

[
d

dvAi

(
nAi
nBi

)]

= Sign

[
1

hAi

∂hAi
∂vAi

−
1

hBi

∂hBi
∂vAi

]

= Sign

(
−

1

hAi

∂f̃B

∂hBi
−

1

hBi

∂f̃Bi
∂hAi

)

= Sign
[
nAi (p

A
i − cAi ) + (1− nBi )(1− αB − βB)

]
,

which is positive as long as pAi − cAi ≥ 0, which always holds when nAi ≥ nBi . Therefore,

along the path from vAj to vAi , if n
A
j ≥ nBj , n

A ≥ nB always holds for the intermediate

values of vA, holding other parameters fixed. Therefore, pA − cA also monotonically

increases on this path, establishing that pAi − cAi > pAj − cAj .

4. When pAi −c
A
i ≥ 0 and pBi −c

B
i ≥ 0: we consider the case where nBi > nAi because we have

established the desired result in the case where nAi ≥ nBi . First, it is straightforward that

a small change in vAi increases pAi −c
A
i in this case. What needs to be shown is that pAi −c

A
i

53



continuously increases as vAi increases more. To see this, note that a small increase in vAi

increases nAi /n
B
i if pAi − cAi ≥ 0. Therefore, the sign of pAi − cAi , which is determined by

the sign of 1 − αA − βBnBi /n
A
i , is positive for all v ∈ [vAi , v

A
i ] as long as pAi − cAi ≥ 0 at

vAi . Furthermore, because pBi − cBi ≥ 0 whenever nBi > nAi . Put together, at any point on

the path [vAi , v
A
i ], the signs of pAi − cAi and pBi − cBi are positive, implying that the local

increase in pAi − cAi continues until the end. This establishes that pAi − cAi > pAj − cAj .

The remaining case is βA > 0, βB > 0, and nBi > nAi . It turns out that d(pAi − cAi )/dv
A
i < 0

may hold in this case. We show this by example. Suppose that βA = βB = 0.995, αA =

αB = 0, nAi = 0.2, and nBi = 0.25. By Remark 4, we can obtain these participation levels with

appropriate choices of the primitives of the model. Then,

[
nAi

1− nAi
(1− αA) + βB

nBi
nAi

(
1−

nAi
1− nAi

)][(
nBi

1− nBi
+ 1− nBi

)
(1− αB) + βA

nAi
nBi

(
1−

nBi
1− nBi

)]

− βB
[
βA + βB

nBi
nAi

(1− nBi )

]

= −0.000911406.

Proof of Proposition 5. We note that

Sign

{
∂

∂vAi

(
ñAi
ñBi

)}
= Sign

(
∂ñAi
∂vAi

nBi −
∂ñBi
∂vAi

nAi

)

= Sign

(
−
∂gBi
∂nBi

nBi −
∂gBi
∂nAi

nAi

)

= Sign

(
nBi (p

B
i − cBi ) + (1− αB)(1− nBi ) +

nAi
nBi

βA − (1− nBi )β
B −

nAi
nBi

βA
)

= Sign

(
nBi

1− nBi

(
1− αB −

nAi
nBi

βA
)
+ (1− nBi )(1− αB − βB)

)
,

where

nBi
1− nBi

(
1− αB −

nAi
nBi

βA
)
+ (1− nBi )(1− αB − βB),

which is strictly positive whenever pBi − cBi ≥ 0.

Since

Sign
(
pki − cki

)
= Sign

(
1− αk − βl

nli
nki

)
,

there exists a critical value vAi such that pBi − cBi < 0 if and only if vAi > vAi . For vAi ≤ vAi ,
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nAi /n
B
i is monotonically increasing in vAi . Hence, there exists another critical value vAi < vAi

such that pAi − cAi < 0 if and only if vAi < vAi . The cross-section comparison then implies the

statement of the proposition.

Proof of Proposition 6. Using the pricing formula, we can write the profit of each platform as

a function of its network sizes:

Πi =
nAi

1− nAi

(
1− αA − βB

nBi
nAi

)
+

nBi
1− nBi

(
1− αB − βA

nAi
nBi

)
.

Noting that

∂gBi
∂nBi

= −
1

nBi

[
nBi (p

B
i − cBi ) + (1− αB)(1− nBi ) + βA

nAi
nBi

]
< 0,

∂gBi
∂nAi

=
1

nAi

[
βB(1− nBi ) + βA

nAi
nBi

]
≥ 0,

where (gAi , g
B
i ) is define in the proof of Proposition 2, and using the implicit function theorem,

we have that

∂ñA
i

∂vAi

∂ñB
i

∂vAi

= −

∂gBi
∂nB

i

∂gBi
∂nA

i

=
(pBi − cBi ) + (1− αB)

1−nB
i

nB
i

+
nA
i β

A

(nB
i )2

1−nB
i

nA
i

βB + βA

nB
i

,

which can be rewritten as

∂nBi
∂vAi

=
∂nAi
∂vAi

1−nB
i

nA
i

βB + βA

nB
i

pBi − cBi + (1− αB)
1−nB

i

nB
i

+
nA
i β

A

(nB
i )2

.

Hence, ∂Πi/∂v
A
i = (∂nAi /∂v

A
i )∆Πi, where

∆Πi =
nAi

(1− nAi )
2

(
1− αA − βB

nBi
nAi

)
+

1− αA

1− nAi
−

βA

1− nBi

+

1−nB
i

nA
i

βB + βA

nB
i

pBi − cBi + (1− αB)
1−nB

i

nB
i

+
nA
i β

A

(nB
i )2

[
nBi

(1− nBi )
2

(
1− αB − βA

nAi
nBi

)
+

1− αB

1− nBi
−

βB

1− nAi

]
.

Therefore, ∂Πi/∂v
A
i has the same sign as

∂nA
i

∂vAi
if ∆Πi is positive.
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The following calculations show that this is always the case. ∆Πi has the same sign as

(
pBi − cBi + (1− αB)

1− nBi
nBi

+
nAi β

A

(nBi )
2

)[
nAi

(1− nAi )
2

(
1− αA − βB

nBi
nAi

)
+

1− αA

1− nAi
−

βA

1− nBi

]

+

(
1− nBi
nAi

βB +
βA

nBi

)[
nBi

(1− nBi )
2

(
1− αB − βA

nAi
nBi

)
+

1− αB

1− nBi
−

βB

1− nAi

]

=

(
pBi − cBi + (1− αB)

1− nBi
nBi

+
nAi β

A

(nBi )
2

)[
nAi

(1− nAi )
2

(
1− αA − βB

nBi
nAi

)
+

1− αA

1− nAi

]

−
βA

1− nBi

(
(1− αB)

1− nBi
nBi

+
nAi β

A

(nBi )
2

)

+
1− nBi
nAi

βB
[

nBi
(1− nBi )

2

(
1− αB − βA

nAi
nBi

)
+

1− αB

1− nBi
−

βB

1− nAi

]

+
βA

nBi

(
1− αB

1− nBi
−

βB

1− nAi

)

=

(
pBi − cBi + (1− αB)

1− nBi
nBi

+
nAi β

A

(nBi )
2

)[
nAi

(1− nAi )
2

(
1− αA − βB

nBi
nAi

)
+

1− αA

1− nAi

]

+
βA

(1− nBi )
(1− αB)−

βA

1− nBi

nAi β
A

(nBi )
2

+
1− nBi
nAi

βB
[

nBi
(1− nBi )

2

(
1− αB − βA

nAi
nBi

)
+

1− αB

1− nBi
−

βB

1− nAi

]

−
βA

nBi

βB

1− nAi

> β
2
XΠ,

where

XΠ =



1−

nA
i

nB
i

1− nBi
+

1− nBi
nBi

+
nAi

(nBi )
2



[

nAi
(1− nAi )

2

(
1−

nBi
nAi

)
+

1

1− nAi

]
+

1

1− nBi

(
1−

nAi
(nBi )

2

)

+
1− nBi
nBi

[
nBi

(1− nBi )
2

(
1−

nAi
nBi

)
+

1

1− nBi
−

1

1− nAi

]
−

1

nBi (1− nAi )

=
1

1− nAi



1−

nA
i

nB
i

1− nBi
+

1

nBi

(
nAi
nBi

− 1

)
+

nAi
(1− nAi )

2

(
1−

nBi
nAi

)

1−

nA
i

nB
i

1− nBi
+

1− nBi
nBi

+
nAi

(nBi )
2




+
1

1− nBi

(
1−

nAi
nBi

)
+

1

nBi
.

Thus, if XΠ > 0, we have that ∆Πi > 0.
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We define YΠ := (1− nAi )
2(1− nBi )(n

B
i )

2XΠ, which has the same sign as XΠ.

YΠ = (1− nAi )
[
nBi (n

B
i − nAi ) + (1− nBi )(n

A
i − nBi )

]

+(nAi − nBi )
[
nBi (n

B
i − nAi ) + nBi (1− nBi )

2 + (1− nBi )n
A
i

]

+(1− nBi )
2nBi (n

B
i − nAi ) + (1− nAi )

2(1− nBi )n
B
i

= (1− nAi )
[
nBi (n

B
i − nAi ) + (1− nBi )(n

A
i − nBi )

]

+(nAi − nBi )
[
nBi (n

B
i − nAi ) + (1− nBi )n

A
i

]

+(1− nAi )
2(1− nBi )n

B
i

= (1− nAi )
[
(1− nAi )(1− nBi )n

B
i + nBi (n

B
i − nAi ) + (1− nBi )(n

A
i − nBi )

]

+(nAi − nBi )
[
nBi (n

B
i − nAi ) + (1− nBi )n

A
i

]

= (1− nAi )
[
nAi − 3nAi n

B
i + (1 + nAi )(n

B
i )

2
]

+(nAi − nBi )
[
nBi (n

B
i − nAi ) + (1− nBi )n

A
i

]

= nAi − 3nAi n
B
i − (nAi )

2 + 3(nAi )
2nBi + (nBi )

2 − (nAi )
2(nBi )

2

+(nAi − nBi )[n
A
i − 2nAi n

B
i + (nBi )

2]

= nAi − 4nAi n
B
i + (nAi )

2nBi + 3nAi (n
B
i )

2 + (nBi )
2 − (nAi )

2(nBi )
2 − (nBi )

3

= nAi [1− 4nBi + 3(nBi )
2] + (nAi )

2nBi + (nBi )
2 − (nAi )

2(nBi )
2 − (nBi )

3

= nAi (1− nBi )(1− 3nBi ) + [(nAi )
2 + nBi ]n

B
i (1− nBi )

= (1− nBi )
[
nAi (1− 3nBi ) + (nBi )

2 + nBi (n
A
i )

2
]

= (1− nBi )
[
(nBi )

2 − 2nAi n
B
i + (nAi )

2 + nAi − (nAi )
2 − nAi n

B
i + nBi (n

A
i )

2
]

= (1− nBi )
[
(nBi − nAi )

2 + nAi (1− nAi )(1− nBi )
]

> 0.

