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Abstract

Miscalibrated beliefs generally compromise the quality of workers’ decisions. Why might a firm

prefer to hire an individual known to be overconfident? In this paper, I explore the role of such

biases when members of the organization disagree about the right course of action. I present a

model in which an agent uses his private information to make a choice on behalf of a principal.

In this setting, I consider what I call the belief design problem: how would the principal like the

agent to interpret his observations? I provide conditions under which the solution indicates a

preference for a well-calibrated, an underconfident, or an overconfident agent. A well-calibrated

agent is preferred if and only if his information does not affect the expected difference in the

players’ preferred actions. Overconfidence is optimal when the principal seeks to adjust actions

beyond what a well-calibrated agent would do.
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1 Introduction

There is extensive evidence about the pervasiveness of overconfidence in organizations (Mal-

mendier and Taylor, 2015). CEOs, executives, and managers (Malmendier and Tate, 2005;

Ben-David et al., 2013; Adam et al., 2015; Barrero, 2022); traders and investors (Daniel and Hir-

shleifer, 2015); lawyers (Goodman-Delahunty et al., 2010); medical doctors (Berner and Graber,

2008; Croskerry and Norman, 2008); and entrepreneurs (Koellinger et al., 2007) have all been

found to exhibit some degree of overconfidence. This behavioral bias is often perceived to com-

promise the quality of employees’ decisions, and being detrimental to the firms’ performance.1

Given the costs that organizations suffer due to overconfidence, why might employees known to

be overconfident be systematically hired and retained, even when their unbiased counterparts

are available? Additionally, how would organizations use their knowledge about applicants’

confidence to select their employees optimally?

In this paper, I explore the role of biased beliefs as an instrument to alleviate agency fric-

tions (those arising from different preferences among the members of an organization). I focus

on a particular manifestation of overconfidence: overprecision – an exaggerated faith in one’s

information. Informally speaking, individuals suffer from overprecision whenever they think that

they are more informed than they actually are.2 Intuitively, an overconfident employee is de-

sired by the firm when their well-calibrated counterpart is too unresponsive to new information.

Overprecision leads to over-updating (more extreme beliefs) and to overreaction (more extreme

actions), which helps the firm, for example, when well-calibrated employees would otherwise

stay too close to some reference action.

In order to examine the implications of this mechanism, I develop a model in which an

employee makes a decision that affects both himself and the firm. While there is disagreement

about the right course of action, the employee has private access to relevant but unverifiable

information. In this setting, I introduce a novel feature: the firm can choose how the employee

interprets his observations. I refer to this decision by the firm as the belief design problem.

Formally, belief design corresponds to an optimization problem in which the firm chooses the

employee’s posterior beliefs after each signal realization, subject to the constraint that they both

agree ex-ante on the distribution of the state and signals. In practice, it can be understood as a

process in which the firm selects employees with the desired beliefs among a pool of candidates

with sufficiently diverse views of the world. I focus on how the employee interprets information

1In the words of Nobel laureate Daniel Kahneman, “an unbiased appreciation of uncertainty is a cornerstone

of rationality – but it is not what people and organizations want” (see Kahneman, 2011, chap. 24). Furthermore,

“Kahneman recently told an interviewer that if he had a magic wand that could eliminate one human bias, he

would do away with overconfidence” (Malmendier and Taylor, 2015, pg. 1).
2Other forms of overconfidence include overestimation (thinking that one’s performance and abilities are above

their actual level) and overplacement (erroneously thinking that one has outperformed others or that one’s abilities

are above those of other individuals). See Moore and Healy (2008) for a discussion on the connections and

differences between these manifestations of overconfidence.
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exogenously produced. This is in contrast with the information design approach (see Kamenica,

2019) which focuses on the actual provision of information to the employee.

The contributions of this paper are threefold. First, the main contribution is to provide spe-

cific conditions under which the firm prefers a well-calibrated, underconfident, or overconfident

employee, which I discuss below. The second contribution corresponds to the methodology used

to establish these conditions. Belief design is a flexible and tractable approach to study belief-

based biases. A crucial step is to interpret the beliefs optimally chosen by the firm. I propose

a definition of overprecision based on the concordance stochastic order that applies to a general

class of information structures. This allows me to expand on the standard approach where we

would assume a particular joint distribution and restrict biased-beliefs to belong to the same

parametric family. Two commonly assumed structures are the bi-variate normal distribution

and the truth-or-noise (in which the signal reveals the states with a certain probability and it

is noise otherwise). This last case is discussed in Appendix B. Third, I study the interaction

between belief-based selection of employees and other tools that the firm could use to reduce the

costs of agency frictions. In particular, I allow the firm to commit to action-contingent transfers

as well as to centralize decision making.

A central object to describe the optimal employee’s characteristics is the difference in the

actions preferred by each player in each state, which I refer to as the conflict of interests. Since

the employee is ex-ante well-calibrated, his actions will be biased on average. Under the standard

assumption of quadratic-loss preferences, the firm dislikes changes in the employee’s actions that

are not justified by his private information. I show that the optimal employee agrees with the

firm on the responses to his information, i.e., the bias on his actions does not change with signal

realizations. As a result, the firm prefers a well-calibrated employee if and only if the expected

conflict of interest is invariant in the signal realization (first part of Proposition 1, generalized

in Proposition 2).

In contrast, if the signal affects the expected conflict of interest, evenly distributing the

employee’s bias requires that the optimal employee takes lower actions than his well-calibrated

counterpart after signal realizations that induce high expected conflict of interests. The critical

condition for the optimality of overconfidence is that the signal moves the conditional expectation

of the conflict of interest and the employee’s preferred action in opposite directions. If this is

the case, the optimal agent takes more extreme actions than the well-calibrated one, which is

a manifestation of overconfidence. Analogously, an underconfident employee is optimal if the

expected conflict of interests and the employee’s preferred action move in the same direction.

Optimality of overconfidence arises in situations in which, for example, the employee’s pre-

ferred action increases less than proportionally than the firm’s preferred action. This may occur

because it is costly for the employee to adjust to the current conditions or because he is subject

to some degree of status quo bias.3 Thus, the demand for overconfidence may arise as a strategy

3It is sometimes assumed that adjustment costs are paid by the firm (see Barrero, 2022). Absent any additional
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to mitigate the effects of other pervasive behavioral biases, status quo bias in decision-making

being a salient example.

I additionally explore the effect of alternative tools that organizations may use to alleviate

agency frictions. First, I study the interaction between belief design and action-contingent

transfers. I discuss conditions under which the use of transfers does not change the optimal

beliefs (Proposition 4). Moreover, in the optimum, these tools are used for different purposes:

beliefs are used to spread the employee’s bias across signal realizations, while transfers are

used to decrease his average bias. Interestingly, belief design leads to “flatter” compensation

contracts: all equilibrium actions taken by the optimal employee yield the same transfer. In

contrast, when the employee is restricted to be well-calibrated, the optimal transfers vary with

the actions he takes in equilibrium.

Finally, while modeled symmetrically in this paper, overconfidence and underconfidence have

a stark difference: there is a natural substitute for extreme underconfidence. Namely, the firm

can make the choice without the information held by the employee. When the firm allocates

decision rights to the employee, it is only with the hope of using their private information. When

the optimal employee is not sufficiently confident, the firm is better off avoiding the conflict of

interests altogether by centralizing decision-making (Proposition 5).

Related literature. The interest in the economic effects of overconfidence is long-standing.4

The term, however, has been used to describe quite distinct phenomena (see Moore and Healy,

2008). In this paper I entirely focus on overprecision, which is considered the most robust and

least understood form of overconfidence (Haran et al., 2010; Moore and Schatz, 2017).

The potential benefits of overconfidence (broadly defined) have been discussed in some spe-

cific settings. Such benefits can be classified roughly into three groups. First, overconfidence

may serve as a strategic commitment device, allowing the firm or some of its members to im-

plement strategies that would not otherwise be credible (Kyle and Wang, 1997; Rotemberg and

Saloner, 2000; Van den Steen, 2005; Gervais and Goldstein, 2007; Englmaier, 2011; Bolton et al.,

2013; Englmaier and Reisinger, 2014; Phua et al., 2018; Ba and Gindin, 2023). Second, it may

permit more favorable acquisition, revelation, and aggregation of private information (Bernardo

and Welch, 2001; Blanes-i Vidal and Möller, 2007; Che and Kartik, 2009; Van den Steen, 2010;

Levy and Razin, 2015; Hestermann and Le Yaouanq, 2020; Ilinov et al., 2022; Ostrizek, 2022).

Finally, it may allow the firm to have better control over risk-taking and sharing as well as

facilitating diversification (Goel and Thakor, 2008; Santos-Pinto, 2008; De la Rosa, 2011; Ger-

vais et al., 2011; Palomino and Sadrieh, 2011; Heller, 2014). I contribute to this literature by

linking the characteristics of the optimal employee to the conflicting preferences of the members

of the organization. This approach allows us to study the drivers of the demand for overconfi-

dence (manifested as overprecision) without needing to specify the details of the idiosyncratic

frictions, my results support the conclusion that any bias in the beliefs would be detrimental for the firm.
4Adam Smith stated that “the over-weening conceit which the greater part of men have of their own abilities,

is an ancient evil remarked by the philosophers and moralists of all ages” (Smith, 1776, chap. X, book I).
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interactions among the members of the organization.

