
 

    

Collaborative Research Center Transregio 224 - www.crctr224.de 

Rheinische Friedrich-Wilhelms-Universität Bonn - Universität Mannheim 

 

 

 

 

 

 

 

 

Discussion Paper No. 528 

Project C 03 

 

 

Supply Chain Frictions 

 

Ying-Ju Chen1 

Zhengqing Gui2 

Ernst-Ludwig von Thadden3 

Xiaojian Zhao4 

 

 

 

 

 

 

 

 

 

 

 

April 2024 

 

 

 

 

1 School of Business and Management (ISOM), Hong Kong University of Science and Technology, Email: imchen@ust.hk 
2 Risk Management Institute, National University of Singapore, Email: zgui@nus.edu.sg 

3 University of Mannheim and CEPR, Email: vthadden@uni-mannheim.de 
4 Department of Economics, Monash Business School, Monash University, Email: xjzhao81@gmail.com 

 

 

 

 

 

 

Support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 

through CRC TR 224 is gratefully acknowledged. 

Discussion Paper Series – CRC TR 224 



Supply Chain Frictions∗

Ying-Ju Chen ² Zhengqing Gui ³ Ernst-Ludwig von Thadden ğ

Xiaojian Zhao ¶

April 2024

Abstract

A central problem in supply chains is to coordinate the mismatch between supply

and demand along the chain. This paper studies a problem of contracting between

a manufacturer and a retailer who privately observes the retail demand materialized

after the contracting stage. Under quite general assumptions, we show that the optimal

contract must be either a wholesale contract or a buyback contract, depending on the

retailer’s ex-ante liquidity and bargaining power. In a buyback contract, the manufac-

turer requests an upfront payment from the retailer and buys back the unsold inventory

at a previously agreed price. Depending on downstream liquidity and bargaining power

this price may be constant or demand-dependent. Since return shipments are inefficient,

retail supply and price will be lower than the őrst-best level. The optimal contracts are

robust to several extensions including multiple retailers.
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1 Introduction

Supply chains are a major element of international trade and make decentralized manu-

facturing possible, often across considerable distances. Yet, exactly because of the large

distances that typically separate the őrms in a supply chain, these relationships are subject

to inherent frictions. Two important such frictions are the mismatch between supply and

demand and the information asymmetry between upstream and downstream participants.

Supply-demand mismatch arises naturally because the interaction between upstream man-

ufacturers and downstream users of their products typically is subject to unavoidable long

lead times and demand uncertainty. Accordingly, production upstream must occur before

downstream demand is realized. When demand is large, the downstream őrm can only use

up to the quantity delivered, and the excess demand is lost. When downstream demand is

small, unsold production may have second-best uses downstream or be salvaged upstream.

As transactions with őnal buyers take place downstream, information about realized demand

is typically available downstream, but not upstream due to separation. This gives rise to

the second friction, which is the asymmetry of information between the member őrms of the

supply chain. In a decentralized supply chain, these frictions are central to the working of

supply chains and they naturally interact. This calls for a systematic investigation and is

the objective of the present paper.

We examine the simplest upstream-downstream relationship possible, a model in which

a manufacturer sells its products through a retailer operating in a remote market.1 Two key

factors characterize this relationship. First, production precedes sales, thus the contract-

ing parties have to őx the contractual terms before demand uncertainty is resolved. This

assumption is widely used in the literature of vertical contracting (e.g., Deneckere et al.,

1996, 1997; Montez, 2015) and is the origin of the supply-demand mismatch. Second, the

manufacturer cannot directly observe the retailer’s sales and revenue. As a result, a verti-

cal contract should: (1) determine the volume of trade, (2) specify the amount and timing

of payments, and (3) deal with the questions of salvaging and re-ordering, the including

incentive-compatible pricing of return shipments, so as to induce the retailer to execute the

contract as intended, and to realize the envisaged gains from trade.