This establishes that ∆Πi > 0, which completes the proof.

Note that because the profit depends on vki only through v
k
i−CS

k (see the proof of Proposition

3), the profit decreases in CSk, which is used in the proof of Proposition 9.

Proof of Remark 6. Suppose that vi > vj. The result ni > nj follows from Proposition 3;

pi− ci > pj− cj follows from case (1) of Remark 5; and Πi > Πj follows from Proposition 6.

Proof of Proposition 7. We show each of the statements of the proposition.

1. Fix the characteristics of an entrant (aAE, c
A
E, a

B
E , c

B
E). Then, we show that if max{βA, βB}

is sufficiently small, the user surpluses for both groups increase with entry. To see this,

consider the limit case of zero cross-group network effects (i.e., βA = βB = 0). When βA =

βB = 0, ñki (CS
A, CSB) depends only on CSk. We have ñAi (CS

A, CSB) = ñAi (CS
A, 0)
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and ñBi (0, CS
B). Given the pre-entry equilibrium user surpluses (CSA∗, CSB∗) and

M∑

i=1

ñAi (CS
A∗, 0) + ñAE(CS

A∗, 0) > 1,

M∑

i=1

ñBi (0, CS
B∗) + ñBE(0, CS

B∗) > 1,

the post-entry user surpluses (CSA∗∗, CSB∗∗) must satisfy CSA∗∗ > CSA∗ and CSB∗∗ >

CSB∗. Because of the continuity of the model in parameters, we obtain the statement.

2. Take group-A optimal equilibrium (CSA∗, CAB∗), which is also the equilibrium that min-

imizes the group-B user surplus. Let CSA∗∗ > CSA∗ and CSB∗∗ = ĈS
B
(CSA∗∗) + ϵ,

where ϵ > 0 is a sufficiently small positive number such that ĈS
B
(CSA∗∗) + ϵ < CSB∗.

Then, at (CSA∗∗, CSB∗∗),

∑

i

ñAi (CS
A∗∗, CSB∗∗) < 1,

∑

i

ñBi (CS
A∗∗, CSB∗∗) < 1.

This pair of (CSA∗∗, CSB∗∗) is consistent with entry of platform E with post-entry market

shares

nAE = 1−
∑

i

ñAi (CS
A∗∗, CSB∗∗) > 0,

nBE = 1−
∑

i

ñBi (CS
A∗∗, CSB∗∗) > 0.

Then, the proof of Remark 4 implies that there exists a type of platform that is consis-

tent with (nAE, n
B
E) and (CSA∗∗, CSB∗∗). Hence, there exists platform entry that induces

(CSA∗∗, CSB∗∗) as an equilibrium outcome, and the lowest equilibrium group-B user sur-

plus is lower after the entry than the pre-entry level.

3. Consider the entry of new platform E with characteristics (aAE, c
A
E, a

B
E , c

B
E). At any pre-

entry equilibrium user surpluses (CSA, CSB), we have

M∑

i=1

ñki (CS
A, CSB) + ñkE(CS

A, CSB) = 1 + ñkE(CS
A, CSB) > 1

for k ∈ {A,B}. Since ñkj (CS
A, CSB) is decreasing in (CSA, CSB), CSA or CSB must
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be greater than the pre-entry level. Now, take the group-A optimal equilibrium user

surpluses (CSA∗, CSB∗). Then, there must be a post-entry equilibrium user surpluses

(CSA∗∗, CSB∗∗) that satisfies CSA∗∗ > CSA∗ or CSB∗∗ > CSB∗, implying that maximal

group-A user surplus or minimal group-B user surplus increases with entry.

Proof of Example 1. Consider a symmetric duopoly prior to entry. Then, in the pre-entry

equilibrium, we have nA∗i = nB∗
i = 1/2, pAi − cAi = 2(1 − αA − βB) > 0, and pBi − cBi =

2(1− αB − βA) > 0 regardless of the type of the platforms (vA, vB).

Now, suppose that the value of the post-entry aggregates is given by (HA∗∗, HB∗∗). Suppose

that the types of the entrant and incumbent platforms are such that incumbents obtain the

network sizes (nAI , n
B
I ) and, thus, the entrant obtains (nAE, n

B
E) = (1 − 2nAI , 1 − 2nBI ) – the

existence of such types is guaranteed for any (nAI , n
B
I ) ∈ (0, 1/2)2 by Lemma 4.

Then, the post-entry equilibrium prices are given by

pAI − cAI =
1

1− nAI

(
1− αA − βB

nBI
nAI

)
,

pBE − cBE =
1

2nBI

(
1− αB − βA

1− 2nAI
1− 2nBI

)
.

Hence, if

nBI >
1− αB

βA
nAI +

1

2

(
1− αB − βA

1− αB

)

holds, we have both pAI − cAI < 0 and pBE − cBE < 0. Correspondingly, we have pBI − cBI < 0 and

pAE − cAE < 0 by interchanging the labels of the two groups.

Proof of Proposition 8.

1. We show by example within the setting in Example 1. The pre-entry equilibrium profit

of the platform is given by

ΠD = nAi (p
A
i − cAi ) + nBi (p

B
i − cBi )

= 2− αA − αB − βA − βB.

Now consider entry that leads to the network sizes (nAI , n
B
I ) for the two incumbents and

(nAE, n
B
E) = (1−2nAI , 1−2nBI ) for the entrant. When nAI ≃ 1/2 and nBI ≃ 0, the post-entry
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profit of each incumbent platform is given by

ΠT = nAI (p
A
I − cAI ) + nBI (p

B
I − cBI )

=
nAI

1− nAI
(1− αA)−

nBI
1− nAI

βB +
nBI

1− nBI
(1− αB)−

nAI
1− nBI

βA

≃ 1− αA −
βA

2
.

Hence, we have

ΠT − ΠD ≃ αB +
βA

2
+ βB − 1,

which is positive if αB + βA/2 + βB > 1.

2. In the proof of Proposition 6, we showed that Πi is decreasing in (CSA, CSB). Hence,

for a change in the equilibrium value of (CSA, CSB) leading to an increase of profit Πi,

either CSA or CSB must decrease. This means that for entry to increase an incumbent

platform’s profit, the user surplus for one group must decrease.

Proof of Proposition 9. Consider a local change in a parameter that leads to a local change of

(dCSA, dCSB) to (CSA, CSB). Let ΠE(CS
A, CSB) be the post-entry profit of platform E as

a function of (CSA, CSB). Then, the free-entry condition can be written as

ΠE(CS
A, CSB)−K = 0. (A.9)

In the last paragraph of the proof of Proposition 6, we showed that ΠE(CS
A, CSB) is strictly

decreasing in (CSA, CSB). Hence, applying the implicit function theorem to equation (A.9),

we have that
dCSB

dCSA

∣∣∣∣
ΠE(CSA,CSB)=0

= −
∂ΠE

∂CSA

∂ΠE

∂CSB

< 0,

which completes the proof.

A.2. Platform compatibility

In this part of the appendix, we consider the effect of the degree of compatibility on market

outcomes and focus on settings in which there are only within-group network effects. Thus the

two groups operate independently and we can focus our attention on group A. Partial com-

patibility implies that a fraction λ of network effects are industry-wide. Partial compatibility

is gained if some of the functionalities are available to all users, not only those on the same
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platform, but also those on competing platforms. An example of a regulatory intervention with

that goal is Article 7 in the Digital Markets Act (DMA) in the European Union. According

to this regulation, a gatekeeper of a number-independent interpersonal communications service

must “make the basic functionalities of its number-independent interpersonal communications

services interoperable with the number-independent interpersonal communications services of

another provider.”25

We can easily adopt the analysis of the base model to analyze the price equilibrium. Using

the first-order condition given by equation (7) adjusted by λ, we obtain

HA

HA − hAi
=

aAi − cAi
1− (1− λ)αA

− log hAi , (A.10)

which implicitly defines a solution hi(H
A;λ). We note that, as λ increases, the right-hand side

decreases. This implies that an increase in compatibility pushes the function hi(·;λ) downward.

Since this holds for all functions hi, i ∈ {1, . . . ,M}, it must be that the equilibrium aggregate

HA decreases in λ.

We know that if aAi − cAi > aAj − cAj platform i has a larger market share than platform j.

How does the relative market size nAi /n
A
j change as compatibility increases? From equation

(A.10) we see that hi receives a stronger downward push than hj as compatibility increases.

This tends to reduce the market size asymmetry between firms. Also the equilibrium value of

the aggregate changes in compatibility: because of the downward shift, the equilibrium value

of HA must decrease.

We now take a closer look at the model to answer the question of how a change in the degree

of compatibility affects market shares. Denoting α̃A := αA(1 − λ), the first-order condition

(A.10) can be rewritten as

HA − hAi
HA

(
aAi − cAi + (1− α̃A) log hAi

)
− (1− α̃A) = 0

or, equivalently,

(1− nAi )

(
vAi

1− α̃A
− log nAi − logHA

)
− 1 = 0

This defines platform i’s market share as a function of the aggregate ñAi (H
A), which has slope

dñAi
dHA

=
−

1−nA
i

HA

1
1−nA

i

+
1−nA

i

nA
i

< 0.