While a significant portion of the literature takes the biases in beliefs as given, there is a

growing interest in making those misspecifications endogenous. The study of persuasion through

the provision of narratives (the relationship between observed signals and outcomes) is partic-

ularly related (Eliaz and Spiegler, 2020; Schwartzstein and Sunderam, 2021; Jain, 2023; Ispano,

2023; Aina, 2024). In the context of the current paper, the choice variable for the firm (i.e., how

the employee interprets his private observation) is itself a narrative. However, two differences

emerge. First, the common approach is that narratives can be made contingent of the realized

data. An exception is Ispano (2023), who compares that approach with narratives that are pro-

vided before the information is available. In that case, the persuader faces similar constraints as

the ones used in the belief design problem. Second, I provide an interpretation for the optimal

narrative in the light of one of the most ubiquitous type of behavioral bias, i.e., overconfidence.

Similar to the literature on narratives, Niu (2023) also makes the employee’s misspecifications

endogenous. In that case, the firm can distort the employee’s perception about the difficulty

or quality of the task or project he is working on. Those distortions affect the inferences the

employee makes about his own ability from the history of outcomes. The resulting biases can

be interpreted as a degree of overoptimism on the project.

Finally, I illustrate how belief-based selection can be used as an indirect source of incentives.

Numerous tools that organizations can use to deal with conflicting preferences have been studied.

One possibility consists of exploiting individual characteristics to improve outcomes (Prendergast

and Stole, 1996; Prendergast, 2007, 2008). I contribute to this literature by considering beliefs

as part of those characteristics. The literature on information design (Rayo and Segal, 2010;

Kamenica and Gentzkow, 2011; Kamenica, 2019) shares the same object of choice, but focuses on

the information that employees actually observe rather than on how they interpret exogenously

available information. Alternatively, the delegation literature (Holmström, 1977, 1984; Alonso

and Matouschek, 2008) studies the use of rules on the set of available actions from which the

employee can choose. I build on a similar framework: an organization formed by two individuals

with different preferences over possible decisions, where there is a mismatch between authority

and information, and where contingent transfers are infeasible. In contrast to that literature,

I focus on employees who are not fully informed and may have misspecified beliefs about the

amount of information they posses.
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2 Model

Preliminaries. For any finite set X ⊂ R, I use ∆(X) to denote the set of probability mass

functions over X. Subscripts on operators are used to explicitly specify the probability mass

function being used, e.g., Eg indicates that the expectation is taken according to the distribution

g ∈∆(X). For any joint distribution g ∈∆(X ×X ′), let gX ∈∆(X) and gX′ ∈∆(X ′) denote its

marginals. Finally, all variables with a tilde are random variables.

Players and actions. An agent (he) makes a decision x ∈ R that also affects a principal

(she). Payoffs depend on a state of the world θ ∈ Θ ∶= {θ1, . . . , θn} ⊂ R, with n ≥ 2 finite. States

are labeled such that θ1 < ⋯ < θn. Ex-post payoffs are given by −(x − θ)2 for the principal and

by −(x − y(θ))2 for the agent. That is, the state represents the principal’s preferred action. On

the other hand, the agent’s preferred action is given by the bias function y ∶ Θ → R. I assume

that y is strictly increasing. This provides some minimum degree of alignment in the players’

preferences. The difference between the players’ preferred actions in a given state is denoted by

c(θ) ∶= y(θ) − θ and I refer to it as the conflict of interest in state θ.

Information. The agent has private and non-verifiable information about the state of the

world. He observes a signal realization s ∈ S ∶= {s1, . . . , sm}, with m ≥ 2 finite. From the point

of view of the principal, states and signals are distributed according to f ∈ ∆(Θ × S), which is

an n ×m matrix with ij-th entry equal to f(θi, sj) ∶= Prf [θ̃ = θi, s̃ = sj]. I refer to f as the

true distribution and assume it has full-support, i.e. f(θ, s) > 0 for all (θ, s) ∈ Θ × S. Higher

states are more likely after higher signal realizations, in particular, signals are labeled such that

sj = Ef [θ̃∣sj].
Belief design. The key feature of the model is that the principal is allowed to choose how

the agent interprets his private information. Specifically, she chooses a distribution g ∈∆(Θ×S)
such that after observing a given signal realization the agent computes his posterior beliefs

according to g (instead than according to f). This step can be interpreted as a selection or

hiring process in which the principal chooses an agent that already posses the desired beliefs.

Alternatively, it can also reflect the principal’s ability to (costlessly) train the agent on how to

interpret his information.5

I impose two restrictions on the set of joint distributions the principal can select. First, I

assume that players ex-ante agree on the distribution of the state, i.e., gΘ = fΘ. Additionally, I

require the agent to be well-calibrated about the frequency of signal realizations, i.e., gS = fS .

These restrictions allows us to focus on the information the agent perceives after each signal

realization. Let G ∶= {g ∈ ∆(Θ × S) ∶ gΘ = fΘ, gS = fS} denote the set of feasible choices for the

principal.

5See Gervais and Odean (2001), Haran et al. (2010) and Meikle et al. (2016) for practices that can mitigate

or exacerbate miscalibration.
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Timing. The timing of events is as follows:

1. Belief design: the principal chooses g ∈ G.

2. Nature draws (θ, s) according to f .

3. The agent observes s, interpreting it according to g, and chooses x ∈ R.

Note that the description of the timing assumes that the agent learns nothing from the principal’s

choice. This is, interpreting belief design as a selection process, candidates’ beliefs remain the

same whether they are selected by the principal or not.

Applications. I now discuss two specific applications. The purpose is to illustrate the

type of situations in which the forces captured by the model are relevant. We will revisit these

applications to illustrate the implications of the results.

First, consider a CEO (the principal) selecting a middle manager (the agent) in charge of

compensating a subordinate. Specifically, the manager chooses a level of reward x ∈ R for his

subordinate after having privately observed a signal of the subordinate’s actual performance.

The state represents the CEO’s ideal level of reward given the subordinate’s actual performance,

which is never directly observed. The signal is normalized to represent the CEO’s ideal level of

reward given some noisy measure of the subordinate’s performance.

A plausible concern for the CEO is that the manager would be overly reluctant to provide

low rewards to his subordinate. In other words, while the two parties may be relatively aligned

when the subordinate deserves a bonus or a promotion, the manager may be averse to fire the

subordinate, even when the CEO wants exactly that.

Second, consider the director of a nuclear power plant (the principal) selecting a risk manager

(the agent) in charge of monitoring and controlling the safety in the plant’s operations. The

manager chooses a level of risk abatement x ∈ R after having privately observed a signal about

the safety conditions of the operations. The state represents the director’s ideal abatement level

given the actual performance of the plant. As in the previous application, the signal represents

the director’s ideal abatement level given some noisy measure of the performance of the plant.

In this case, both individuals would agree about the right course of action when the risk is high:

avoiding an accident is a mutual goal when problems are likely to occur. On the other hand,

when the risk is sufficiently low, the manager does not see the need to keep the abatement at

the levels desired by the director.

In both contexts we ask the following question: when is an over/under-confident manager op-

timal? This question, however, is not entirely meaningful without a definition of overconfidence.

This is precisely the next step.
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Defining overconfidence. Our goal is to provide conditions under which the optimal

agent displays beliefs that can be interpreted as over/under-precision. If the optimal agent’s

beliefs coincide with the ones prescribed by the true distribution f , then we say that he is

well-calibrated. Otherwise, we need to compare a given solution g∗ with f . I propose using

a well-known stochastic order to make such comparisons in a way that reflects the notion of

over/under-precision. This order is based on the concept of concordance, which informally

corresponds to large values of the state going together with large values of the signal. Thus, an

increase in the concordance between these two random variables can be interpreted as the signal

“revealing more” about the state.

Definition 1 (Concordance Order) g ∈ G dominates f in the concordance order, denoted

g ⪰ f , if and only if for all k ∈ {1, . . . , n} and l ∈ {1, . . . ,m} we have ∑k
i=1∑

l
j=1 g(θi, sj) ≥

∑k
i=1∑

l
j=1 f(θi, sj).6

The concordance order ranks two distributions by comparing their cumulative functions point-

wise. When g ⪰ f , the probability that the realizations of the state and the signal are both

“small” is higher under g than under f . Since g and f have the same marginals, it is also true

that the probability that the realizations of the state and the signal are both high increases when

their distribution change from f to g (Epstein and Tanny, 1980, theorem 3). Therefore, an agent

with beliefs g ⪰ f interprets higher signal realization as stronger evidence of higher states than

his well-calibrated counterpart. To the extend that overprecision is informally understood as an

excessive faith in one’s information then this definition captures exactly that.7

Additionally, g ⪰ f implies that the (Pearson) correlation coefficient, the Kendall’s τ , and

the Spearman’s ρ between the state and the signal are all higher under g than under f (Tchen,

1980). The converse is not true in general. Thus, the concordance order is more conservative

than, for instance, comparing covariances as a criteria to define overprecision (which has the

additional problem of lacking a strong justification beyond the multivariate-normal case).

Finally, note that we can have a distribution g ⪯ f that reverses the relationship among

states and signal realizations, such that a high signal ends up being evidence of a low state.