In practice, a number of contracts are used in supply chains, including buyback, franchise,

quantity ŕexibility, revenue sharing, service commitment, two-part tariff, wholesale price,

and others. There is large literature investigating these contracts and their consequences

on supply chain performance in various contexts (see Cachon (2003) and Shen et al. (2019)

for extensive discussions). Existing studies typically focus on particular contract forms and

1In its simplest form, this is the classical news vendor problem in Operations Management.
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examine their impact on mitigating supply-demand mismatch, supply chain inefficiencies, or

information asymmetry. In fact, the survey paper Shen et al. (2019) mentions 455 papers

and categorizes 131 papers based on the contract form investigated. While they provide

various angles to understand the practical use of these contracts, the conceptual question

what is the optimal contract under the typical frictions present in supply chains, however,

has received less attention. As Cachon (2003) put it succinctly: łpractice has been used as

a motivation for theoretical work, but theoretical work has not found its way into practicež.

In order to make progress on this front, we study a game with two dates. Contracting

happens at date 0, which determines the quantity, an immediate cash transfer, and rules for

the execution of the future interaction. Retail demand is realized at date 1, after which there

can be further transfers and a return or salvages of unsold inventories. If date-1 cash transfers

and return shipments are contingent on realized demand, they must be incentive-compatible.

Hence, ex-post, the contracting parties face a tradeoff between cash and returns. These two

channels differ in several respects. Cash payments are bounded by the retailer’s initial wealth

plus his date-1 revenue, which is increasing in realized demand, but private information of the

retailer. This limited liability constraint has been considered in the literature on contracts in

industrial organization (e.g., Brander and Lewis, 1986) and captures the fundamental feature

of small and medium enterprises: they are typically resource-constrained and thus the only

collateral that can be pledged is the business value they create. Return shipments, on the

other hand, cannot exceed the total amount of leftover inventories, which is negatively related

to ex-post demand. Finally, cash transfers are efficient, while returning unsold inventories

typically is not.2 This assumption, together with the retailer’s limited liability, makes the

return of unsold inventories an imperfect screening device. As a result, the manufacturer’s

objective is to minimize the use of returns by appropriate incentive-compatible contracts.

Without assuming any functional form of contracts, we őnd that the optimal contract

takes a rather simple form. At date 0, in exchange for the shipment of goods, the retailer

makes an upfront payment to the manufacturer. After the realization of demand at date

1, there is either no more obligation for transfers or shipments from the retailer (wholesale

contracts), or, under a buyback contract, the retailer transfers state-dependent quantities

of cash and inventory back to the manufacturer. When realized demand is high, the cash

payment is a high, őxed target and there are no inventory returns, while the cash payment

is low and returns are positive when the realized demand is too low for the retailer to pay

the őxed cash target in full. The rationale for this result is the following. Facing the adverse

2In part of the literature, the salvage value of unsold inventories is assumed to be zero (e.g., Marvel and
Peck, 1995; Arya and Mittendorf, 2004). This simpliőcation is less realistic for non-perishable goods, such
as clothes and electronic devices.
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selection problem, the manufacturer wants to elicit the retailer’s private information, so the

return of unsold inventory is used as a disciplining device when the reported demand is low.

This inefficiency is also used to discipline the size of the initial order. However, ex ante the

manufacturer also wants to minimize inefficient inventory returns by the retailer. Therefore,

return policies will be used only when the reported demand is sufficiently low. Notably, and

differently from related contractual structures in corporate őnance, which we discuss below,

the associated buyback price may not be constant. Hence, optimal contracts can involve

variable or constant ex-post pricing.

Proposition 4 summarizes our main results. It shows that the optimal contract shifts from

wholesale to buyback as the retailer’s ex-ante liquidity or his bargaining power decrease. The

buyback contract then features a constant buyback price, which switches to non-linear pricing

when the retailer’s ex-ante position deteriorates further. Our measure of bargaining power

describes the competitiveness of the retailer’s supply market, and our theory therefore links

the contractual form endogenously to the competitiveness of that market. Therefore, our

paper can be viewed as a uniőed micro-foundation for both wholesale contracts and buyback

contracts observed in practice. Since the second-best optimal quantity under a buyback

contract is strictly lower than the őrst-best level, the parties prefer wholesale contracts, but

these cannot be implemented if the retailer does not have enough bargaining power.