25The provision applies only to gatekeeper platforms and interoperability has to be offered upon the request of
another provider. As a caveat, our model does not accommodate the situation that some but not all of the
competing providers ask for interoperability.
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The equilibrium condition for HA is
∑M

i=1 ñ
A
i (H

A) = 1. We obtain the result that lower-quality

platforms gain market share when the degree of compatibility is increased, while higher-quality

platforms lose. In other words, industry concentration (e.g., measured by the HHI) goes down.

This is formally stated in the following proposition.

Proposition A.1. Supppose that βA = βB = 0 and order platforms such that vAj ≤ vAj+1 for all

j ∈ {1, . . . ,M − 1}. Then an increase in the degree of compatibility λ affects market shares as

follows: there exists a critical platform ĵ ∈ {1, . . . ,M − 1} such that for all j > ĵ market share

decreases (dnA∗i /dλ < 0), and for all j ≤ ĵ market share (weakly) increases (dnA∗i /dλ ≥ 0,

where the inequality must be strict for j = 1 and for all j < ĵ with vAj < vA
ĵ
).

Proof. The market share of platform i changes with α̃A

dñAi
dα̃A

=
vAi

(1− α̃A)2
1− nAi

1
1−nA

i

+
1−nA

i

nA
i

= −
HAvAi

(1− α̃A)2
∂ñAi
∂HA

.

The aggregate HA∗ changes with α̃A as follows:

dHA∗

dα̃A
=

−
∑M

i=1
∂ñA

i

∂α̃A

∑M
i=1

∂ñA
i

∂HA

=

∑M
i=1

HAvAi
(1−α̃A)2

∂ñA
i

∂HA

∑M
i=1

∂ñA
i

∂HA

.

We have

dnA∗i
dα̃A

=
∂ñAi
∂α̃A

+
dHA∗

dα̃A
∂ñAi
∂HA

=

[
−
∂ñAi
∂HA

](
HAvAi

(1− α̃A)2
−
dHA∗

dα̃A

)

=

[
−
∂ñAi
∂HA

]
HA

(1− α̃A)2


vAi −

∑M
j=1 v

A
j

[
−

∂ñA
j

∂HA

]

∑M
j=1

[
−

∂ñA
j

∂HA

]




=

[
−
∂ñAi
∂HA

]

︸ ︷︷ ︸
>0

HA

(1− α̃A)2



∑M

j=1(v
A
i − vAj )

[
−

∂ñA
j

∂HA

]

∑M
j=1

[
−

∂ñA
j

∂HA

]


 .

Therefore, there exists a critical platform ĵ ≤ M − 1 such that for all j > ĵ, dnA∗j /dα̃A > 0,

and for all j ≤ ĵ with dnA∗j /dα̃A ≤ 0. This last inequality must be strict for j = 1. It must
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also be strict for all j < ĵ in platform oligopoly provided that vAj < vA
ĵ
. Since an increase in

the degree of compatibility implies a decrease in α̃A, the result follows.

Prices are determined according to Lemma 1 through pAi = aAi − [1− (1− λ)αA] log hAi . In-

creased compatibility leads to a downward shift of hAi and the equilibrium value of the aggregate

decreases. More compatibility reduces the equilibrium value of hAi . However, a larger λ leads

to an increase of [1− (1− λ)αA], which points in the opposite direction to hAi .

User surplus is [1− (1−λ)αA] logHA. The term in square brackets increases in the degree of

compatibility λ, which captures the direct effect of increased compatibility on user surplus. By

contrast, as just shown, HA decreases. The decrease in HA captures the strategic effect that

an increase in partial compatibility causes the platforms to compete less intensely for users.

Consider the special case of symmetric platforms, implying that hAi /H
A = 1/M . The first-

order condition can then be rewritten as

logHA =
aA − cA

1− (1− λ)αA
+ logM −

M

M − 1
.

Thus, user surplus can be expressed as

aA − cA + [1− (1− λ)αA]

(
logM −

M

M − 1

)
.

Under symmetry, welfare increases in the degree of compatibility if and only if logM > M
M−1

.

This implies that welfare decreases with compatibility if and only if M = 2 or M = 3, while it

increases for M ≥ 4. With a sufficiently large number of platforms, the strategic effect is less

pronounced, and thus the direct effect dominates.26

When platforms are asymmetric, compatibility mitigates the asymmetry of market outcomes,

as observed in Proposition A.1. This gives rise to an additional effect pushing down the price

of large platforms. Naturally, this effect is strong when the asymmetry is large. To illustrate

the role of asymmetry, consider a duopoly. As shown above, in this case, the strategic effect

dominates under symmetry. In the following proposition, we establish that even under duopoly

an increase in the degree of compatibility lowers the price set by a larger platform and increases

user surplus if the asymmetry between platforms is sufficiently large.

26Starting with Katz and Shapiro (1985), earlier literature has looked at the welfare effect of (no versus full)
compatibility under Cournot competition; Amir, Evstigneev and Gama (2021) provides conditions under
which full compatibility leads to a larger consumer surplus than no compatibility. For an extension to two-
sided platforms, see Shekhar, Petropoulos, Van Alstyne and Parker (2022). Grilo, Shy and Thisse (2001)
provide an early analysis of price competition with direct network effects and product differentiation but
with a different focus.
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Proposition A.2. Suppose that βA = βB = 0, M = 2, and vA1 ≤ vA2 . (1) There exists a critical

value ∆pv
A ∈ (0,∞) such that the equilibrium price set by platform 1, pA∗1 decreases with λ if

and only if vA1 − vA2 ≥ ∆pv
A. (2) There exists a critical value ∆CSv

A ∈ (0,∞) such that the

equilibrium user surplus CSA∗ increases with λ if and only if vA1 − vA2 ≥ ∆CSv
A.

Proof. We first show Proposition A.2-2 and then show Proposition A.2-1. Here we make use

of a derivation in the proof of Proposition A.3 below, which does not rely on any of the results

obtained in the current proof.

Supposing that βA = βB = 0, we can simplify ΩA, which appears in equation (A.11) in the

proof of Proposition A.3, to

Ω̃A(nA1 ,∆v
A) =

∆vA

1− α̃A
− [log nA1 − log(1− nA1 )]−

(
1

1− nA1
−

1

nA1

)

= ∆ṽA − [log nA1 − log(1− nA1 )]−

(
1

1− nA1
−

1

nA1

)
,

where ∆vA := vA1 − vA2 and ∆ṽA := ∆vA/(1 − α̃A). The proof of Proposition A.3 shows that

the equilibrium market share of platform 1 is given by ΩA(nA1 ,∆v
A). Since ∂Ω̃A

∂∆ṽA
= 1 and

∂Ω̃A

∂nA1
= −

1

nA1
−

1

1− nA1
−

1

(1− nA1 )
2
−

1

(nA1 )
2

= −
1

nA1 (1− nA1 )
−

2(nA1 )
2 − 2nA1 + 1

(nA1 )
2(1− nA1 )

2

= −
(nA1 )

2 − nA1 + 1

(nA1 )
2(1− nA1 )

2
,

we can write

dnA∗1

d∆ṽA
=

(nA1 )
2(1− nA1 )

2

(nA1 )
2 − nA1 + 1

.

Next, noting that
∂∆ṽA

∂α̃A
=

∆vA

(1− α̃A)2
=

1

1− α̃A
∆ṽA

and

CSA = vA1 − (1− α̃A) log nA1 −
1− α̃A

1− nA1
,
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we have

∂CSA∗

∂α̃A
= log nA1 +

1

1− nA1
−

dnA∗

d∆ṽA
∆ṽA

[
1

nA1
+

1

(1− nA1 )
2

]

= log nA1 +
1

1− nA1
−

nA1
(nA1 )

2 − nA1 + 1

(
(1− nA1 )

2 + nA1
)
∆ṽA

= log nA1 +
1

1− nA1
− nA1 ∆ṽ

A.

Since

∆ṽA = log nA1 − log(1− nA1 ) +
1

1− nA1
−

1

nA1
,

we can write

∂CSA∗

∂α̃A
= (1− nA1 ) log n

A
1 + 2 + nA1 log(1− nA1 ).

When nA1 = 1/2, the inequality

∂CSA∗

∂α̃A
= − log 2 + 2 > 0

holds. As nA1 → 1, we have the limit result ∂CSA∗

∂α̃A → −∞. Finally, since

∂2CSA∗

∂α̃A∂nA1
= −

[
log nA1 − log(1− nA1 )

]
+

1− nA1
nA1

−
nA1

1− nA1
< 0,

there exists a critical value n̂A1,CS ∈ (1/2, 1) of the market share of platform 1 such that user

surplus is decreasing in α̃A if and only if nA∗1 > n̂A1,CS. Because nA∗1 is increasing in ∆ṽA,

which is increasing in ∆vA, there exists ∆CSv
A > 0 such that dpA∗1 /dα̃A > 0 if and only if

vA1 − vA2 > ∆CSv
A. Because α̃A is decreasing in λ, we obtain Proposition A.2-2

Next, consider the impact of α̃A on prices. Since pA1 = 1−α̃A

1−nA
1
, the effect of α̃A on the equilib-

rium prices is given by

dpA∗1

dα̃A
= −

1

1− nA1
+∆ṽA

(nA1 )
2

(nA1 )
2 − nA1 + 1

=
1

(nA1 )
2 − nA1 + 1

[
(nA1 )

2

(
log nA1 − log(1− nA1 ) +

1

1− nA1
−

1

nA1

)
−

(nA1 )
2 − nA1 + 1

1− nA1

]

=
1

(nA1 )
2 − nA1 + 1

[
(nA1 )

2

(
log nA1 − log(1− nA1 )−

1

nA1

)
− 1

]

The function

(nA1 )
2
(
log nA1 − log(1− nA1 )

)
− nA1
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has the derivative

2nA1
(
log nA1 − log(1− nA1 )

)
+ nA1 +

(nA1 )
2

1− nA1
− 1

= 2nA1
(
log nA1 − log(1− nA1 )

)
+

(2nA1 − 1)

1− nA1
> 0

for all nA1 > 1/2. Thus, there exists a critical value n̂A1,p ∈ (1/2, 1) of the market share of

platform 1 such that pA∗1 is increasing in α̃A if and only if nA∗1 > n̂A1,p. Therefore, there exists

∆pv
A > 0 such that dpA∗1 /dα̃A > 0 if and only if vA1 − vA2 > ∆pv

A. Because α̃A is decreasing in

λ, we obtain Proposition A.2-1.