This extreme change in the interpretation of the signal is not compatible with the idea of

overprecision. However, given the maintained assumptions, this problem does not arise in the

current setting. In particular, y(⋅) being increasing guarantees that the solution to the belief

design problem is always above (in the concordance order) the independent distribution, i.e.,

any solution g∗ satisfies g∗(θ, s) ≥ fΘ(θ)fS(s) for all (θ, s).
6See Tchen (1980), Epstein and Tanny (1980), Shaked and Shanthikumar (2007, Chapter 9), Meyer and

Strulovici (2012), and Mekonnen and Leal-Vizcáıno (2022).
7In the present two-dimensional setting other orders – the supermodular stochastic order, greater weak associ-

ation, the convex-modular order, and the dispersion order – coincide with the concordance order (see Meyer and

Strulovici, 2012).
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Thus, if we find a solution g∗ ≠ f with g∗ ⪰ f , we can say that the optimal agent is overcon-

fident. Analogously, when f ⪰ g∗ we can say that he is underconfident.

3 Analysis

For any g ∈∆(Θ ×S) and signal realization s ∈ S, the agent optimally chooses Eg[y(θ̃)∣s]. Note

that all feasible beliefs yield the same average action:

Ef [Eg[y(θ̃)∣s]] = Eg[Eg[y(θ̃)∣s]] = Eg[y(θ̃)] = Ef [y(θ̃)]
where the first equality follows from fS = gS , the second from the law of iterated expectations,

and the third from gΘ = fΘ.

Knowing the agent’s actions, we can express the principal’s expected payoff as a function

of any belief g as U(g) ∶= −Ef [(Eg[y(θ̃)∣s̃] − θ̃)2]. As a result, belief design corresponds to the

following optimization problem:

max
g∈G

U(g).
I will divide the analysis of this problem into two parts. As a first step, I focus on the simplest

version of the model, in which the state and signal spaces are binary. Then, I discuss the key

insights that extend to the general version of the model. Proofs are provided in Appendix A.

3.1 Binary states and signals

Assume that n =m = 2. For any true distribution f , the set of feasible choices for the principal

can be characterized by a single scalar. Formally, any g ∈ G can decomposed as f + εB where

ε ∈ R is a scalar and B ∈ R2×2 is a matrix of constants.8 To see why this is true, suppose we

want to modify the probability of some pair of states and signals, say (θ1, s1), by adding some

amount ε. Since marginal probabilities must remain constant, we need to adjust the probability

of (θ1, s2) and (θ2, s1) by adding −ε. As a consequence, we also need to add ε to the probability

of (θ2, s2).9
Furthermore, ε is constrained by the fact that the resulting g must be a well-defined proba-

bility mass function, i.e., g(θi, sj) ∈ [0,1]. Consequently, ε must belong to some compact interval

8Specifically, this decomposition can be seen as

g = [ f(θ1, s1) + ε f(θ1, s2) − ε
f(θ2, s1) − ε f(θ2, s2) + ε ] = [

f(θ1, s1) f(θ1, s2)
f(θ2, s1) f(θ2, s2) ] + ε [

1 −1

−1 1
] = f + εB.

9Some authors refer to ε as an elementary transformation (see Epstein and Tanny, 1980).
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[ε, ε̄].10 The full support assumption guarantees that ε < 0 < ε̄. In other words, any marginal

deviation from the true distribution is feasible.

As a result, the belief design problem can be seen as as choosing ε ∈ [ε, ε̄] to maximize

U(f+εB), which is a well-behaved concave maximization program. Before discussing its solution,

note that an increase in ε corresponds to a shift in probability mass from the off-diagonal of

g to its diagonal. That is, the agent’s belief that the state is θi after observing si increases

with ε. Therefore, we can interpret ε as the agent’s level of confidence: an agent with ε > 0 is

overconfident, with ε < 0 is underconfident, and well-calibrated otherwise. This is both intuitive

and consistent with the definition of overconfidence proposed in section 2.

Increasing ε makes the agent’s actions more extreme: as ε grows the agent’s action after

observing si gets closer to y(θi). In other words, the agent’s action increases with ε after s2 and

decreases after s1. Therefore, increasing ε benefits the principal when a well-calibrated agent

would take actions that are too low after s2 or too high after s1. Thus, c(θ1) > c(θ2) would lead to

overprecision to be optimal. Equivalently, overprecision is beneficial when θ2−θ1 > y(θ2)−y(θ1),
i.e., when the principal would adjust the action beyond what the agent would like to do. This

formalizes the intuition that overconfidence helps when there is unresponsiveness by the agent.

The following result describes the optimal agent in the binary case.

Proposition 1 The unique optimal agent is

1. well-calibrated if and only if θ2 − θ1 = y(θ2) − y(θ1).
2. overconfident if and only if θ2 − θ1 > y(θ2) − y(θ1).
3. underconfident if and only if θ2 − θ1 > y(θ2) − y(θ1).

Alternatively, the correlation between the conflict of interests and the agent’s preferred action

determine the confidence of the optimal agent. In particular, the optimal agent is overconfident

when such correlation is negative.

This result implies that a well-calibrated agent is optimal if and only if his bias is additive,

i.e., y(θ) = θ + b. This extends to the optimal agent too, he would ideally behave as if his bias

was additive. However, the bounds on ε may prevent the principal from getting that far.

10The bounds on the interval are as follows

ε ∶= −min{f(θ1, s1),1 − f(θ1, s2),1 − f(θ2, s1), f(θ2, s2)}
ε̄ ∶=min{1 − f(θ1, s1), f(θ1, s2), f(θ2, s1),1 − f(θ2, s2)} .
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In addition, the interior optimum confidence level is given by

ε∗ = −
Covf(c(θ̃), y(θ̃))

V arf(y(θ̃)) ∣f ∣ = [Covf(θ̃, y(θ̃))
V arf(y(θ̃)) − 1]∣f ∣

where ∣f ∣ denotes the determinant of the matrix f .

Since signal realizations are labeled by the conditional expectation over states they induce,

it follows that ∣f ∣ > 0. Assuming that y(⋅) is increasing directly implies that ε∗ > −∣f ∣ ∈ (ε,0).
This is, since an agent whose confidence equals −∣f ∣ acts as if the signal was uninformative, the

optimal agent always extracts some information from the signal.

Moreover, the optimal confidence level increases with the slope of the best affine predictor

of the principal’s preferred action, θ̃, as a function of the agent’s preferred action, y(θ̃). Lastly,
if for given primitives we have ε∗ > ε̄ then the optimal agent is maximally overconfident.

Now I can illustrate the implications of the result for the applications described in section 2.

First, the CEO concerns about the manager’s reluctance to punish his subordinate is captured

by assuming y(θ1) > θ1 and y(θ2) ≈ θ2. It follows that c(θ1) > c(θ2), and by Proposition 1 we

conclude that the CEO would strictly prefer to hire an overconfident manager.

On the other hand, in the nuclear power plant example, the friction is due to the manager’s

low willingness to mitigate risks when an accident is unlikely to occur. This can be represented

by assuming y(θ1) < θ1 and y(θ2) ≈ θ2. It follows that c(θ1) < c(θ2), and we conclude that the

optimal risk manager would be underconfident.

3.2 General case

In this subsection, I lift the assumption on the number of states and signals. We start by

observing that the objective function in the belief design problem can be decomposed as follows

U(g) = −Ef [(Ef [θ̃∣s̃] − θ̃)2] −Ef [c(θ̃)]2 − V arf(Eg[y(θ̃)∣s̃] −Ef [θ̃∣s̃]).
The first term represents the payoff that the principal could obtain if she was informed and in

charge of choosing the action. It corresponds to a loss due to the residual uncertainty in the

environment. The second term reflects a loss due to the average bias that the agent introduces

with his choice. Finally, agent’s beliefs affect the objective only through the last term, which

represents a loss due to variance in the agent’s actions beyond the adjustments that the principal

herself would make.

This decomposition illustrates that the principal ideally wants Eg[y(θ̃)∣s̃] − Ef [θ̃∣s̃] to be

constant. In other words, the ideal agent is one who acts as if his bias was additive. Therefore,

if the expected conflict of interests is invariant in the signal, i.e. Ef [y(θ̃)∣s̃] = Ef [θ̃∣s̃] + b, the
11



well-calibrated agent would be optimal since he is feasible and already behaves as the principal

ideally wants. It turns out that this condition is also necessary. Whenever the conditional

expectation of the conflict of interest varies with the signal, there is a marginal deviation from

the true distribution that strictly increases the principal’s expected payoff. This is achieved

by decreasing the agent’s action after a signal realization leading to higher expected conflict of

interests, while increasing the agent’s action after a realization inducing lower expected conflict

of interests. The construction of a distribution that improves upon the true one follows the same

logic as in the binary case, the details are discussed in the proof of the following proposition

(see appendix A).

Proposition 2 The optimal agent is well-calibrated if and only if Ef [y(θ̃) − θ̃∣s̃] is constant.

Moreover, because the marginals of g equal those of f , Eg[y(θ̃)∣s̃]−Ef [θ̃∣s̃] can only equal one

constant, which is Ef [c(θ̃)]. Therefore, for this ideal agent we have that Eg[y(θ̃)∣s̃]−Ef [y(θ̃)∣s̃] =
Ef [c(θ̃)]−Ef [c(θ̃)∣s̃]. When Ef [c(θ̃)∣s] is decreasing in s, the ideal agent’s optimal action would

be below the well-calibrated agent’s action for low signals realizations, while the opposite is true

for high ones. Since Ef [y(θ̃)∣s] is increasing, this pattern corresponds to more extreme actions

by the agent, a direct manifestation of overconfidence. As a result, the idea that overconfidence

is optimal when the principal would adjust the action more than agent generalizes beyond the

binary special case. The following result formalizes this intuition.