This result is surprisingly robust to various extensions of our benchmark model. When

the retailer can salvage unsold inventory by őresales without delay and frictions, such őre-

sales may become part of the optimal contract, but the buyback structure with inefficient

returns remains optimal. When the retail price is endogenous and inŕuences the distribution

of demand, Proposition 7 shows that the contract optimally reduces the price below the

monopoly level. In other words, information asymmetry restricts the manufacturer’s market

power. When the manufacturer contracts with multiple retailers, Proposition 8 characterizes

a set of symmetric optimal contracts. The łsumž of these contracts is equivalent to the opti-

mal contract in a single-retailer model in which the retailer has larger bargaining power. It

is as if the retailers are merged into one big entity and contract with the manufacturer, after

which they split the contract terms equally. Based on this observation Corollary 1 states that

when the number of retailers is sufficiently large, optimal contracts will switch from buyback

to wholesale contracts without returns, and price and quantity will revert to the producers’

optimal level. Put differently, introducing extra retailers in a vertical relationship pushes the

market supply towards the őrst-best level, but will be accompanied by an increase in price.
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1.1 Related literature

Our paper studies supply chains under general contracting subject to information asymme-

try and limited liability. There is a lot of interesting prior work on speciőc contracts in such

environments, for example on buyback/return contract in the presence of information asym-

metry. Noteworthy are, in particular, Yue and Raghunathan (2007), Hsieh et al. (2008),

Taylor and Xiao (2009), and Babich et al. (2012), which all assume that the retailer pri-

vately knows the demand distribution. Yue and Raghunathan (2007) compare two speciőc

contract forms: no return and full return, where the latter guarantees that the buyback

price equals the wholesale price. Hsieh et al. (2008) do not consider screening contracts but

instead compare across three scenarios: the retailer shares demand information truthfully

under an all-unit quantity discount contract with buyback, the retailer withholds demand

information under an all-unit quantity discount contract with buyback, and the centralized

supply chain. They focus on whether structural properties of ordering decisions are pre-

served in these scenarios. In Taylor and Xiao (2009), the retailer can exert efforts to improve

demand information accuracy, and only two exogenous contract forms are considered: re-

bates contract that compensates the retailer for each unit sold to end consumers, and returns

contract that speciőes a buyback price for each unsold unit. In Babich et al. (2012), the

supplier designs a menu of contracts, each of which comprises a wholesale price, a buyback

price, and a lump-sum transfer. Kumar and Srinivasan (2007) consider the case in which the

retailer who decides the order quantity and retail price is risk-averse. Our paper is distinct

from all these papers by studying the general contract space without assuming any speciőc

contract forms. Our proposed nonlinear return contract appears to be novel to the supply

chain contracting literature3 and may offer new guidance to practitioners for the design of

optimal contracts.

The key feature of our model is to consider the frictions caused by information asym-

metry and production-in-advance jointly. There is a large body of literature studying őrms’

inventory choices and production capacity, originating from Kreps and Scheinkman (1983)

and then followed by many others (e.g., Davidson and Deneckere, 1986; Deneckere and Peck,

1995; Deneckere et al., 1996; Maggi, 1996). In a recent paper, Montez and Schutz (2021)

apply techniques from all-pay auctions to study price competition where őrms have private

information about their inventory levels. Our study departs from these papers by arguing

that market demand is likely to be the retailer’s private information, which gives rise to the

3In the survey paper by Shen et al. (2019, Table 1), a return contract is deőned by the right to łreturn
the unsold products at the end of selling season at a return pricež. This constant return price speciőcation
is used in all the references therein.
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informational role of buyback contracts.4 A number of papers introduce information asym-

metry into vertical contracts (e.g., Rey and Tirole, 1986; Blair and Lewis, 1994; Arya and

Mittendorf, 2004), but do not speciőcally consider the tension between the retailer’s private

information about demand and inventory decisions.

Technically, we model an ex-post screening problem with hidden characteristics. When

the type set is a continuum, the standard methodology used in the literature is control theory,

pioneered by Guesnerie and Laffont (1984) and further developed by Hellwig (2010). How-

ever, the control-theoretic approach cannot be applied in the present paper. In our model,

each type of retailer’s set of deviations is bounded by his limited liability and feasibility

constraint and thus depends on the endogenous contract. Therefore, the retailer’s incentive

constraint cannot be simpliőed into a local differential equation. This feature is similar to

the őnancial contracting literature by Townsend (1979) and Gale and Hellwig (1985), but in

their settings, there is no feasibility constraint, which substantially complicates the problem

in our retail contracting context.5 We overcome this difficulty using an ironing approach

in the spirit of Myerson (1981), and recently Loertscher and Muir (2022), but we differ

from the Myersonian approach in two aspects. First, our incentive constraint does not im-

ply the monotonicity of allocation rules, so our ironing process can be applied to problems

with weaker incentive constraints than that of standard screening problems. Second, the

łironedž contract in our model need not be optimal and must be further optimized by global

techniques, while in the existing literature the łironedž mechanism is already optimal.