Our analysis has focused on the case with zero cross-group network effects. We take a

quick look at cross-group network effects when platforms are symmetric. When cross-group

network effects are positive, a group-k consumer’s utility from joining platform i is given by

aki −p
k
i +(1−λ)αk log nki +(1−λ)βk log nli+ε

k
i . Let α̃

k := (1−λ)αk and β̃k := (1−λ)βk. Then,

from the first-order condition and the fact that hki /H
k = 1/M , the symmetric equilibrium

price-cost margin for group-k users is given by pk − ck = (1− α̃k − β̃l) M
M−1

, which is increasing

in λ, as increased compatibility relaxes price competition between platforms.

The symmetric model allows us to obtain insights into which user group benefits from in-

creased compatibility. With partial compatibility, the expression for user surplus can be written

as

CSk∗ = vk + (1− α̃k − β̃k) logM − (1− α̃k − β̃l)
M

M − 1
,

for k, l ∈ {A,B}, l ̸= k. The derivative with respect to the degree of partial compatibility is

∂CSk∗

∂λ
= (αk + βk) logM − (αk + βl)

M

M − 1
.

Given a large number of platforms, M , partial compatibility tends to be beneficial for users

in either group because an increase in compatibility has a strong direct effect on users by ex-

panding interaction possibilities within and across groups for the service features that become

compatible. The associated consumer benefit then dominates the loss from reduced price com-

petition. Considering group-k user surplus, we observe that increased compatibility tends to be

beneficial if βk is large relative to βl, l ̸= k. The group that experiences rather small benefits

from cross-group network effects tends to be harmed by increased compatibility.

To address the effect of compatibility on industry concentration under cross-group network

effects, we restrict attention to the duopoly case. In line with Proposition A.1, we establish
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that compatibility mitigates industry concentration even in the presence of cross-group network

effects.

Proposition A.3. Suppose that M = 2 and that vk1 := ak1 − ck1 > ak2 − ck2 =: vk2 for k ∈ {A,B},

that is, platform 1 is more efficient than platform 2. Then, the equilibrium market share of

platform 1, nk∗1 decreases with the degree of compatibility λ.

Proof. Suppose thatM = 2; that is, platforms are duopolists. Also suppose that vk1 := ak1−c
k
1 >

ak2 − ck2 =: vk2 for k = A,B; that is, platform 1 is more efficient than platform 2 is. In this

setting, the equilibrium object can be summarized by (nA1 , n
B
1 ), n

k
2 = 1− nk1 for k ∈ {A,B}.

Noting that, from the first-order conditions (A.5) and (A.6), we have

CSA = vA2 − (1− α̃A) log nA2 + β̃A log nB2 −
1

1− nA2

(
1− α̃A − β̃B

nB2
nA2

)
,

CSB = vB2 − (1− α̃B) log nB2 + β̃B log nA2 −
1

1− nB2

(
1− α̃B − β̃A

nA2
nB2

)
,

the equilibrium condition for the market share of platform 1, (nA1 , n
B
1 ), is given by the system

of equations:

ΩA(nA1 , n
B
1 ,∆v

A) = 0

ΩB(nA1 , n
B
1 ,∆v

A) = 0,

where

ΩA(nA1 , n
B
1 ,∆v

A) = vA1 − (1− α̃A) log nA1 + β̃A log nB1 − CSA −
1

1− nA1

(
1− α̃A − β̃B

nB1
nA1

)

= vA1 − vA2 − (1− α̃A) log
nA1
nA2

+ β̃A log
nB1
nB2

−
1

1− nA1

(
1− α̃A − β̃B

nB1
nA1

)
+

1

1− nA2

(
1− α̃A − β̃B

nB2
nA2

)

= ∆vA − (1− α̃A)
(
log nA1 − log(1− nA1 )

)
+ β̃A

(
log nB1 − log(1− nB1 )

)

−
1

1− nA1

(
1− α̃A − β̃B

nB1
nA1

)
+

1

nA1

(
1− α̃A − β̃B

1− nB1
1− nA1

)
(A.11)

and ΩB(nA1 , n
B
1 ,∆v

B) is analogously defined.

From Proposition 4, we know that any solution to this system of equations lies in (1/2, 1)2.
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We can rewrite ΩA as

ΩA(nA1 , n
B
1 ,∆v

A) =∆vA − (1− α̃A)[log nA1 − log(1− nA1 )] + β̃A[log nB1 − log(1− nB1 )]

−
1

nA1 (1− nA1 )

[
(1− α̃A)(2nA1 − 1)− β̃B(2nB1 − 1)

]
,

Thus, we have the partial derivatives with respect to nA1 and nB1 :

∂ΩA

∂nA1
= −(1− α̃A)

1

nA1 (1− nA1 )
−

(2nA1 − 1)

[nA1 (1− nA1 )]
2

[
(1− α̃A)(2nA1 − 1)− β̃B(2nB1 − 1)

]

−
2(1− α̃A)

nA1 (1− nA1 )

= −
1

(nA1 )
2(1− nA1 )

2

[
(1− α̃A)

[
3nA1 (1− nA1 ) + (2nA1 − 1)2

]
+ (2nA − 1)(2nB1 − 1)β̃B

]

< −
1

(nA1 )
2(1− nA1 )

(1− α̃A)[2− nA1 ] < 0.

∂ΩA

∂nB1
= β̃A

1

nB1 (1− nB1 )
+ β̃B

2

nA1 (1− nA1 )
> 0.

The partial derivative with respect to λ is:

∂ΩA

∂λ
=− αA log

(
nA1

1− nA1

)
− βA log

(
nB1

1− nB1

)
−
αA(2nA1 − 1) + βB(2nB1 − 1)

nA1 (1− nA1 )

To conduct comparative statics with respect to λ, we can write

dnA1
dλ

=

−

(−)︷︸︸︷
∂ΩA

∂λ

(−)︷ ︸︸ ︷
∂ΩB

∂nB1
+

(−)︷ ︸︸ ︷
∂ΩB

∂λ

(+)︷︸︸︷
∂ΩA

∂nB1
∂ΩA

∂nA
1

∂ΩB

∂nB
1
− ∂ΩA

∂nB
1

∂ΩB

∂nA
1

Therefore, once we establish that

∂ΩA

∂nA1

∂ΩB

∂nB1
−
∂ΩA

∂nB1

∂ΩB

∂nA1
> 0, (A.12)

we know that dnA1 /dλ < 0 and analogously dnA2 /dλ < 0.

To show this, we write the left-hand side of inequality (A.12) as

∂ΩA

∂nA1

∂ΩB

∂nB1
−
∂ΩA

∂nB1

∂ΩB

∂nA1
=

Z1

(nA1 )
2(1− nA1 )

2(nB1 )
2(1− nB1 )

2
,
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where

Z1 =
[
(1− α̃A)

[
3nA1 (1− nA1 ) + (2nA1 − 1)2

]
+ (2nA1 − 1)(2nB1 − 1)β̃B

]

×
[
(1− α̃B)

[
3nB1 (1− nB1 ) + (2nB1 − 1)2

]
+ (2nB1 − 1)(2nA1 − 1)β̃A

]

−
[
β̃AnA1 (1− nA1 ) + 2β̃BnB1 (1− nB1 )

] [
β̃BnB1 (1− nB1 ) + 2β̃AnA1 (1− nA1 )

]

>
[
max{β̃A, β̃B}

]2
× Z2,

with

Z2 = 3nA1 (1− nA1 )(2n
B
1 − 1)2 + 3nB1 (1− nB1 )(2n

A
1 − 1)2 + (2nA1 − 1)2(2nB1 − 1)2

−2
[
nA1 (1− nA1 )− nB1 (1− nB1 )

]2
.

Inequality (A.12) is satisfied if and only if Z1 > 0.

Without loss of generality, suppose that, on the larger platform, there are weakly more

group-A users than group-B users, nA1 ≥ nB1 > 1/2. Then, we have

∂Z2

∂nB1
= 4(2nB1 − 1)[nB1 (1− nB1 )− nA1 (1− nA1 )]

+12nA1 (1− nA1 )(2n
B
1 − 1) + (2nB1 − 1)(2nA1 − 1)2 > 0.

Hence, if Z2 ≥ 0 at nB1 = 1/2, Z2 > 0 for all nB1 ∈ (1/2, nA1 ]. At n
B
1 = 1/2, we have

Z2

∣∣
nB
1 =1/2

=
3

4
(2nA1 − 1)2 − 2

[
nA1 (1− nA1 )−

1

4

]2

=
5− 16Z3

8
,

where Z3 is defined as

Z3 = nA1 [1− (2− nA1 )(n
A
1 )

2].

Function Z3 has the first-order and second-order derivatives with respect to nA1 :

∂Z3

∂nA1
= 1− (nA1 )

2(6− 4nA1 ),

∂2Z3

∂(nA1 )
2
= −12nA1 (1− nA1 ) < 0.

Noting that ∂Z3/∂n
A
1 = 0 at nA1 = 1/2, Z3 is maximized at nA1 = 1/2 with maximum value
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Z3|nA
1 =1/2 = 5/16. Hence, 5− 16Z3 is minimized at nA1 = 1/2, with the minimum

(5− 16Z3)
∣∣
nA
1 =1/2

= 0.

This establishes that Z1 > 0 for all nA1 and nB1 ∈ (1/2, nA1 ] and, thus, inequality (A.12) is

satisfied.

A.3. Supplementary material on partial market coverage

The main analysis also assumes that there is no outside option. We relax this assumption in

three different extensions.

A.3.1. Outside options subject to network effects

A straightforward way to introduce partial coverage is to assume that the outside option is also

subject to the same network effects and idiosyncratic taste shocks as the for-profit platforms.