Proposition 3 There exists ᾱ > 0 such that if ∣Ef [c(θ̃)∣s] − Ef [c(θ̃)]∣ ≤ ᾱ for all s ∈ S and

Ef [y(θ̃)∣s′] − Ef [y(θ̃)∣s] < Ef [θ̃∣s′] − Ef [θ̃∣s] for all s′ > s, then any optimal agent acts as an

overconfident agent. On the other hand, if Ef [y(θ̃)∣s′] − Ef [y(θ̃)∣s] > Ef [θ̃∣s′] − Ef [θ̃∣s] for all

s′ > s, any optimal agent acts as an underconfident agent.

The previous result provides sufficient conditions for at least one optimal agent to be strictly

ranked above or below the true distribution according to the concordance order. The uniqueness

from the binary case is necessarily lost since there exist several (typically a continuum of)

distributions with the same marginals and conditional expectations. However, all optimal agents

take the same actions. Moreover, all optimal agents must be unranked among themselves, i.e.,

if g and g′ solve the belief design problem it cannot be that g ⪰ g′.

The proof of this proposition parallels that of proposition 1. We start by changing the

principal’s choice from g ∈ G to a matrix of elementary transformations t ∈ R(n−1)×(m−1). Let tkl
denote a typical entry of the matrix t. Note that tkl > 0 moves probability mass from θk+1 to

θk after sl is realized, while the opposite happens after sl+1. Informally, a positive elementary

transformation moves mass from discordant pairs of states and signal realizations to the adjacent

concordant pairs. The next step is to analyze the first order conditions that optimal elementary

transformations need to satisfy. Then, I propose a family of transformations that satisfy these
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conditions. When all entries of t are positive, we get a distribution that dominates the initial

one in the concordance order. The assumptions in proposition 3 guarantee that the proposed

solution is both feasible and positive (or negative), which proves the existence of an overconfident

(or underconfident) optimal agent.

In what follows, I explore the implications of additional tools available to the principal. I

go back to the assumption that n = m = 2. First, I will study how belief design is affected

by availability of action-contingent transfers. I will argue that transfers do not affect optimal

beliefs as long as the expected conflict of interests is not too far away from zero. Moreover, in

the optimum each tool (belief and contract design) is used for different purposes. Additionally,

I consider the possibility that the principal can make the choice herself. This imposes some

restrictions on the characteristics of an agent who is actually allowed to make the choice: for

the principal to delegate the choice, agent’s confidence must be sufficiently high.

4 Transfers

Conflicting preferences among its members is a prominent challenge that organizations face.

Provision of monetary incentives is a particularly relevant tool that can be used to mitigate the

pernicious effects of agency frictions. In this section, I consider the interaction between belief

design and action-contingent transfers. In particular, in addition to belief design, the principal

is also allowed to commit to non-negative payments contingent on the agent’s action. We focus

again on the n =m = 2 case. The timing is as follows:

1. Belief and contract design: the principal chooses g ∈ G and w ∶ R→ R+.

2. Nature draws (θ, s) according to f .

3. The agent observes s and chooses x ∈ R.

Payoffs are given by −(x− θ)2 −w(x) for the principal and by −(x− y(θ))2 +w(x) for the agent.

As a first step, we can think of the problem as the principal recommending action xi after

signal realization si, paying wi after that action is observed, and paying zero when a non-

recommended action is observed. Additionally, in the binary case, belief design can be thought

as choosing a confidence level ε ∈ [ε, ε̄]. Therefore, it suffices for the the principal to consider

tuples (x1, x2, w1, w2, ε) consisting of recommended actions, payments for those actions, and a

confidence level subject to obedience constraints.

The recommended actions must be incentive compatible given promised transfers and agent’s

confidence. After each signal realization two deviations are relevant: to the other recommended

action and to the best action among those that were not recommended. The best deviation to

13



an action yielding no transfer corresponds to choosing Eε[y(θ̃)∣si] after signal si, which yields

an expected payoff of −V arε(y(θ̃)∣si).
The main result in this section provides conditions under which the optimal beliefs coincide

with those described in subsection 3.1 in which transfers were not available. In the optimum,

each tool plays a different role: transfers are used to decrease the average bias in the agent’s

action, while beliefs are used to distribute such bias across signal realizations.

Proposition 4 Assume that ∣Ef [c(θ̃)]∣ ≤ Ef [θ̃∣s2] − Ef [θ̃∣s1]. The availability of transfers does

not change the optimal beliefs (thus, proposition 1 applies) and w∗1 = w
∗

2 = Ef [c(θ̃)]2.

This result also highlights the effects of belief design on optimal transfers. When belief are

optimally chosen, wages do not change with the actions the agent takes in equilibrium. On the

other hand, when only the well-calibrated agent is available, the optimum for the principal is

given by

xj =
1

2
[Ef [θ̃∣sj] +Ef [y(θ̃)∣sj]],

wj =
1

4
Ef [c(θ̃)∣sj]2.

Therefore, unless Ef [c(θ̃)∣sj] is constant (in which case the well-calibrated agent is indeed opti-

mal), wages are different for both recommended actions. This is, optimal belief-based selection

leads to “flatter” compensation schemes.

It is worth noting that Ashworth and Sasso (2019) study the interaction between optimal

delegation sets and transfers in a similar setting. When the principal and the agent only differ

in their level of confidence, the optimal mechanism does not use transfers.

5 Delegation

Consider the case in which the principal can also decide whether to delegate the choice or to

centralize it. In this section, I discuss when it is the case that the principal actually prefers

delegation and its implications about the optimal agent’s confidence.

The main takeaway is that centralization is a substitute for extreme underconfidence. The

intuition is simple: if the optimal agent is not sufficiently using the information, it would be

better for the principal to make the choice herself in order to avoid the conflict of interests. The

principal would only rely on the agent to use his private information; otherwise, she would be

better off avoiding the bias that the agent introduces to the decision.

14



The following result shows that the optimal agent must be sufficiently confident for the choice

to be delegated to him.

Proposition 5 The choice is delegated to the optimal agent if and only if

ε∗ ≥
fS(s1)fS(s2)Ef [c(θ̃)]2∣f ∣(y(θ2) − y(θ1))(θ2 − θ1) − ∣f ∣.

Naturally, an agent that is on average unbiased (i.e. Ef [c(θ̃)] = 0) would act just as the principal

in the absence of any information. Therefore, when Ef [c(θ̃)] = 0 the choice would be delegated

even to a maximally underconfident agent (one who thinks that signals are uninformative). On

the other hand, whenever Ef [c(θ̃)] ≠ 0 the agent’s confidence must be strictly above −∣f ∣ (the
confidence of a maximally underconfident agent) for delegation to be optimal.

While extreme underconfidence never leads to delegation to an agent that is on average

biased, it can be optimal to delegate to an extremely overconfident agent.11 Therefore, while

the two phenomena are modeled symmetrically, the possibility to centralize decision making

highlights a key difference between over- and underconfidence.

6 Conclusions

There is abundant evidence about the pervasiveness of overconfident employees. This paper

discusses situations in which a firm is willing to select an employee not despite of his overconfi-

dence but precisely because of it. Thus, a reason for overconfidence to be ubiquitous is that the

conditions that lead to its optimality are relevant in many environments. Under-responsiveness

to the firm’s interests is “bread-and-butter” when employees prioritize a quiet life over adjusting

their behavior to current conditions and it can be (at least partially) alleviated by the employee’s

misperception of being more informed.

Moreover, belief-based selection interacts meaningfully with some other measures that the

firm could take to mitigate agency frictions. For example, an employee with optimal beliefs

would face “flatter” compensations schemes than his well-calibrated counterpart. Additionally,

centralizing decision-making is a natural substitute for extreme underconfidence, while it can be

optimal to delegate to a “fully” overconfident employee.

11Consider the following example: θ1 = 0, θ2 = 10, y(θ) = 3 + θ/3, f(θi, si) = 0.4, and f(θi, s−i) = 0.1. We have

that ε∗ = 0.3 > ε̄ = 0.1, which implies that the optimal agent is maximally overconfident, interpreting signals at

face value (after seeing si this agent would be convinced that the state is θi). The expected payoff from delegation

is -17.89, while the expected payoff from centralization is -25. Therefore, it is optimal to delegate to the maximally

overconfident agent.
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The main methodological innovation, the belief design problem, allows the firm to exploit the

heterogeneity in applicants’ confidence by selecting the candidate with most favorable beliefs

(keeping fixed all other individual characteristics). In this context, I show that belief-based

selection leads to employees with a common feature: they tend to act as if their disagreement

with the firm was invariant to their private information. As a result, the firm prefers a well-

calibrated agent if and only if this disagreement does not change with the employee’s observations

to begin with. On the other hand, overconfidence helps when this conflict of interests moves in

the opposite direction than the employee’s preferred action. As a tool, belief-design is flexible and

can be adjusted to systematically think about other belief-based biases, such as overoptimism.