The rest of this paper is organized as follows. Section 2 introduces the model setup.

Section 3 provides the benchmark with symmetric information. Section 4 analyzes the model

of asymmetric information and determines optimal contracts including their comparative

statics. Section 5 discusses several key assumptions of the model and extends our benchmark

model to different environments. Section 6 concludes. Some technical proofs are given in

Appendix A. We provide a more comprehensive review of our ironing approach and the

proofs of two extensions in the internet Appendix B.

4In this context, Wang et al. (2020) examine the signaling role of buyback contracts, while they take the
buyback contractual form as exogenous.

5Relatedly, Gui et al. (2019) provide a detailed discussion on how the presence of limited liability affects
the analysis of incentive constraints in the őnancial contracting literature. In particular, that paper shows
that ignoring limited liability off the equilibrium path may lead to an over-simpliőed analysis and sub-optimal
contracts.
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2 Model

A manufacturer (she) contracts with a retailer (he) on the delivery of a homogeneous product.

Production has no őxed costs and constant marginal costs c > 0. Given any retail price

p, retail demand ω is stochastic and characterized by the distribution function F (·; p) over

[0,+∞).6 F (·; p) admits a density function f that is positive and bounded almost everywhere.

In our baseline model, we assume that p is exogenous and observable. Therefore, we drop

the reference to p in this section and the next two.

Retail demand ω is realized after the quantity q has been produced and delivered to

the retailer and can only be observed by the retailer. The manufacturer only knows F (·).

This results in two distortions. First, production must take place prior to the realization

of demand, thus there will be a supply-demand mismatch. Second, the realization of de-

mand is the retailer’s private information, so all contractual obligations after sales must be

incentive-compatible for the retailer. By applying the Revelation Principle, we focus on di-

rect mechanisms in which the retailer simply reports his demand (or type) ω̂ and the contract

is executed correspondingly.

After observing ω, the retailer determines the volume of sales, s. When there is a supply

shortage, i.e., q < ω, the retailer can only sell up to the quantity q, and the excess demand is

lost. When there is insufficient demand, i.e., q > ω, the retailer can only sell up to ω. Thus

realized sales satisfy

s = s(ω) ∈ [0,min(ω, q)]. (FS)

s, too, is unobservable to the manufacturer.

The retailer is able to salvage unsold inventories at a constant salvage value vr per unit.

If instead the manufacturer possesses unsold inventories, her per unit salvage value is vm.

However, because of local knowledge, transaction costs or other frictions, it is more efficient

for the retailer to keep unsold inventories.7, i.e., vm < vr. To make the analysis non-trivial,

we assume

p > c > vr. (1)

Hence, producing to sell at salvage value is not proőtable, but normal sales are proőtable

6This formulation of stochastic outcomes, the łparameterized-distribution-function approachž, was pio-
neered by Mirrlees (1974) and Holmström (1979). Early usages in the IO/price theory literature include
Burns and Walsh (1981). See Section 5.2 for a brief structural discussion of this model.

7In the framework developed here, this feature can hold even if vr ≤ vm as long as transportation costs
for return shipments are taken into account.
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and are known to be proőtable.

A contract Γ = (q, T0, s, T1, R) speciőes: (1) the quantity q delivered to the retailer; (2)

the cash transfer from the retailer to the manufacturer prior to sales (T0), (3) the level of

sales by the retailer (s), (4) after sales payments by the retailer to the manufacturer (T1);

(5) the return shipment of unsold inventory R. The last three components depend on ω and

are therefore to be understood as functions.8 This description captures many different types

of retail contracts in practice.

Example 1 (Wholesale price). In a wholesale price contract, the manufacturer charges

the retailer a constant wholesale price pw per unit purchased at date 0, with no state-

contingent transfer at date 1. The corresponding transfers and returns are, respectively,

T0 + T1 = pwq, R = 0.