This applies if choosing the outside option does not mean abstaining from the market but

choosing a non-commercial offer. In the case of software, this could be open-source software

that is provided free of charge. In the case of content platforms, this could a public platform

that is free of charge on both sides. Our model in Section 2 can easily accommodate such a free

platform by adding platform 0 that offers quality ak0 to side k ∈ {A,B} at zero price, pk0 = 0.

The free platform 0 provides the utility

uk0 = ak0 + αk log nk0 + βk log nl0 + εk0

for k ∈ {A,B}. If instead the platform offers its services at fixed fees, ak0 stands for the quality

net of the respective fee. With the same change of variables as for the strategic platforms

i ∈ {1, . . . ,M}, platform 0 then offers (hA0 , h
B
0 ), which is independent of the choices offered

by the for-profit platforms, and we write Hk =
∑M

i=0 h
k
i . Our equilibrium characterization

of the participation game (Remark 1) and the existence of an ordered set of price equilibria

(Proposition 2) generalize to the introduction of such an outside option.

Equilibrium characterization and comparative statics We recall that group-k user surplus

depends linearly on logHk and logH l,

CSA = (1− αA) logHA − βA logHB,

CSB = (1− αB) logHB − βB logHA.
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Inverting this relation, we can write (HA, HB) as functions of (CSA, CSB):

logHA = ΓAACSA + ΓABCSB,

logHB = ΓBBCSB + ΓBACSA.

Hence, we can write the market share of the outside platform as a function of (CSA, CSB):

nA0 (h
A
0 , CS

A, CSB) =
hA0

exp (ΓAACSA + ΓABCSB)
,

nB0 (h
B
0 , CS

A, CSB) =
hB0

exp (ΓBBCSB + ΓBACSA)
.

This implies that the market shares of the outside option nk0(h
k
0, CS

A, CSB) is strictly decreasing

in CSA and CSB if βk > 0; it is strictly decreasing in CSA and independent of CSB if βk = 0.

The equilibrium condition for the user surpluses (CSA, CSB) is now written as

nA0 (h
A
0 , CS

A, CSB) +
M∑

i=1

ñAi (CS
A, CSB) = 1,

nB0 (h
B
0 , CS

A, CSB) +
M∑

i=1

ñBi (CS
A, CSB) = 1

The characterization results presented in Section 4 continue to hold.

Given the presence of an outside platform, it is possible examine the impact of the value

of the outside platform on the surplus of each user group. By applying the implicit function

theorem, we have that



∑M

i=0

(
∂ñA

i

∂CSA

) ∑M
i=0

(
∂ñA

i

∂CSB

)

∑M
i=0

(
∂ñB

i

∂CSA

) ∑M
i=0

(
∂ñB

i

∂CSB

)





dCSA

dhA0
dCSB

dhA0


 = −

(
∂nA

0

∂hA0

0

)

Applying this comparative statics result to extremal equilibria (i.e., the equilibrium user sur-
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pluses (CSA∗, CSB∗) that maximize group-A or group-B user surplus), we obtain

dCSA∗

dhA0
=

−
∂nA

0

∂hA0

[∑M
i=0

(
∂ñB

i

∂CSB

)]

det



∑M

i=0

(
∂ñA

i

∂CSA

) ∑M
i=0

(
∂ñA

i

∂CSB

)

∑M
i=0

(
∂ñB

i

∂CSA

) ∑M
i=0

(
∂ñB

i

∂CSB

)


> 0,

dCSB∗

dhA0
=

∂nA
0

∂hA0

[∑M
i=0

(
∂ñB

i

∂CSA

)]

det



∑M

i=0

(
∂ñA

i

∂CSA

) ∑M
i=0

(
∂ñA

i

∂CSB

)

∑M
i=0

(
∂ñB

i

∂CSA

) ∑M
i=0

(
∂ñB

i

∂CSB

)



≤ 0.

This shows that if the outside option becomes more attractive for group-k users, user surplus

of this group will increase, whereas user surplus of the other group will (weakly) decrease.

A.3.2. User opt-in

Another approach to introducing partial coverage is to postulate that users have heterogeneous

opportunity costs to become active and make the following sequential decisions: first, after

learning their opportunity cost of joining but before learning their idiosyncratic taste realization

for the different platforms, (εk1, . . . , ε
k
M), they decide whether to become active (e.g. by buying

the necessary hardware that enables them to install a software package) and, second, after

learning their taste realization they decide which platform to join (e.g. by buying one of the

competing software packages). We analyze the models in which users do not observe prices at

the first stage, but correctly predict equilibrium prices, given the parameters of the model);

they observe them at the second stage. Thus, the timing is as follows: At the first stage,

users decide whether to opt in and platforms set prices for each user group; at the second

stage, participating users, after observing prices and individual tastes regarding the different

platforms, decide which platform to join.27

Given network sizes (nAi , n
B
i )

M
i=1 and prices (pAi , p

B
i )

M
i=1, the expected indirect utility of a

group-k user from opting in the market is given by CSk, where

CSk(n,p) = E

[
max

i=1,...,M

{
aki − pki + αk log nki + βk log nli + εki

}]

= log

[
M∑

j=1

ykj
(
nkj
)αk (

nlj
)βk

]

27For the analysis, it does not matter whether platforms set prices at the first stage or at an intermediate stage.
The analysis would need to be modified if platforms set prices first and users observed prices before deciding
whether to opt in. In this alternative, less tractable version, a platform’s price decision would affect overall
participation levels.
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for k, l ∈ {A,B}, l ̸= k.

The numbers of opting-in users are given by Nk :=
∑M

j=1 n
k
j . The idiosyncratic taste shocks

for staying out of the market is given by ak0 + θεk0, where εk0 is drawn from a distribution

function Ψk that has a density function ψk, leading to the mass of opting-in group-k users

Nk = Ψk
(
CSk−ak0

θ

)
. We assume that Ψk(x) ∈ [Nk, 1] for Nk ∈ (0, 1) and that it is strictly

increasing in x for values of x such that Ψk(x) ∈ (Nk, 1).28

We make the following assumption on the shapes of ΨA(·) and ΨB(·):

Assumption A.1. For k ∈ {A,B}, the following inequality holds:

θk inf
x∈SuppΨk

{
Ψk(x)

ψk(x)

}
> αk + βk.

Assumption A.2. For k, l ∈ {A,B} and l ̸= k,

αk +
βl

Nk
< 1.

Assumption A.1 ensures that the user participation equilibrium in the first stage is unique,

and Assumption A.2 is made to guarantee the existence of price equilibrium in any subgame

after users make their opt-in decisions.

Participation equilibrium First, consider the network size of platform i, (nAi , n
B
i ), which

is given by the user mass (NA, NB) and the conditional choice probability (sAi , s
B
i ), where

sAi := nAi /N
A and sBi := nBi /N

B, respectively. Then, in the fulfilled expectation equilibrium,

we have

ski =
exp(aki − pki )

(
nki
)αk (

nli
)βk

∑M
j=1 exp(a

k
j − pkj )

(
nkj
)αk (

nlj
)βk

=
exp(aki − pki )

(
ski
)αk (

sli
)βk

∑M
j=1 exp(a

k
j − pkj )

(
skj
)αk (

slj
)βk

,

leading to the formula

ski =
hki
Hk

. (A.13)

28The lower bound Nk is imposed in order to simplify the proof of equilibrium existence.
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Hence, we have

CSA = αA logNA + βA logNB + V A,

CSB = αB logNB + βB logNA + V B,

where

V A := (1− αA) logHA − βA logHB,

V B := (1− αB) logHB − βB logHA.

Note that in the baseline model of the main text, we always have NA = NB = 1, which gives

the identity CSk = V k.

The value of (NA, NB) in the fulfilled-expectation equilibrium are characterized by the system

of equations

NA −ΨA

(
αA logNA + βA logNB + V A − aA0

θA

)
= 0, (A.14)

NB −ΨB

(
αB logNB + βB logNA + V B − aB0

θB

)
= 0. (A.15)

We obtain the following characterization of participation equilibrium.

Proposition A.4. Under Assumption A.1, there exists a unique interior participation equilib-

rium with the following properties:

1. Network size (nAi , n
B
i ) is given by nki = Nkski , where N

A(V A, V B) and NB(V A, V B) are

given by the solution to the system of equations (A.14) and (A.15);

2. Nk is increasing in V k and V l;

3. Nk/N l is increasing in V k and decreasing in V l.

Proof. Applying the implicit function theorem to the system of equations (A.14)-(A.15), we

obtain

dNA

dV A
=

ψA

θA

(
1− αB

θB
ψB

ΨB

)

(
1− αA

θA
ψA

ΨA

)(
1− αB

θB
ψB

ΨB

)
− βAβB

θAθB
ψAψB

ΨAΨB

,

dNB

dV A
=

βB ψB

θB
ψA

ΨAθA(
1− αA

θA
ψA

ΨA

)(
1− αB

θB
ψB

ΨB

)
− βAβB

θAθB
ψAψB

ΨAΨB
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and

d

dV A

(
NA

NB

)
=

NA

NB

(
dNA

dV A

1

NA
−
dNB

dV A

1

NB

)

=

NA

NB
1
θA

ψA

ΨA

(
1− ψB

ΨB

αB+βB

θB

)

(
1− αA

θA
ψA

ΨA

)(
1− αB

θB
ψB

ΨB

)
− βAβB

θAθB
ψAψB

ΨAΨB

Under Assumption A.1, all the terms are nonnegative.

For illustration, we consider a particular functional form of the distribution of εk0.

Example A.1. If outside options are given by ak0 + θkεk0, k ∈ {A,B}, where

εk0 =




−∞ with probability Nk,

−ϵk0, (ϵk0 ∼ Exp(1)) with probability 1−Nk,

we have

Ψk

(
CSk − ak0

θk

)
= Pr

(
CSk ≥ ak0 + θkεk0

)

= Nk + (1−Nk)min

{
1, exp

(
CSk − ak0

θk

)}
.

and

Ψk(x)

ψk(x)
=
Nk + (1−Nk) exp(x)

(1−Nk) exp (x)

> 1.