Two assumptions were maintained through this exercise: that the potential employees are

sufficiently diverse in their beliefs and that their characteristics are perfectly observed by the

firm. The first assumption is made to provide a benchmark. The second is motivated by evidence

suggesting that firms can learn quite rapidly about its employees’ characteristics (Lange, 2007;

Hansen et al., 2021). Issues of a constrained set of available employees as well as asymmetric

information about the applicants’ characteristics are left for future research.

These findings illustrate interesting ways in which personality traits, such as confidence,

can impact labor market outcomes, such as wages and career choices (see Schulz and Thöni,

2016). Similarly, they help explain several documented managerial and organizational practices

targeted towards altering employees’ perceptions (see Haran et al., 2010; Meikle et al., 2016).

Additionally, if confidence has the potential to affect expected outcomes (in the labor market

or otherwise), we may expect individuals to invest in “adjusting” this personal characteristic

according to their goals.12

Finally, while this paper specifically focuses on the role for overconfidence inside organiza-

tions, the main mechanism is likely to operate in several other types of social interactions where

conflicting preferences and private information play a significant role (such as friendships and

romantic relationships).

12See Kreps (2019) for a discussion about the role of business schools in boosting students’ confidence.
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A Proofs

Proof of Proposition 1

The belief design problem is as follows

max
ε∈[ε,ε̄]

U (f + εA) .
We have

U(f + εA) = −f(θ1, s1)(Eε[y(θ̃)∣s1] − θ1)2 − f(θ1, s2)(Eε[y(θ̃)∣s2] − θ1)2
−f(θ2, s1)(Eε[y(θ̃)∣s1] − θ2)2 − f(θ2, s2)(Eε [y(θ̃)∣s2] − θ2)2,

where

Eε[y(θ̃)∣s1] = Ef [y(θ̃)∣s1] − ε
fS(s1)

[y(θ2) − y(θ1)],
Eε[y(θ̃)∣s2] = Ef [y(θ̃)∣s2] + ε

fS(s2)
[y(θ2) − y(θ1)].

Thus,

∂U(f + εA)
∂ε

= 2[y(θ2) − y(θ1)][Eε[y(θ̃)∣s1] −Ef [θ̃∣s1] −Eε[y(θ̃)∣s2] +Ef [θ̃∣s̃ = s2]].
We can see that U is strictly concave in ε:

∂2U (f + εA)
∂ε2

= −2
[y(θ2) − y(θ1)]2
fS(s1)fS(s2) < 0.

The first-order condition is given by

Eε[y(θ̃)∣s1] −Ef [θ̃∣s1] = Eε[y(θ̃)∣s2] −Ef [θ̃∣s2],
which is equivalent to

Ef [c(θ̃)∣s1] − ε

fS(s1)[y(θ2) − y(θ1)] = Ef [c(θ̃)∣s2] + ε

fS(s2)[y(θ2) − y(θ1)].
Note that

Ef [c(θ̃)∣s2] −Ef [c(θ̃)∣s1] = [c(θ2) − c(θ1)]f(θ2, s2)f(θ1, s1) − f(θ1, s2)f(θ2, s1)
fS(s1)fS(s2) .

Therefore, the interior solution (if exists) is given by

ε∗ = −
c(θ2) − c(θ1)
y(θ2) − y(θ1) [f(θ2, s2)f(θ1, s1) − f(θ1, s2)f(θ2, s1)]

= −
Covf(c(θ̃), y(θ̃))

V arf(y(θ̃)) [f(θ2, s2)f(θ1, s1) − f(θ1, s2)f(θ1, s2)] .
Since by assumption f(θ2, s2)f(θ1, s1) > f(θ1, s2)f(θ1, s2), we have that the sign of ε∗ equals

the sign of −Covf(c(θ̃), y(θ̃).). Finally, if ε∗ ∉ [ε, ε̄] then the solution is in a corner and will still

have the same sign as ε∗. ∎
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Proof of Proposition 2

Optimality of the well-calibrated agent when Ef [c(θ̃)∣s̃] is constant follows directly from the

decomposition in subsection 3.2.

On the other hand, assume that Ef [c(θ̃)∣s̃] is not constant. This is, there exist signal

realizations sl and sl′ with Ef [c(θ̃)∣sl′] > Ef [c(θ̃)∣sl]. Choose any two states θk and θk′ , where

θk < θk′ , and define gε ∈∆(Θ × S) as follows

gε(θ, s) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(θ, s) + ε if (θ, s) ∈ {(θk′ , sl′) , (θk, sl)}
f(θ, s) − ε if (θ, s) ∈ {(θk, sl′) , (θk′ , sl)}
f(θ, s) + ε otherwise.

Note that gε remains feasible whenever ε ∈ [ε, ε̄], where
ε ∶= −min{f (θk′ , sl′) ,1 − f (θk, sl′) ,1 − f (θk′ , sl) , f (θk, sl)} ,
ε̄ ∶= min{1 − f (θk′ , sl′) , f (θk, sl′) , f (θk′ , sl) ,1 − f (θk, sl)} .

The full support assumption implies that ε < 0 < ε̄.

Note that when agent’s beliefs are given by gε, he takes the following action after a given

signal realization s

Egε[y(θ̃)∣s] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ef [y(θ̃)∣s] − εy(θk′)−y(θk)fS(sl)
if s = sl

Ef [y(θ̃)∣s] + εy(θk′)−y(θk)fS(sl′)
if s = sl′

Ef [y(θ̃)∣s] otherwise.

Therefore, the principal’s expected payoff from choosing gε is given by

U (gε) = U(f) − ε2[y(θk′) − y(θk)]2 ( 1

fS(sl′) +
1

fS(sl))
−2ε[y(θk′) − y(θk)](Ef [c (θ̃) ∣sl′] −Ef [c(θ̃)∣sl]).

Differentiating this expression with respect to ε we get

∂U (gε)
∂ε

= − 2[y(θk′) − y(θk)]2ε( 1

fS(sl′) +
1

fS(sl))
− 2[y(θk′) − y(θk)](Ef [c(θ̃)∣s̃ = sl′] −Ef [c(θ̃)∣s̃ = sl]).

Finally, y(θk′) ≠ y(θk) and Ef [c(θ̃)∣sl′] > Ef [c(θ̃)∣sl] imply that this derivative never equals zero

at ε = 0:

∂U(gε)
∂ε

∣
ε=0
= −2[y(θk′) − y(θk)](Ef [c(θ̃)∣sl′] −Ef [c(θ̃)∣sl]) ≠ 0.

Therefore, f cannot solve the belief design problem.∎
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Proof of Proposition 3

We start with the observation that any g ∈ G can be equivalently expressed as f + CtB where

t ∈ R(n−1)×(m−1) is a matrix of elementary transformations and C and B are matrices of constants.

The decomposition is as follows:

t ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

t11 t12 ⋯ t1,m−1

t21 t22 ⋯ t2,m−1

⋮ ⋮ ⋱ ⋮

tn−1,1 tn−1,2 ⋯ tn−1,m−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(n−1)×(m−1),

C ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 0

−1 1 ⋯ 0 0

0 −1 ⋱ 0 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ −1 1

0 0 ⋯ 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×(n−1),

B ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 ⋯ 0 0

0 1 −1 ⋯ 0 0

0 0 1 ⋱ 0 0

⋮ ⋮ ⋮ ⋱ ⋱ ⋮

0 0 0 ⋯ 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(m−1)×m.

Note that each tkl affects posterior beliefs only after signal realizations sl and sl+1. Moreover,

tkl > 0 moves probability mass from θk+1 to θk after sl, while the opposite happens after sl+1.

Let δ(t, sj) denote the difference between the actions of an agent that interprets signals

according to t and those of the well-calibrated agent, i.e.

δ(t, sj) ∶= Eg[y(θ̃)∣sj] −Ef [y(θ̃)∣s̃ = sj] = 1

fS(sj)
n−1

∑
i=1

[y(θi+1) − y(θi)][ti,j−1 − tij].
In particular, since ti0 = tim = 0 we have that

δ(t, s1) = − 1

fS(s1)
n−1

∑
i=1

[y(θi+1) − y(θi)]ti1,
δ(t, sm) = 1

fS(sm)
n−1

∑
i=1

[y(θi+1) − y(θi)]ti,m−1.
As a result

∂δ(t, sj)
∂tkl

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
y(θk+1)−y(θk)

fS(sl)
if j = l

y(θk+1)−y(θk)
fS(sl+1)

if j = l + 1

0 otherwise.
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On the other hand, g ∈ G if and only if

ti−1,j−1 − ti−1,j − ti,j−1 + tij ∈ [−f (θi, sj) ,1 − f (θi, sj)]
for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, where t0j = ti0 = tnj = tim = 0. Let T denote the set of

feasible transformations. The full-support assumption guarantees that the interior of T , denoted

T ○, is non-empty (in particular the (n−1)×(m−1)-matrix with all entries equal to zero belongs

to T ○).

Therefore, the belief design problem corresponds to choosing t ∈ T to maximize U (f +AtB).
Since U.(f +AtB.) is continuous in t and T is a compact set, it follows that this problem has a

solution.

Note that g ⪰ f if and only if t ≥ 0, i.e. tij ≥ 0 for all i ∈ {1, . . . , n−1} and j ∈ {1, . . . ,m−1}.13
Therefore, if t∗ ≩ 0 solves this problem, we would say that the optimal agent is overconfident.