Example 2 (Buyback). In a buyback contract, the manufacturer charges the wholesale

price pw and buys back unsold units at the price b < pw per unit. Therefore,

T0 = pwq, T1 = −bR, R = q − s.

Example 3 (Revenue sharing). In a revenue-sharing contract, in addition to the whole-

sale price, the manufacturer also obtains a fraction α of the retailer’s revenue. In this case,

T0 = pwq, T1 = αps, R = 0.

If demand is commonly observable and the retailer faces no limited liability, all these

contracts are enforceable. We assume that this is not possible, as the manufacturer does not

have enough information about the retailer’s activity. As discussed in the introduction, this

is the case in many applications in practice.

The timing of the game is depicted in Figure 1. At date 0, the manufacturer offers the

retailer a take-it-or-leave-it contract Γ. If the retailer accepts the contract, he makes an

initial payment T0 to the manufacturer in exchange for the delivery of q units of the product.

At date 1, retail demand ω is realized. The retailer observes ω and sells the quantity s. He

then makes a report ω̂ to the manufacturer, pays her T1, and returns R units, based on ω̂.

For simplicity, we assume that both contracting parties are risk-neutral, and there is no

discounting. Let the retailer’s initial wealth be W ≥ 0. Under contract Γ, the retailer’s

8As usual, when there is no risk of confusion, we shall denote the quantity (a number) and the function
(a mapping into these quantities) by the same symbol.
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Date 0: Γ is signed.

Retailer transfers T0.
Manufacturer delivers q.

Date 1: ω is realized.

Retailer sells s.

Retailer reports ω̂
and transfers T1 and R.

Figure 1: Timeline

ex-post proőt from realized demand ω, reported demand ω̂ and sales s is

ur(ω, ω̂, s) = W − T0 + ps− T1(ω̂) + vr[q − s−R(ω̂)].

Here, W − T0 is the retailer’s cash position at date 0, ps is the gross revenue from sales, so

ps − T1(ω̂) is the retailer’s cash ŕow at date 1, and vr[q − s − R(ω̂)] is the salvage value of

the retailer’s inventory after returns.

Since the manufacturer has no őxed costs and constant marginal costs,9 her ex-post payoff

is

um(ω̂) = T0 − cq + T1(ω̂) + vmR(ω̂).

Note that the problem is one of private values: the manufacturer is exposed to the demand

shock ω only through the retailer’s ex-post actions (T1, R).

Ex-post, for each realization of ω, the retailer chooses not only his report strategically

optimally, but also his sales level s. The contracting problem becomes interesting because

of the feasibility, liquidity and information restrictions faced by the retailer.

The őrst such restriction is that the retailer cannot return more than the amount of

unsold inventory he has and cannot re-order after strong demand. This implies the following

feasibility constraint for returns:

0 ≤ R ≤ q − s. (FR)

The second feasibility restriction is that the retailer cannot pay the manufacturer more

than what he has at any time of the game. This implies the following liquidity constraints,

at dates 0 and 1, respectively:

T0 ≤ W, (FT0)

T1 ≤ W − T0 + ps. (FT1)

9Given our explicit consideration of non-linear pricing, it is not difficult to include őxed costs of production
here.
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In practice, liquidity constraints (feasibility with respect to payment) arise for various

reasons, such as the retailer’s inability to raise additional external őnance, his option to

quit the relationship ex-post, or legislation banning exploitative contracts. Note that we do

not consider the salvage value of unsold inventory on the right-hand side of (FT1), because

in practice liquidating leftover inventory typically takes time. In Section 5.1, we discuss a

variation of the model where the retailer can use cash generated by salvaging.