Price equilibrium In the pricing game played by platforms, they take user masses (NA, NB)

as given, and maximize the profit

Πi = NAsAi (p
A
i − cAi ) +NBsBi (p

B
i − cBi )

= NA h
A
i

HA
[aAi − cAi − (1− αA) log hAi + βA log hBi ]

+NB h
B
i

HB
[aBi − cBi − (1− αB) log hBi + βB log hAi ].
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The partial derivative is given by

∂Πi

∂hAi
= NA

[(
1

HA
−

hAi
(HA)2

)
(pAi − cAi )−

1− αA

HA

]
+NB h

B
i

HB
βB

1

hAi

=
NA

HA

[(
1−

hAi
HA

)(
pAi − cAi

)
− 1 + αA +

NB

NA
βB

hBi
HB

HA

hAi

]
.

Define

ιA(sAi , s
B
i , N

A/NB) :=
(
1− sAi

) (
aAi − cAi − (1− αA) log sAi + βA log sBi − V A

)
− 1 + αA +

NB

NA
βB

sBi
sAi
,

ιB(sAi , s
B
i , N

A/NB) :=
(
1− sBi

) (
aBi − cBi − (1− αB) log sBi + βB log sAi − V B

)
− 1 + αB +

NA

NB
βA

sAi
sBi
.

Lemma 3 and Assumption A.2 imply that ∂ιk/∂ski < 0, ∂ιk/∂sli > 0, and (∂ιA/∂sAi )(∂ι
B/∂sBi )−

(∂ιA/∂sBi )(∂ι
B/∂sAi ) > 0. Furthermore, we have ∂ιk/∂(N l/Nk) > 0. Hence, this gives the im-

plicit share functions sAi (V
A, V B, NA/NB) and sBi (V

A, V B, NA/NB), which are the same as

network size functions (ñAi , ñ
B
i ) in the proof of Proposition 2, where βA and βB are replaced by

NAβA/NB and NBβB/NA. We have ∂ski /∂(N
k/N l) < 0 and ∂ski /∂(N

k/Nk) > 0.

Accordingly, the equilibrium condition for V A, V B, given (NA, NB), is given by

M∑

j=1

sAj (V
A, V B, NA/NB) = 1,

M∑

j=1

sBj (V
A, V B, NA/NB) = 1.

Proposition 2 implies that there exists a solution to the system of equations, and they are

ordered in the sense that for any two solutions (V A◦, V B◦) and (V A◦◦, V B◦◦), we have

(V A◦ − V A◦◦)(V B◦ − V B◦◦) < 0.

Let VNA/NB be the set of (V A, V B) that satisfies the above equilibrium condition.

We turn to the condition under which (V A, V B) constitutes a fulfilled-expectation equilib-

rium. The pair (V A, V B) constitutes a fulfilled-expectation equilibrium if (V A, V B) ∈ V(NA/NB),

and
NA

NB
=
NA(V A, V B)

NB(V A, V B)
. (A.16)

Let Vλ be the set of equilibrium values of (V A, V B) for a given value of NA/NB = λ, and
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define

V
A
(NA/NB) := max{V A : (V A, V B) ∈ VNA/NB}

V A(NA/NB) := min{V A : (V A, V B) ∈ VNA/NB}.

Analogously, define V
B
(NA/NB) and V B(NA/NB) accordingly.

By invoking the implicit function theorem, we have

Sign

(
∂V

A

∂(NA/NB)

)
= Sign

{
−

(∑ ∂sA

∂(NA/NB)

)(∑ ∂sB

∂CSB

)
+

(∑ ∂sB

∂(NA/NB)

)(∑ ∂sA

∂CSB

)}

= −,

Sign

(
∂V B

∂(NA/NB)

)
= Sign

{
−

(∑ ∂sB

∂(NA/NB)

)(∑ ∂sA

∂CSA

)
+

(∑ ∂sA

∂(NA/NB)

)(∑ ∂sB

∂CSA

)}

= +

Hence, V
A
(NA/NB) and V A(NA/NB) are decreasing functions, while V

B
(NA/NB) and V B(NA/NB)

are increasing functions.

Define

V :=

{
(V A, V B) : ∃λ such that λ =

NA(V A, V B)

NB(V A, V B)
and (V A, V B) ∈ Vλ

}
,

VA :=
{
V A : ∃V B such that (V A, V B) ∈ V

}

VB :=
{
V B : ∃V A such that (V A, V B) ∈ V

}

We obtain the following characterization of the set of equilibrium values of (V A, V B).

Lemma A.1. The V A-maximizing equilibrium is the V B-minimizing equilibrium. Formally, if

(V A∗, V B∗) ∈ V satisfies

V A∗ ≥ V A

for all V A ∈ VA, then

V B∗ ≤ V B

for all V B ∈ VB. Similarly, the V B-maximizing equilibrium is the V A-minimizing equilibrium.

Proof. Define (EA, EB) := (V A,−V B), and define

λ(EA, EB) :=
NA(EA,−EB)

NB(EA,−EB)
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Then, λ(·, ·) is an increasing function. Next, define Φ as

Φ(EA, EB) := {(eA, eB) : (eA,−eB) ∈ V(λ(EA, EB))}.

Define Φ and Φ by

Φ(EA, EB) := supΦ(EA, EB) = (V
A
(λ(EA, EB)),−V B(λ(EA, EB))), and

Φ(EA, EB) := inf Φ(EA, EB) = (V A(λ(EA, EB)),−V
B
(λ(EA, EB))).

Because λ is increasing in (EA, EB) and (V
A
(λ), V A(λ)) and (−V

B
(λ),−V B(λ)) are decreasing

in λ, both Φ and Φ are decreasing in (EA, EB).

Let E = (E
A
, E

B
) be the solution to

(EA, EB) = Φ(EA, EB).

Because Φ(E) is a decreasing function, we have

E = sup
{
E : Φ(E) ≥ E

}
.

Hence, for any E = (EA, EB) such that E ∈ Φ(E),

E ≤ Φ(E) ≤ E,

which implies that for any equilibrium (V A, V B) ∈ V , we have

V A ≤ E
A
=: V

A∗
,

V B ≥ −E
B
=: V B∗.

Hence, the V A-maximizing equilibrium is the V B-minimizing equilibrium. Similarly, we can

show that the V A-minimizing equilibrium is the V B-maximizing equilibrium.

However, for the ranking of equilibria, the variable of interest is user surplus CSk of each

group k ∈ {A,B} and not V k.

Proposition A.5. Let α := max
{
αA, αB

}
, β := max

{
βA, βB

}
, and θ := min

{
θA, θB

}
. There

exists η > 0 such that if

max

{
sup
x

ψA(x)

ΨA(x)
, sup

x

ψB(x)

ΨB(x)

}
max{α, β}

θ
≤ η, (PC)
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then the CSA-maximal equilibrium is the CSB-minimal equilibrium and the CSA-minimal equi-

librium is the CSB-maximal equilibrium.

Proof. Suppose that condition (PC) holds. The result follows from Lemma A.1 if we can

show that the V k-maximizing (resp. V k-minimizing) equilibrium is the CSk-maximal (resp.

CSk-minimal) equilibrium. This is done in the following. Recalling that

dNA

dV A
=

ψA

θA

(
1− αB

θB
ψB

ΨB

)

(
1− αA

θA
ψA

ΨA

)(
1− αB

θB
ψB

ΨB

)
− βAβB

θAθB
ψAψB

ΨAΨB

,

dNB

dV A
=

βB ψB

θB
ψA

ΨAθA(
1− αA

θA
ψA

ΨA

)(
1− αB

θB
ψB

ΨB

)
− βAβB

θAθB
ψAψB

ΨAΨB

,

we have

dCSA

dV A
= 1 + αA

dNA

dV A

1

NA︸ ︷︷ ︸
≥0

+ βA
dNB

dV A

1

NB︸ ︷︷ ︸
≥0

≥ 1,

dCSA

dV B
= αA

dNA

dV B

1

NA
+ βA

dNB

dV B

1

NB

=
βA ψB

ΨBθB

1− αA

θA
ψA

ΨA − αB

θB
ψB

ΨB − βAβB

θAθB
ψAψB

ΨAΨB + αA

θA
ψA

ΨA
αB

θB
ψB

ΨB

≤
βA ψB

ΨBθB

1− αA

θA
ψA

ΨA − αB

θB
ψB

ΨB − βAβB

θAθB
ψAψB

ΨAΨB

≤
η

1− 2η − η2
.

Therefore, for any (V A1, V B1) and (V A2, V B2) such that V A1 > V A2 and V B1 < V B2, the

associated user surpluses (CSA1, CSB1) and (CSA2, CSB2) satisfy

CSA1 − CSA2 ≥ (V A1 − V A2)− (V B2 − V B1)
η

1− 2η − η2
> 0,

CSB2 − CSB1 ≥ (V B2 − V B1)− (V A1 − V A2)
η

1− 2η − η2
> 0,

when η is sufficiently small.

In the following remark we show that the condition stated in the previous proposition can

indeed be satisfied.

Remark A.1. In the setting of Example A.1, if CSk ≥ ak0, then Ψk
(
CSk−ak0

θk

)
= 1 and

ψk
(
CSk−ak0

θk

)
= 0. If CSk < ak0, then Ψk

(
CSk−ak0

θk

)
= Nk + (1 − Nk) exp[(CSk − ak0)/θ

k]
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and

ψk(x)

Ψk(x)
=

1

1 + Nk

1−Nk exp (−x)
< 1.

Hence, the condition stated in Proposition A.5 holds if max
{
α, β

}
/θ < η, which is satisfied

for θ sufficiently large.

Decentralization result and equilibrium characterization We state a generalized version of

Remark 4.

Remark A.2. For any pair of (V A, V B) and network sizes (nAi , n
B
i )

M
i=1 such that

∑M
i=1 n

A
i ∈

[NA, 1] and
∑M

i=1 n
B
i ∈ [NB, 1], there exist a vector of types (vAi , v

B
i )

M
i=1 and a pair of (aA0 , a

B
0 )

such that (nAi , n
B
i )

M
i is supported as a vector of equilibrium network sizes.