We can decompose the objective function as follows

U(g) = −Ef [δ(t, s̃)2] − 2Ef [δ(t, s̃)Ef [c(θ̃)∣s̃]] +U(f).
Thus,

∂U(f +CtB)
∂tkl

= 2[y(θk+1) − y(θk)][δ(t, sl) +Ef [c(θ̃)∣sl] − δ(t, sl+1) −Ef [c(θ̃)∣sl+1]].
Since we assumed that y(θk+1) > y(θk), we have that in any optimum t∗ ∈ T ○ the following

expression must hold for each l ∈ {1, . . . ,m − 1}
δ(t∗, sl) +Ef [c(θ̃)∣sl] =∆(t∗, sl+1) +Ef [c(θ̃)∣sl+1]. (1)

Expression (1) requires δ(t∗, sl) + Ef [c(θ̃)∣sl] to be constant in l. Moreover, Ef [δ(t∗, sl)] = 0

implies that this constant must equal Ef [c(θ̃)]. Therefore, in any optimum t∗ ∈ T ○ we must

have δ(t∗, sl) = Ef [c(θ̃)] − Ef [c(θ̃)∣sl] for all l ∈ {1, . . . ,m}. Using the definition of δ(t∗, sl), we
conclude that Eg∗[ỹ∣sl] = Ef [c(θ̃)] + Ef [θ̃∣sl], i.e. the optimal agent behave as if the conflict of

interest was constant.

Using the expression for δ(t, sl) in δ(t∗, sl) = Ef [c(θ̃)] −Ef [c(θ̃)∣s̃ = sl] we get

1

fS(sl)
n−1

∑
i=1

[y(θi+1) − y(θi)][t∗i,l−1 − t∗il] = Ef [c(θ̃)] −Ef [c(θ̃)∣sl]. (2)

Iterating (2) we get the following expression for all l ∈ {1, . . . ,m − 1}
n−1

∑
i=1

[y(θi+1) − y(θi)]t∗il =
l

∑
j=1

fS(sj)(Ef [c(θ̃)∣sj] −Ef [c(θ̃)]). (3)

13For a more general version and proof of this statement see Tchen (1980) or Epstein and Tanny (1980).
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Now, consider the matrix of transformations tφ ∈ R(n−1)×(m−1) with typical entry defined as

follows

t
φ
kl
=
∑l

j=1 fS(sj)(Ef [c(θ̃)∣sj] −Ef [c(θ̃)])
y(θk+1) − y(θk) φk

where φ = (φ1, . . . , φn−1) ∈∆n−1.14

By construction tφ satisfies (3). Under the assumptions that Ef [c(θ̃)∣s] is strictly decreasing

in s and that y(⋅) is strictly increasing we have that tφ
kl
≥ 0. Thus, if tφ ∈ T for some φ ∈ ∆n−1

then it solves the belief design problem and we can conclude that there is an overconfident

optimal agent.

Let α ∶=maxs∈S ∣Ef [c(θ̃)∣s] −Ef [c(θ̃)]∣. Therefore,
t
φ
kl
= ∣tφ

kl
∣ = ∣∑l

j=1 fS(sj)(Ef [c(θ̃)∣s̃ = sj] −Ef [c(θ̃)])
y(θk+1) − y(θk) φk∣ ≤ α φk

y(θk+1) − y(θk) .
This implies that

t
φ
i−1,j−1 − t

φ
i−1,j − t

φ
i,j−1 + t

φ
ij ≥ −t

φ
i−1,j − t

φ
i,j−1 ≥ −α [ φi

y(θi+1) − y(θi) +
φi−1

y(θi) − y(θi−1)]
and

t
φ
i−1,j−1 − t

φ
i−1,j − t

φ
i,j−1 + t

φ
ij ≤ t

φ
i−1,j−1 + t

φ
ij ≤ α [ φi

y(θi+1) − y(θi) +
φi−1

y(θi) − y(θi−1)] .
Therefore, there exist a ᾱ(φ) > 0 such that α < ᾱ(φ) implies that tφ is feasible. Finally, let

ᾱ ∶= supφ∈∆n−1 ᾱ(φ) > 0. Thus, whenever α < ᾱ there exists some φ ∈ ∆n−1 such that tφ ∈ T ,

which gives the desired result. ∎

Proof of Proposition 4

The four incentive compatibility constraints are given by

−Eε[(x1 − y(θ̃))2∣s1] +w1 ≥ −Eε[(x2 − y(θ̃))2∣s1] +w2,

−Eε[(x1 − y(θ̃))2∣s1] +w1 ≥ −V arε(y(θ̃)∣s1),
−Eε[(x2 − y(θ̃))2∣s2] +w2 ≥ −Eε[(x1 − y(θ̃))2∣s2] +w1,

−Eε[(x2 − y(θ̃))2∣s2] +w2 ≥ −V arε(y(θ̃)∣s2).
Thus, the principal’s problem is

max
{x1,x2,w1,w2,ε}

−fS(s1)(Ef [(x1 − θ̃)2∣s1] +w1) − fS(s2)(Ef [(x2 − θ̃)2∣s2] +w2)
14∆a denotes the a-dimensional simplex, i.e., the set of a-vectors satisfying φi ≥ 0 and ∑

a
i=1 φi = 1.
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subject to the incentive compatibility constraints that can be expressed as

[1] w2 −w1 ≤ x22 − x
2
1 − 2(x2 − x1)Eε[y(θ̃)∣s1],[2] w1 ≥ (x1 −Eε[y(θ̃)∣s1])2,[3] w2 −w1 ≥ x22 − x
2
1 − 2(x2 − x1)Eε[y(θ̃)∣s2],[4] w2 ≥ (x2 −Eε[y(θ̃)∣s2])2.

A necessary condition for [1] and [3] is
(x2 − x1)(Eε[y(θ̃)∣s2] −Eε[y(θ̃)∣s1]) ≥ 0.

In any optimum we must have x2 ≥ x1. Otherwise, the principal is strictly better off asking for

the average action regardless of the signal; such a change can only decrease the transfers to the

agent. Therefore, we also need that Eε[y(θ̃)∣s2] ≥ Eε[y(θ̃)∣s1].
Additionally, in the optimum, either [2] or the [4] bind. Otherwise the principal can re-

duce both payments by the same small amount without affecting the other two constraints.

Moreover, at least two constraints must bind. Suppose [2] binds. If [3] and [4] are slack, the

principal can decrease w2. Likewise, if [4] binds, either [1] or [2] must also bind. The binding

constraints determine the optimal wages as a function of the recommended actions and the level

of confidence.

Let µi ∶= Eε[y(θ̃)∣si] and µ̄ ∶= (µ1 + µ2)/2. The three possible cases are:

Case Binding w1 w2 Restriction

constraints

1 [2] and [3] (x1 − µ1)2 (x2 − µ2)2 x2 ≥ x1 > µ̄

+2 (µ2 − µ1) (x1 − µ̄)
2 [2] and [4] (x1 − µ1)2 (x2 − µ2)2 x1 ≤ µ̄ ≤ x2

3 [1] and [4] (x1 − µ1)2 (x2 − µ2)2 x1 ≤ x2 < µ̄

+2 (µ2 − µ1) (µ̄ − x2)

The subsequent analysis will be divided in the previous cases. Since beliefs enter principal’s

objective only through wages, as a first step we will focus on choosing the beliefs that minimize

expected transfers, defined as W (x1, x2, µ1) ∶= fS(s1)w1+fS(s2)w2, to implement a given pair of

actions (x1, x2). After that, we will solve for the optimal recommended actions. Finally, we will

be able to conclude that under the assumption that ∣Ef [c(θ̃)]∣ ≤ Ef [θ̃∣s2]−Ef [θ̃∣s1] the solutions
corresponds to the one in case 2.

Case 1: x2 ≥ x1 > µ̄.

W (x1, x2, µ1) = (x1 − µ1)2 + fS(s2)(x22 − x21) − 2fS(s2)µ2(x2 − x1).
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Thus,

∂W (x1, x2, µ1)
∂µ1

= −2 (x1 − µ1) + 2fS(s1)(x2 − x1),
∂2W (x1, x2, µ1)

∂µ2
1

= 2.

As a result, µ∗1 ∶= [1 + fS(s1)]x1 − fS(s1)x2 minimizes the expected wage. Note that µ∗1 ≤ x1

with equality only if x1 = x2.

Additionally, µ̄∗ < x1 requires

Ef [y(θ̃)] < x1 + fS(s1)[fS(s2) − fS(s1)](x2 − x1).

By the envelope theorem

∂W (x1, x2, µ∗1)
∂x1

= 2 (x1 − µ∗1) + 2fS(s2)(µ∗2 − x1),
∂W (x1, x2, µ∗1)

∂x2
= 2fS(s2) (x2 − µ∗2) .

Now, we focus on optimal actions. The principal’s problem becomes

max
{x1,x2}

−fS(s1)Ef [(x1 − θ̃)2∣s1] − fS(s2)Ef [(x2 − θ̃)2∣s2] −W (x1, x2, µ∗1).
First order conditions are given by

−2fS(s1)(x1 −Ef [θ̃∣s1]) = ∂W (x1, x2, µ∗1)
∂x1

,

−2fS(s2)(x2 −Ef [θ̃∣s2]) = ∂W (x1, x2, µ∗1)
∂x2

.