Third, sales by the retailer must satisfy the feasibility constraint (FS). Fourth, by the

revelation principle, the retailer must have the incentive to report his type ω truthfully. And

őfth, he must have the incentive to carry out sales s(ω) as planned.10 Overall, this leads to

the following incentive-compatibility constraint:

ps(ω)− T1(ω) + vr[q − s(ω)−R(ω)] ≥ pŝ− T1(ω̂) + vr[q − ŝ−R(ω̂)] (IC)

for all ω, ω̂, and ŝ such that

0 ≤ ŝ ≤ min(ω, q) (IC-FS)

0 ≤ R(ω̂) ≤ q − ŝ (IC-FR)

T1(ω̂) ≤ W − T0 + pŝ (IC-FT1)

Note that as the type-ω retailer misreports to be type-ω̂, the transfer and the return

shipment change accordingly. Hence, deviations of transfers and returns, (T̂1, R̂), are re-

stricted to lie in the range of the functions T1, R. However, any deviation of the retailer’s

ex-post choice of sales, ŝ, is unobserved and therefore unrestricted, as long as it satisőes

the incentive-feasibility constraint (IC-FS). We therefore face a problem of partially veriő-

able mechanism design, where the disclosure of private information (ω) through observable

actions (T1, R) is obfuscated by some other unobservable action (s).

The incentive constraint (IC)-(IC-FT1) is special in that it restricts the choice of possible

deviations to feasible lies. We only require each type of retailer to have no incentive to choose

the contract designed for other types when his after-sales wealth, W − T0 + pŝ, and unsold

inventory, q − ŝ, permit this. Hence, not only does the incentive condition (IC) depend

on the retailer’s type, but also the feasibility of her deviations in (IC-FS)-(IC-FT1). The

overall incentive constraint therefore is weaker than in standard problems where (IC) holds

for all ω, ω̂. Incorporating the qualiőcations (IC-FS)-(IC-FT1) makes it difficult to simplify

the global incentive constraint to a set of local őrst-order conditions, and apply the well-

established control-theoretic approach to solve for the optimal contract, as in the literature

10Note that the last two points are distinct because sales s(ω) are unobservable upstream.
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of mechanism design with hidden characteristics.11 We discuss how we address this problem

in Section 4.

Finally, the retailer has a monetary outside option, denoted by u. Naturally, u ≥ 0. The

manufacturer’s outside option is normalized to zero. u therefore measures the retailer’s rela-

tive bargaining power vis-à-vis the manufacturer in a take-it-or-leave-it offer in the contract

proposal game. More generally, u is a measure of the competitiveness of the supplier market

and will play an important role in our comparative statics analysis of contract design. Thus,

the contracting parties have the participation (or individual-rationality) constraints

Eω ur(ω, ω, s(ω)) ≥ W + u (IRr)

Eω um(ω) ≥ 0. (IRm)

Hence, a full statement of the contracting problem between manufacturer and retailer is

max
Γ

Eω um(ω)

subject to (FS), (FR), (FT0), (FT1), (IC)-(IC-FT1), (IRr), (IRm).

To simplify the analysis, we restrict attention to schedules T1 and R with őnitely many

discontinuities. This assumption allows us to simplify the characterization of contracts in

Lemma 5 below when considering its Lagrangian dual problem. This or similar assumptions

are standard, either explicitly or implicitly, in much of the literature on contracting with

asymmetric information (Guesnerie and Laffont, 1984; Lacker and Weinberg, 1989).

We call a contract feasible if it satisőes the constraints (FS), (FR), (FT0), and (FT1),

admissible if it satisőes all the constraints, and optimal if it is a solution to this problem.

Moreover, if two contracts differ only on a set of states with zero measure, we say they are

equivalent. If an admissible contract Γ generates less expected payoff to the manufacturer

than an admissible contract Γ̂, we say Γ is dominated by Γ̂. And őnally, we say that a

quantity q can be implemented if there is an admissible contract Γ = (q, T0, s, T1, R).

3 Symmetric Information Benchmark

The contracting problem described above features two main frictions: one physical in the

sense that quantities must be determined before the realization of demand, the other infor-

mational in the sense that demand is private information of the retailer. We take the former

friction as given and immutable, and in this section investigate the benchmark of symmetric

11See the large literature following Guesnerie and Laffont (1984).
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full information.

In this case, it is not efficient to return merchandise to the manufacturer, as this is value-

reducing compared to salvaging by the retailer and provides no other beneőt. Furthermore,

sales are equal to maximum feasible demand, s = min(ω, q). Social surplus from producing

quantity q therefore is

S(q) =

∫ +∞

0

pmin(ω, q) + vr(q −min(ω, q))dF (ω)− cq.