Because the shape of the implicit best reply functions h̃ki (H
A, HB) remains unchanged, all

the results obtained in Section 4 remain unchanged.

Comparative statics: case of network goods Consider the welfare effect of an increase in

the value of outside options aA0 on user surplus. When βA = βB = 0, we can show that the

equilibrium aggregate Hk∗∗ is independent of Nk. Hence, the equilibrium condition for Nk is

Nk = Ψk

(
αk logNk + (1− αk) logHk∗ − ak0

θk

)
,

which implicitly defines a unique solution Nk∗∗ if

1−
αA

θA
ψA

ΨA
> 0. (A.17)

Overall group-k user surplus is given by

TCSk(CSk, ak0) = ak0 + θE[εk0] +

∫ CSk
−a0
θ

−∞

θΨk(x)dx

Hence, as comparative statics, we have

dTCSk

dak0
= 1−Ψk

(
CSk − ak0

θk

)
+Ψk

(
CSk − ak0

θk

)
dCSk

dak0
,
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where

dCSk

dak0
= −

αk

Nk

ψk

θk

1− ψk

θk
αk

Nk

.

Remark A.3. In the setting of Example A.1, there exist parameter constellations such that an

increase in ak0 reduces the overall user surplus.

Proof. When Ψk(x) = exp(x), we have that ψk/Ψk = 1 and, thus, using inequality (A.17),

equilibrium uniqueness is guaranteed if 1− αk/θk > 0, which is equivalent to θk > αk.

As for the comparative statics, we have

dCSk

dak0
=

αk

θk − αk
. (A.18)

In our example,

dTCSk

dak0
= 1− exp

(
CSk − ak0

θk

)
θk

θk − αk
.

Hence, dTCSk/dak0 < 0 holds for given CSk when αk is sufficiently close to θk.

A.3.3. Outside options with fixed values

We return to the setting in which users first observe prices and simultaneously decide whether

and, if so, which platform to join. However, the outside option does not feature network effects.

More specifically, suppose that each group-k consumer has an outside option with value ak0+ε
k
0,

where εk0 is drawn from an i.i.d. type-I extreme-value distribution. In the following, we use

yk0 := exp(ak0) as a primitive.

Participation equilibrium Let ϕA(HA, HB) and ϕB(HA, HB) be the (unique) solution to the

system of equations

log ϕA − αA log(yA0 ϕ
A +HA)− βA log(yB0 ϕ

B +HB) = 0,

log ϕB − αB log(yB0 ϕ
B +HB)− βB log(yA0 ϕ

A +HA) = 0.

Then, the demand for platforms in a partially covered market are characterized as follows.

Proposition A.6. In the unique interior participation equilibrium, the demand for platform i
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is given by the functions

nAi (h
A
i , H

A, HB) =
hAi

HA
+(H

A, HB)
, (A.19)

nBi (h
B
i , H

A, HB) =
hBi

HB
+ (H

A, HB)
. (A.20)

where

HA
+(H

A, HB) := yA0 ϕ
A(HA, HB) +HA,

HB
+ (H

A, HB) := yB0 ϕ
B(HA, HB) +HB,

are the augmented aggregates.

Proof. Group-k demand of platform i is implicitly defined by

nki =
hki (p

k
i , p

l
i)

Hk
0i(y

k
0 , n

k
i , n

l
i, p

k
i , p

l
i) +Hk(p)

, (A.21)

where

Hk
0i(y

k
0 , n

k
i , n

l
i, p

k
i , p

l
i) := yk0

exp[(Γkk − 1)(aki − pki ) + Γkl(ali − pli)]

(nki )
αk(nli)

βk

= yk0
hki

exp(aki − pki )(n
k
i )
αk(nli)

βk
. (A.22)

Equations (A.21) and (A.22), along with the fact that nki /n
k
j = hki /h

k
j implies that Hk

0i = Hk
0j

for all i, j ∈ {1, . . . ,M}. This implies that there exist ϕk, k ∈ {A,B}, such that Hk
0i = yk0ϕ

k

and

exp[(Γkk − 1)(aki − pki ) + Γkl(ali − pli)]

(nki )
αk(nli)

βk
= ϕk,

for all k ∈ {A,B} and i ∈ {1 . . . ,M}. These equations can be rewritten as

αA log nAi + βA log nBi + log ϕA − (ΓAA − 1)(aAi − pAi )− ΓAB(aBi − pBi ) = 0,

αB log nBi + βB log nAi + log ϕB − (ΓBB − 1)(aBi − pBi )− ΓBA(aAi − pAi ) = 0.
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Solving for this system of equations, we obtain

log nAi =
βA log ϕB − αB log ϕA

αAαB − βAβB

+
[αB(ΓAA − 1)− βAΓBA](aAi − pAi )

αAαB − βAβB
+

[αBΓAB − βA(ΓBB − 1)] exp(aBi − pBi )

αAαB − βAβB

= log hAi +
βA log ϕB − αB log ϕA

αAαB − βAβB
, (A.23)

where we used the relations

αB(ΓAA − 1)− βAΓBA =
αB[(1− αB)αA + βAβB]− βAβB

(1− αA)(1− αB)− βAβB
= (αAαB − βAβB)ΓAA,

αBΓAB − (βAΓBB − 1) =
αBβA − βA[(1− αA)αB + βAβB]

(1− αA)(1− αB)− βAβB
= (αAαB − βAβB)ΓAB,

to obtain equation (A.23). Similarly, we have

log nBi = log hBi +
βB log ϕA − αA log ϕB

αAαB − βAβB
. (A.24)

From the equation Hk
0i = yk0ϕ

k, equation (A.21) can be rewritten as

nki =
hki

yk0ϕ
k +Hk

.

Hence, we can combine the equations

log nAi = log hAi − log
(
yA0 ϕ

A +HA
)
,

log nBi = log hBi − log
(
yB0 ϕ

B +HB
)
,

with equations (A.23) and (A.24) to write the equations that determine the values of (ϕA, ϕB)

as a function of (HA, HB):

fA(ϕA, ϕB, HA, HB) = 0,

fB(ϕA, ϕB, HA, HB) = 0,

where

fA(ϕA, ϕB, HA, HB) := log ϕA − αA log(yA0 ϕ
A +HA)− βA log(yB0 ϕ

B +HB), (A.25)

fB(ϕA, ϕB, HA, HB) := log ϕB − αB log(yB0 ϕ
B +HB)− βB log(yA0 ϕ

A +HA). (A.26)
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Next we show that the system of equations (A.25) and (A.26) has a unique solution. To do

so, we first show that, for any given ϕB, there exists a unique value ϕ̃A(ϕB) that solves equation

(A.25). Then, we show that there exists a unique ϕB that solves fB(ϕ̃A(ϕB), ϕB) = 0. To show

the first statement, note that

lim
ϕA→0

fA(ϕA, ϕB, HA, HB) = −∞,

lim
ϕA→∞

fA(ϕA, ϕB, HA, HB) = lim
ϕA→∞

log

[
ϕA

(yA0 ϕ
A +HA)αA

]
− βA log(yB0 ϕ

B +HB) = ∞,

∂fA(ϕA, ϕB, HA, HB)

∂ϕA
=

1

ϕA
(1− αA)yA0 ϕ

A +HA

yA0 ϕ
A +HA

> 0,

which establishes the existence and uniqueness of ϕ̃A(ϕB) ∈ (0,∞). Note that

∂ϕ̃A

∂ϕB
= −

∂fA

∂ϕB

∂fA

∂ϕA

=
ϕA

ϕB

βA
yB0 ϕ

B

yB0 ϕ
B+HB

1− αA
yA0 ϕ

A

yA0 ϕ
A+HA

∈

(
0,
ϕA

ϕB

)

and limϕB→∞

[
ϕ̃A(ϕB)

]
= ∞. Furthermore, by using l’Hôpital’s rule, we obtain that

lim
ϕB→∞

(
ϕ̃A(ϕB)

ϕB

)
= lim

ϕB→∞

(
∂ϕ̃A(ϕB)

∂ϕB

)
= lim

ϕB→∞

(
∂ϕ̃A(ϕB)

∂ϕB

)
βA

yB0 ϕ
B

yB0 ϕ
B+HB

1− αA
yA0 ϕ

A

yA0 ϕ
A+HA

.

This implies that limϕB→∞[ϕ̃A(ϕB)/ϕB] = 0.

Next, we show the existence and the uniqueness of the value ϕB that solves fB(ϕ̃A(ϕB), ϕB) =

0. First, we have

dfB(ϕ̃A(ϕB), ϕB)

dϕB
=

1

ϕB
− αB

yB0
yB0 ϕ

B +HB
−
∂ϕ̃A

∂ϕB
βB

yA0
yA0 ϕ

A +HA
(A.27)

=
1

ϕB


1− αB

yB0 ϕ
B

yB0 ϕ
B +HB

− βBβA
yA0 ϕ

A

yA0 ϕ
A+HA

yB0 ϕ
B

yB0 ϕ
B+HB

1− αA
yA0 ϕ

A

yA0 ϕ
A+HA


 (A.28)

> 0, (A.29)

from the assumption that 1− αk > βl for k, l = {A,B}, l ̸= k. We also have
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lim
ϕB→0

fA(ϕ̃A(ϕB), ϕB) = −∞,

lim
ϕB→∞

fA(ϕ̃A(ϕB), ϕB) = lim
ϕB→∞

log


 ϕB

(yB0 ϕ
B +HB)

αB
(
yA0 ϕ̃

A(ϕB) +HB
)βB




= lim
ϕB→∞

log




(
ϕB
)1−αB−βB

(
ϕB

ϕA

)βB

(yB0 )
αB

(yA0 )
βB

(
yB0 ϕ

B
0

yB0 ϕ
B +HB

)αB
(

yA0 ϕ̃
A(ϕB)

yA0 ϕ̃
A(ϕB) +HB

)βB




= ∞.