Equivalently,

−fS(s1)(x1 −Ef [θ̃∣s1]) = x1 − µ
∗

1 + fS(s2)(µ∗2 − x1),
−(x2 −Ef [θ̃∣s2]) = x2 − µ

∗

2 .

Thus, the following system of linear equations characterizes the optimum:

x∗1 =
µ∗1 +Ef [θ̃∣s1]

2
−

fS(s2)
2fS(s1)(µ

∗

2 − µ
∗

1),
x∗2 =

µ∗2 +Ef [θ̃∣s2]
2

,

µ∗1 = [1 + fS(s1)]x∗1 − fS(s1)x∗2 ,
µ∗2 =

Ef [y(θ̃)] − fS(s1)µ∗1
fS(s2) .
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The solution is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x∗1
x∗2
µ∗1
µ∗2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+fS(s2)
2[1−fS(s1)fS(s2)]

fS(s1)3−2fS(s1)fS(s2)
2[1−fS(s1)fS(s2)]

fS(s1)fS(s2)[1+fS(s1)]
2[1−fS(s1)fS(s2)]

fS(s2)
2[1−fS(s1)fS(s2)]

fS(s1)2[1+fS(s1)]
2[1−fS(s1)fS(s2)]

[1+fS(s1)2]fS(s2)
2[1−fS(s1)fS(s2)]

1

1−fS(s1)fS(s2)
−
fS(s1)fS(s2)[1+fS(s1)]

1−fS(s1)fS(s2)
fS(s1)2fS(s2)
1−fS(s1)fS(s2)

fS(s2)
1−fS(s1)fS(s2)

fS(s1)2[1+fS(s1)]
1−fS(s1)fS(s2)

−
fS(s1)3

1−fS(s1)fS(s2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
Ef [y(θ̃)]
Ef [θ̃∣s1]
Ef [θ̃∣s2]

⎤⎥⎥⎥⎥⎥⎥⎦

Note that

(µ∗2 − µ∗1)1 − fS(s1)fS(s2)
fS(s1) = −Ef [c(θ̃)] − [Ef [θ̃∣s2] −Ef [θ̃∣s1]].

therefore µ∗2 ≥ µ
∗

1 if and only if Ef [c(θ̃)] ≤ −[Ef [θ̃∣s2] −Ef [θ̃∣s1]].
Case 2: x1 ≤ µ̄ ≤ x2.

We have

W (x1, x2, µ1) = fS(s1) (x1 − µ1)2 + fS(s2) (x2 − µ2)2 .
Thus,

∂W (x1, x2, µ1)
∂µ1

= 2fS(s1) [x2 − x1 − (µ2 − µ1)] ,
∂2W (x1, x2, µ1)

∂µ2
1

= 2
fS(s1)
fS(s2) .

As a result, µ∗2 − µ
∗

1 = x2 − x1, equivalently µ∗1 ∶= Ef [y(θ̃)] − fS(s2)(x2 − x1), minimizes the

expected wage.

Additionally, x2 ≥ µ̄
∗ ≥ x1 requires

Ef [y(θ̃)] ∈ [x1 + fS(s2) − fS(s1)
2

(x2 − x1), x2 + fS(s2) − fS(s1)
2

(x2 − x1)].

By the envelope theorem

∂W (x1, x2, µ∗1)
∂x1

= 2fS(s1)(x1 − µ∗1),
∂W (x1, x2, µ∗1)

∂x2
= 2fS(s2)(x2 − µ∗2).

Now, we focus on optimal actions. The first order conditions of the principal’s problem are given

by

−(x1 −Ef [θ̃∣s1]) = x1 − µ∗1 ,
−(x2 −Ef [θ̃∣s2]) = x2 − µ∗2 .
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Thus, the following system of linear equations characterizes the optimum:

x∗1 =
µ∗1 +Ef [θ̃∣s1]

2
,

x∗2 =
µ∗2 +Ef [θ̃∣s2]

2
,

µ∗1 = Ef [y(θ̃)] − fS(s2)(x∗2 − x∗1),
µ∗2 =

Ef [y(θ̃)] − fS(s1)µ∗1
fS(s2) .

The solution is given by

x∗i =
Ef [c(θ̃)]

2
+Ef [θ̃∣si],

µ∗i = Ef [c(θ̃)] +Ef [θ̃∣si].
Note that x∗1 ≤ µ̄

∗ ≤ x∗2 is equivalent to ∣Ef [c(θ̃)]∣ ≤ Ef [θ̃∣s2] −Ef [θ̃∣s1].
Case 3: x2 < µ̄.

We have

W (x1, x2, µ1) = fS(s1)x21 + fS(s2)x22 + µ2
2 − 2x2µ2 + 2fS(s1)µ1(x2 − x1).

Thus,

∂W (x1, x2, µ1)
∂µ1

= −2µ2

fS(s1)
fS(s2) + 2x2

fS(s1)
fS(s2) + 2fS(s1)(x2 − x1),

∂2W (x1, x2, µ1)
∂µ2

1

= 2
fS(s1)2
fS(s2)2 .

As a result, µ∗2 ∶= [1 + fS(s2)]x2 − fS(s2)x1 minimizes the expected wage. Note that µ∗2 ≥ x2

with equality only if x1 = x2. Additionally, µ̄∗ > x2 requires

Ef [y(θ̃)] > x2 + fS(s2)[fS(s2) − fS(s1)](x2 − x1).
By the envelope theorem

∂W (x1, x2, µ∗1)
∂x1

= 2fS(s1)(x1 − µ∗1),
∂W (x1, x2, µ∗1)

∂x2
= 2(x2 − µ∗2) − 2fS(s1)(x2 − µ∗1).

Now, we focus on optimal actions. The first order conditions of the principal’s problem are given

by

−(x1 −Ef [θ̃∣s1]) = x1 − µ
∗

1 ,

−fS(s2)(x2 −Ef [θ̃∣s2]) = x2 − µ
∗

2 − fS(s1)(x2 − µ∗1).
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Thus, the following system of linear equations characterizes the optimum:

x∗1 =
µ∗1 +Ef [θ̃∣s1]

2
,

x∗2 =
µ∗2 +Ef [θ̃∣s2]

2
+

fS(s1)
2fS(s2)(µ

∗

2 − µ
∗

1),
µ∗1 =

Ef [y(θ̃)] − fS(s2)µ∗2
fS(s1) ,

µ∗2 = [1 + fS(s2)]x∗2 − fS(s2)x∗1 .
The solution is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x∗1
x∗2
µ∗1
µ∗2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fS(s1)
2[1−fS(s1)fS(s2)]

fS(s1)[1+fS(s2)2]
2[1−fS(s1)fS(s2)]

fS(s2)2[1+fS(s2)]
2[1−fS(s1)fS(s2)]

1+fS(s1)
2[1−fS(s1)fS(s2)]

fS(s1)fS(s2)[1+fS(s2)]
2[1−fS(s1)fS(s2)]

fS(s2)3−2fS(s1)fS(s2)
2[1−fS(s1)fS(s2)]

fS(s1)
1−fS(s1)fS(s2)

−
fS(s2)3

1−fS(s1)fS(s2)
fS(s2)2[1+fS(s2)]
1−fS(s1)fS(s2)

1

1−fS(s1)fS(s2)
fS(s1)fS(s2)2
1−fS(s1)fS(s2)

−
fS(s1)fS(s2)[1+fS(s2)]

1−fS(s1)fS(s2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
Ef [y(θ̃)]
Ef [θ̃∣s1]
Ef [θ̃∣s2]

⎤⎥⎥⎥⎥⎥⎥⎦

Note that

(µ∗2 − µ∗1)1 − fS(s1)fS(s2)
fS(s2) = Ef [c(θ̃)] − [Ef [θ̃∣s2] −Ef [θ̃∣s1]].

therefore µ∗2 ≥ µ
∗

1 if and only if Ef [c(θ̃)] ≥ Ef [θ̃∣s2] −Ef [θ̃∣s1].
In conclusion. If ∣Ef [c(θ̃)]∣ < Ef [θ̃∣s2]−Ef [θ̃∣s1] only the first order conditions in case 2 can

hold. Moreover, it is a maximum because in that case the objective function is strictly concave

(see below).

After beliefs have been chosen to minimize expected wages, the principal’s problem is

max
{x1,x2}

{−fS(s1)Ef [(x1 − θ̃)2∣s1] − fS(s2)Ef [(x2 − θ̃)2∣s2] −W (x1, x2, µ∗1)}.
The Hessian of the objective function is given by

H =

⎡⎢⎢⎢⎢⎢⎣
−2fS(s1) − ∂2W (x1,x2,µ

∗

1
)

∂x2

1

−
∂2W (x1,x2,µ

∗

1
)

∂x1∂x2

−
∂2W (x1,x2,µ

∗

1
)

∂x1∂x2
−2fS(s2) − ∂W (x1,x2,µ

∗

1
)

∂x2

2

⎤⎥⎥⎥⎥⎥⎦
.

For the second case we have

∂2W (x1, x2, µ∗1)
∂x2

1

= 2fS(s1) (1 − fS(s2)) = 2fS(s1)2,
∂W (x1, x2, µ∗1)

∂x2
2

= 2fS(s2) (1 − fS(s1)) = 2fS(s2)2,
∂2W (x1, x2, µ∗1)

∂x1∂x2
= 2fS(s1)fS(s2).