Denote by Q(q) the expected feasible demand given q and price p,

Q(q) =

∫ +∞

0

min(ω, q)dF (ω) = q −

∫ q

0

F (ω)dω, (2)

where the last equality follows by partial integration. Then

S(q) = (p− vr)Q(q)− (c− vr)q. (3)

This reformulation of total surplus has a natural interpretation. Since the product can

always be salvaged with a per unit value vr, p − vr and c − vr are the łrealž price and

marginal cost of the retailer, respectively. Therefore, S(q) is similar to the standard proőt

function of a monopolist facing a demand function Q(q). Moreover, Q′(q) = 1 − F (q) and

Q′′(q) = −f(q). Hence, Q′(0) > 0, and it is optimal to produce a positive quantity. By (1),

the őrst-best quantity therefore is uniquely pinned down by the őrst-order condition.12

Proposition 1. The őrst-best quantity qFB is unique and satisőes

F (qFB) =
p− c

p− vr
. (4)

The őrst-best surplus is

S(qFB) = (p− c)qFB − (p− vr)

∫ qFB

0

F (ω)dω > 0. (5)

Proof. (4) follows directly from the őrst-order condition, (5) from (2) and (3).

12The quantity is őrst-best from the production/distribution side, as these are the frictions we focus
on. Since we work only with reduced-form demand, we cannot make statements about overall optimality
including consumers surplus.
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4 Optimal Contract under Asymmetric Information

For the second-best analysis it is useful to distinguish two parts of a contract. The őrst part

consists of q and T0, deliveries and transfers at date 0. The second part consists of T1, R and

s; they are functions of ω and ω̂ and are subject to the incentive-compatibility constraint.

We will sometimes refer to (q, T0) as the date-0 component, and the triple (s, T1, R) as the

date-1 component. It is important to realize that the choice of s and ω̂ at date 1 must be

optimal for each ω given the schedules T1 and R, since the retailer has private information

and no commitment power.

4.1 Implementation by wholesale contracts

Under a wholesale contract, there are no state-contingent transfers. In our framework, for

an optimal contract to be wholesale the date-1 component must therefore satisfy

T1(ω) = T1 and R(ω) = 0 for all ω.

In this case, the contract provides no costly incentives, so social surplus is split between

contracting parties without efficiency loss. More generally, the following characterization of

wholesale contracts is useful.

Lemma 1. The quantity q can be implemented by a wholesale contract with full surplus

extraction if and only if

S(q) + cq ≤ W + u. (6)

Proof. Under a wholesale contract that implements q, the retailer gets

ur = W − T0 + S(q) + cq − T1.

Under the constraint T1 ≤ W −T0, the total payment T0+T1 necessary to achieve a binding

(IRr) is feasible if and only if (6) holds.

Lemma 1 characterizes the situations in which the retailer’s initial liquidity constraint

(FT0) does not bind. This occurs if she either has sufficient funds or sufficiently high bar-

gaining power.

Note that the left-hand side of (6) is strictly monotone in q. Let q be the greatest q

for which (6) holds. Hence, if qFB ≤ q, the őrst-best can be implemented by a wholesale

contract. If qFB > q, the őrst-best cannot be implemented by a wholesale contract with full
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surplus extraction. By Lemma 1 the condition qFB ≤ q is therefore necessary and sufficient

for the őrst-best to be second-best optimal. By (5) and (6), this condition is equivalent to

pqFB − (p− vr)

∫ qFB

0

F (ω)dω ≤ W + u. (7)

If (7) does not hold, the manufacturer has two options. First, she can implement the

quantity q by an optimal wholesale contract with full surplus extraction, as given in Lemma

1. And second, she can offer a contract that implements a quantity q > q by requiring some

ex-post state-contingent repayment T1 supported by costly incentives.13 In the following

three subsections, we assume that q > q and investigate this second option.

4.2 The sales decision

In this subsection, we simplify the contracting problem by eliminating the in- and off-

equilibrium sales decisions s(ω) and ŝ, respectively. To begin with we note that it is re-

dundant to consider the choice of T0 and T1 separately, since (FT0) and all payoffs involve

only T0 + T1(ω) and T1 is unbounded below. Hence, we can add any constant C ≤ W − T0

to T0 and subtract it from T1(ω) for all ω without changing any of the analysis and results.