Hence, we have the unique solution to the equation fB(ϕ̃A(ϕB), ϕB) = 0. Let ϕA(HA, HB) and

ϕB(HB, HA) be the solution to this system of equations.

Group-k demand of platform i is now written as

nki (h
A
i , H

A, HB) =
hki

Hk
+(H

A, HB)
,

which completes the proof.

Note that this extension nests as special cases (i) the standard logit demand oligopoly model

with an outside option (i.e., no network effects) and (ii) our main model (i.e., no outside

option).29

User surplus in the interior participation equilibrium is given by

CSA = log

(
yA0 +

∑

j

exp(aAj − pAj )(n
A
j )

αk

(nBj )
βk

)

= log(yA0 ϕ
A +HA)− log ϕA

= (1− αA) log(yA0 ϕ
A +HA)− βA log(yB0 ϕ

B +HB).

Therefore, group-k user surplus depend on (HA, HB) and (yA0 , y
B
0 ).

29Absent network effects (i.e., αA = αB = βA = βB = 0), we must have ϕA = ϕB = 1. Then, the demand is

given by nA
i =

exp(aA
i −pA

i )

yA
i +

∑
M
j=1

exp(aA
j −pA

j )
. Absent the outside option (i.e., yA0 = yB0 = 0), the demand for platform

i is given by equation (3).
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Group-A demand for the outside option can be written as a function of CSA:

nA0 =
yA0 ϕ

A(HA, HB)

yA0 ϕ
A(HA, HB) +HA

=
yA0

exp(CSA)
,

where we used the relation that CSA = log(yA0 ϕ
A +HA)− log ϕA. Similarly, we have

nB0 (CS
B) :=

yB0
exp(CSB)

.

To see how augmented aggregates (HA
+ , H

B
+ ) depend on the original aggregates (HA, HB),

recall that fA and fB are defined in equations (A.25) and (A.26). Since

∂fA

∂ϕA
= 1

ϕA

(
1− αAnA0

)
, ∂fA

∂ϕB
= −βA 1

ϕB
nB0 ,

∂fB

∂ϕA
= −βB 1

ϕA
nA0 ,

∂fB

∂ϕB
= 1

ϕB

(
1− αBnB0

)
,

∂fA

∂HA = −αA
nA
0

yA0 ϕ
A ,

∂fB

∂HA = −βB
nA
0

yA0 ϕ
A ,

using the implicit function theorem, we obtain the derivatives

∂ϕA

∂HA
=

− ∂fA

∂HA

∂fB

∂ϕB
+ ∂fB

∂HA

∂fA

∂ϕB

∂fA

∂ϕA
∂fB

∂ϕB
− ∂fA

∂ϕB
∂fB

∂ϕA

=
1

yA0

(
1− αBnB0

(1− αAnA0 )(1− αBnB0 )− βAβBnA0 n
B
0

− 1

)
,

∂ϕB

∂HA
=

−∂fA

∂ϕA
∂fB

∂HA + ∂fB

∂ϕA
∂fA

∂HA

∂fA

∂ϕA
∂fB

∂ϕB
− ∂fA

∂ϕB
∂fB

∂ϕA

=
ϕB

yA0 ϕ
A

βBnA0
(1− αAnA0 )(1− αBnB0 )− βAβBnA0 n

B
0

.

Hence, we obtain the derivative of the augmented aggregates (HA
+ , H

B
+ ) with respect to the

original aggregates (HA, HB):

∂HA
+(H

A, HB)

∂HA
= ΓAA0 (nA0 , n

B
0 ),

∂HA
+(H

A, HB)

∂HB
=
yA0 ϕ

A

yB0 ϕ
B
ΓAB0 (nA0 , n

B
0 ),
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where

Γkk0 (nA0 , n
B
0 ) :=

1− αlnl0
(1− αAnA0 )(1− αBnB0 )− βAβBnA0 n

B
0

,

Γkl0 (n
A
0 , n

B
0 ) =

βknl0
(1− αAnA0 )(1− αBnB0 )− βAβBnA0 n

B
0

for k ∈ {A,B}.

Price equilibrium The profit of platform i is given by

Πi =
hAi

HA
+(H

A, HB)
[pAi (h

A
i , h

B
i )− cAi ] +

hBi
HB

+ (H
A, HB)

[pBi (h
A
i , h

B
i )− cBi ]

The partial derivative with respect to hAi is given by

∂Πi

∂hAi
=

[
1

HA
+

−
∂HA

+

∂HA

hAi

(HA
+)

2

]
[pAi (h

A
i , h

B
i )− cAi ]−

hAi
HA

+

1− αA

hAi

+
hBi
HB

+

βB

hAi
−
∂HB

+

∂HA

hBi
(HB

+ )
2
[pBi (h

A
i , h

B
i )− cBi ]

=
1

HA
+

{
(
1− ΓAA0 (nA0 , n

B
0 )n

A
i

)
[pAi (h

A
i , h

B
i )− cAi ]− 1 + αA

+
hBi /H

B
+

hAi /H
A
+

βB − ΓBA0 (nA0 , n
B
0 )
yB0 ϕ

B/HB
+

yA0 ϕ
A/HA

+

nBi [p
B
i (h

A
i , h

B
i )− cBi ]

}

The best response is characterized by the first-order conditions ∂Πi/∂h
A
i = 0 and ∂Πi/∂h

B
i = 0.

In the baseline model without outside options, implicit best-response functions exist and

are uniquely determined by the first-order conditions. In this extension, we do not have the

analytical proof of the existence of the implicit best reply. Instead, we have the following

characterization of the best-response behaviors of the platforms.

Remark A.4. The market shares of the profit-maximizing platform i, (ñAi , ñ
B
i ) (presuming that

best responses exist) are given as functions of user surpluses (CSA, CSB), implicitly defined by

the system of equations

aki − cki − CSk − (1− αk) log nki + βk log nli = Υkk
i (nAi , n

B
i , n

A
0 (CS

A), nB0 (CS
B))

(
1− αk − βl

nli
nki

)

+Υlk
i (n

A
i , n

B
i , n

A
0 (CS

A), nB0 (CS
B))

(
1− αl − βk

nki
nli

)
,
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where

Υkk
i (nAi , n

B
i , n

A
0 , n

B
0 ) :=

1− Γll0 (n
A
0 , n

B
0 )n

l
i

[1− ΓAA0 (nA0 , n
B
0 )n

A
i ]1− ΓBB0 (nA0 , n

B
0 )n

B
i ]− ΓBA0 (nA0 , n

B
0 )Γ

AB
0 (nA0 , n

B
0 )n

A
i n

B
i

,

Υkl
i (n

A
i , n

B
i , n

A
0 , n

B
0 ) :=

Γlk0 (n
A
0 , n

B
0 )n

l
i

[1− ΓAA0 (nA0 , n
B
0 )n

A
i ]1− ΓBB0 (nA0 , n

B
0 )n

B
i ]− ΓBA0 (nA0 , n

B
0 )Γ

AB
0 (nA0 , n

B
0 )n

A
i n

B
i

,

for k, l ∈ {A,B}, l ̸= k.

Proof. The first-order condition ∂Πi/∂h
A
i = 0 implies that

pAi − cAi =
1

1− ΓAA0 nAi

[
1− αA − βB

nBi
nAi

+ ΓBA0

nB0
nA0

nBi (p
B
i − cBi )

]

=
1

1− ΓAA0 nAi

(
1− αA − βB

nBi
nAi

)

+
ΓBA0

1− ΓAA0 nAi

nB0
nA0

nBi
1

1− ΓBB0 nBi

[
1− αB − βA

nAi
nBi

+ ΓAB0
nA0
nB0

nAi (p
A
i − cAi )

]
,

leading to the equation

(1− ΓAA0 nAi )(1− ΓBB0 nBi )− ΓBA0 ΓAB0 nAi n
B
i

(1− ΓAA0 nAi )(1− ΓBB0 nBi )
[pAi (h

A
i , h

B
i )− cAi ] (A.30)

=
1

1− ΓAA0 nAi

(
1− αA − βB

nBi
nAi

)
+

ΓBA0 nBi
(1− ΓAA0 nAi )(1− ΓBB0 nBi )

nB0
nA0

(
1− αB − βA

nAi
nBi

)
.

Similarly, the first-order condition ∂Πi/∂h
B
i = 0 leads to the equation

(1− ΓAA0 nAi )(1− ΓBB0 nBi )− ΓBA0 ΓAB0 nAi n
B
i

(1− ΓAA0 nAi )(1− ΓBB0 nBi )
[pBi (h

A
i , h

B
i )− cBi ] (A.31)

=
1

1− ΓBB0 nBi

(
1− αB − βA

nAi
nBi

)
+

ΓAB0 nAi
(1− ΓBB0 nBi )(1− ΓAA0 nAi )

nA0
nB0

(
1− αA − βB

nBi
nAi

)

Equations (A.30) and (A.31) define the implicit best reply function, if it exists.

Because of the relation

(1− αk) log hki − βk log hli = (1− αk) logHk
+ − βk logH l

+ + (1− αk) log nki − βk log nli

= CSk + (1− αk) log nki − βk log nli

for k ∈ {A,B}, the group-k price-cost margin pki (h
A
i , h

B
i )− cAi can be expressed as

pki (h
A
i , h

B
i )− cAi = aki − cki − CSk − (1− αk) log nki + βknli.
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Using this relation and noting that nk0 = nk0(CS
k) for k ∈ {A,B}, we can rearrange the first-

order conditions (A.30) and (A.31) to obtain the expression in Remark A.4.

The equilibrium conditions are

M∑

i=1

ñAi (CS
A, CSB) +

yA0
exp(CSA)

= 1,

M∑

i=1

ñBi (CS
A, CSB) +

yB0
exp(CSB)

= 1

When yA0 = yB0 = 0, the setting corresponds to the main model (i.e., the model without

outside options). Hence, a price equilibrium exists (Proposition 2), and the characterization

results of Section 4 hold. Because of continuity, these results carry over to this extension with

sufficiently unattractive outside options (i.e., (yA0 , y
B
0 ) sufficiently small).
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