30



It follows that in that case the Hessian is negative-definite and the objective function is concave.∎

Proof of Proposition 5

We start with a lemma.

Lemma 1 V arf(s̃) = ∣f ∣2
fS(s1)fS(s2)

(θ2 − θ1)2.

Proof: Using the following equalities

• Ef [Ef [θ̃∣s̃]2] = Ef [θ̃∣s2]2 − fS(s1)[Ef [θ̃∣s2] −Ef [θ̃∣s1]][Ef [θ̃∣s2] +Ef [θ̃∣s1]].
• Ef [θ̃]2 = Ef [θ̃∣s̃]2 − 2fS(s1)Ef [θ̃∣s2][Ef [θ̃∣s2] −Ef [θ̃∣s1]] + fS(s1)2[Ef [θ̃∣s2] −Ef [θ̃∣s1]]2.
• Ef [θ̃∣s2] − Ef [θ̃∣s1] = 1

fS(s2)
[f(θ1, s2)θ1 + f(θ2, s2)θ2] − 1

fS(s1)
[f(θ1, s1)θ1 + f(θ2, s1)θ2] =

∣f ∣
fS(s1)fS(s2)

(θ2 − θ1).

we get

V arf(s̃) = V arf(Ef [θ̃∣s̃]) = Ef [Ef [θ̃∣s̃]2] −Ef [θ̃]2
= −fS(s1)[Ef [θ̃∣s2] −Ef [θ̃∣s1]][Ef [θ̃∣s2] +Ef [θ̃∣s1]]
+ 2fS(s1)Ef [θ̃∣s2][Ef [θ̃∣s2] −Ef [θ̃∣s1]] − fS(s1)2[Ef [θ̃∣s2] −Ef [θ̃∣s1]]2
= fS(s1)[Ef [θ̃∣s2] −Ef [θ̃∣s1]]
(−[Ef [θ̃∣s2] +Ef [θ̃∣s1]] + 2Ef [θ̃∣s2] − fS(s1)[Ef [θ̃∣s2] −Ef [θ̃∣s1]])

= fS(s1)fS(s2)[Ef [θ̃∣s2] −Ef [θ̃∣s1]]2
=

∣f ∣2
fS(s1)fS(s2)(θ2 − θ1)

2.∎

Delegating to an agent with beliefs g∗ is optimal if and only if

U(g∗) = −V arf(Eg∗[y(θ̃)∣s̃] −Ef [θ̃∣s̃]) −Ef [c(θ̃)]2 −Ef [V arf(θ̃∣s̃)] ≥ −V arf(θ̃).
In any interior optimum we have that V arf(Eg∗[y(θ̃)∣s̃]−Ef [θ̃∣s̃]) = 0. Therefore, this condition
is equivalent to

Ef [c(θ̃)]2 ≤ V arf(θ̃) −Ef [V arf(θ̃∣s̃)] = V arf(s̃).
Using lemma 1 this becomes

Ef [c(θ̃)]2 ≤ ∣f ∣2
fS(s1)fS(s2)(θ2 − θ1)

2
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which is equivalent to

fS(s1)fS(s2)Ef [c(θ̃)]2 − ∣f ∣2(y(θ2) − y(θ1))(θ2 − θ1) ≤
∣f ∣2(θ2 − θ1)2 − ∣f ∣2(y(θ2) − y(θ1))(θ2 − θ1).

Therefore

fS(s1)fS(s2)Ef [c(θ̃)]2∣f ∣(y(θ2) − y(θ1))(θ2 − θ1) − ∣f ∣ ≤ [
(θ2 − θ1)

y(θ2) − y(θ1) − 1]∣f ∣ = ε
∗

where the definition of ε∗ follows from the proof of proposition 1.∎

B Truth-or-noise information structure

In this appendix I analyze the baseline model described in section 2 under alternative assump-

tions on the state space and the information structure. Specifically, I assume that the state space

is a compact interval, i.e. Θ = [θ, θ̄], and that the information structure takes the particular

form I describe below.

The agent’s information is represented by an information structure ⟨S,F ⟩, where S ⊆ R is

the signal space and F is a c.d.f. over states and signals. Let FΘ be marginal c.d.f. of the state

under F . I assume that the signal equals the state with probability ρ ∈ (0,1), otherwise the

signal equals an independent draw from FΘ. Moreover, FΘ is assumed to have strictly positive

density fΘ.

In this context, ρ represents the precision of the agent’s information (or, for short, the agent’s

precision). Additionally, I consider the case in which the agent can misperceive his precision.

Specifically, the agent thinks that his precision equals ρ + κ where κ ∈ [−ρ,1 − ρ]. I refer to κ as

the agent’s level of confidence. I say that the agent is underconfident if κ < 0, well-calibrated if

κ = 0, and overconfident if κ > 0.

Finally, assume that the principal can select the agent based on his confidence level. The

timing of events is as follows

1. Belief design: principal chooses κ ∈ [−ρ,1 − ρ].
2. Nature draws (θ, s) according to F .

3. Agent observes s, interpreting its precision as ρ + κ, and chooses x ∈ R.

Payoffs are given by − (x − θ)2 for the principal and by − (x − y(θ))2 for the agent. Let c(θ) ∶=
y(θ) − θ.
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The main result in this setting is as follows.

Proposition 6 The unique optimal agent is

(i) underconfident if and only if y(θ̃) and c(θ̃) are positively correlated.

(ii) well-calibrated if and only if y(θ̃) and c(θ̃) are uncorrelated.

(iii) overconfident if and only if y(θ̃) and c(θ̃) are negatively correlated.

Let

β ∶=
Cov(y(θ̃), c(θ̃))

V ar(y(θ̃)) .

We have that β represent the slope of the best affine predictor of c(θ̃) given y(θ̃). The basic

intuition in proposition 6 is the same as for proposition 1: overconfidence helps when the agent’s

preferences are such that he under-responds to his private information (relative to what the

principal would do). The proposition and its proof shows is that β captures the precise form of

under-responsiveness that overconfidence solves. Moreover, the optimal confidence level is given

by

κ∗(β) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ρ if β ≥ 1

−ρβ if β ∈ (−(1 − ρ)/ρ,1)
1 − ρ if β ≤ −(1 − ρ)/ρ

Proof of proposition 6

Given signal realization s the optimal action for the agent equals xκ(s) = Eκ[y(θ̃)∣s] =(ρ + κ)y(s) + (1 − ρ − κ)EF [y(θ̃)]. Therefore, the principal’s expected payoff is given by

U(κ) ∶= −EF [(xκ(s̃) − θ̃)2] = −EF [xκ(s̃)2] + 2EF [xκ(s̃)θ̃] −EF [θ̃2].
Note that

EF [xκ(s̃)2] = (ρ + κ)2EF [y(s̃)2] + 2(ρ + κ)(1 − ρ − κ)EF [y(s̃)]EF [y(θ̃)]
+ (1 − ρ − κ)2EF [y(θ̃)]2.

Since s̃ ∼ FΘ, we have that EF [y(s̃)2] = EF [y(θ̃)2] and EF [y(s̃)] = EF [y(θ̃)]. As a result,

EF [xκ(s̃)2] = (ρ + κ)2V arF (y(θ̃)) +EF [y(θ̃)]2.
Similarly,

EF [xκ(s̃)θ̃] = (ρ + κ)EF [y(s̃)θ̃] + (1 − ρ − κ)EF [y(θ̃)]EF [θ̃]
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By the law of iterated expectations we know that

EF [y(s̃)θ̃] = EF [y(s̃)EF [θ̃∣s̃]]
= EF [y(s̃)[ρs̃ + (1 − ρ)EF [θ̃]]]
= ρEF [y(s̃)s̃] + (1 − ρ)EF [y(s̃)]EF [θ̃].

Using the fact that θ̃ and s̃ have the same marginal distributions we conclude that

EF [y(s̃)θ̃] = ρEF [y(θ̃)θ̃] + (1 − ρ)EF [y(θ̃)]EF [θ̃] = ρCovF (y(θ̃), θ̃) +EF [y(θ̃)]EF [θ̃].
Taking the derivative of the principal’s expected payoff with respect to the confidence level we

get

∂U(κ)
∂κ

= −2κV arF (y(θ̃)) + 2ρ[CovF (y(θ̃), θ̃) − V arF (y(θ̃))].
It follows that the principal’s expected payoff is strictly concave in the agent’s level of confidence:

∂2U(κ)
∂κ2

= −2V arF (y(θ̃)) < 0.
As a result, there exists a unique level of confidence κ∗(β) that maximizes the principal’s ex-

pected payoff, which is given by the following expression

κ∗(β) = ρ(CovF (y(θ̃),θ̃)
V arF (y(θ̃))

− 1) = −ρCovF (y(θ̃),c(θ̃))
V arF (y(θ̃))

= −ρβ.

Finally, κ∗(β) > −ρ is equivalent to CovF (y(θ̃), θ̃)/V arF (y(θ̃)) > 0 and κ∗(β) < 1 − ρ is

equivalent to CovF (y(θ̃), θ̃)/V arF (y(θ̃)) < 1/ρ. Therefore, κ∗(β) ∈ (−ρ,1 − ρ) is equivalent

to β ∈ (−(1 − ρ)/ρ,1). ∎
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