Without loss of generality, we assume from now on that T0 = W .14

Next, denote by V the total ex-post value transfer to the manufacturer as evaluated by

the retailer:

V (ω) = T1(ω) + vrR(ω). (8)

Using T0 = W and (8), the retailer’s ex-post utility is

ur(ω, ω̂, s) = ps− T1(ω̂) + vr[q − s−R(ω̂)] (9)

= (p− vr)s− V (ω̂) + vrq. (10)

As (10) shows, ur(ω, ω̂, s) is strictly increasing in s for each ω, and the total transfer V

is not affected by increasing s. Hence, it is optimal for the retailer ex-post to set s as large

as possible. But as (9) shows, for a given deviation ω̂ the maximum sales volume that the

13Clearly, the option of supplying qFB and leaving some rents over and above W + u to the retailer is
dominated by the őrst alternative.

14If W is large or q small, as in the preceding subsection, this implies negative T1, i.e. payments from the
manufacturer to the retailer, in some states at date 1.
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retailer can choose is

ŝ = min(q −R(ω̂),min(ω, q)) (11)

= min(q −R(ω̂), ω). (12)

By (11), if R(ω̂) ≤ q−min(ω, q), the maximum sales volume for deviation ω̂ is min(ω, q),

the maximum feasible volume given by (FS). If R(ω̂) > q −min(ω, q), the maximum sales

volume for deviation ω̂ is q −R(ω̂) because of the feasibility constraint for returns (FR).

The conceptual difficulty with the IC constraint (IC)-(IC-FT1) is that the observable off-

the-equilibrium choices T1(ω̂) and R(ω̂) depend on the unobservable action ŝ. The preceding

distinction allows to eliminate ŝ from the IC constraint .

Lemma 2. A feasible contract is incentive-compatible if and only if for any ω, ω̂ ≥ 0 with

T1(ω̂) ≤ pmin(ω, q),

(IC1) R(ω̂) ≤ q −min(ω, q) implies V (ω) + (p− vr)(min(ω, q)− s(ω)) ≤ V (ω̂),

(IC2) R(ω̂) > q −min(ω, q) implies V (ω) + (p− vr)(q −R(ω̂)− s(ω)) ≤ V (ω̂).

Proof. łOnly ifž: Suppose that a feasible contract Γ satisőes (IC)-(IC-FT1). Consider any

ω, ω̂ ≥ 0 with T1(ω̂) ≤ pmin(ω, q). If R(ω̂) ≤ q −min(ω, q), ŝ = min(ω, q) satisőes (IC-FS)-

(IC-FT1) by deőnition. Inserting this ŝ into (IC) gives (IC1). If R(ω̂) > q − min(ω, q), let

ŝ = q − R(ω̂). The assumption then reads ŝ < min(ω, q), which implies (IC-FS). (IC-FR)

holds trivially by construction. Finally, use feasibility (FR) and (FT1), evaluated at ω̂, twice

to obtain T1(ω̂) ≤ ps(ω̂) ≤ p(q − R(ω̂)) = pŝ, which is (IC-FT1). Inserting this ŝ into (IC)

then gives (IC2).

łIfž: Suppose that Γ satisőes (IC1) and (IC2) for any ω, ω̂ ≥ 0 with T1(ω̂) ≤ pmin(ω, q).

Consider ω, ω̂ ≥ 0, and ŝ that satisfy the constraints (IC-FS)-(IC-FT1). (IC-FS) and

(IC-FT1) imply T1(ω̂) ≤ pmin(ω, q). By the argument leading to (12), when R(ω̂) ≤ q −

min(ω, q), the best possible ex-post deviation is ŝ = min(ω, q). Since (IC) holds for this ŝ

by (IC1), it holds for all admissible ŝ. When R(ω̂) > q−min(ω, q), the best possible ex-post

deviation is ŝ = q −R(ω̂). Since (IC) holds for this ŝ by (IC2), it holds for all admissible ŝ.

Hence, Γ is incentive-compatible.

Turning to the in-equilibrium sales decision s(ω), the argument leading up to (12) shows

that, if there is a ω̂ such that q − R(ω̂) ≤ ω ≤ q, with at least one inequality being

strict, incentive-compatibility alone does not suffice to conclude that the retailer chooses

s = min(ω, q) ex post. However, as the following lemma shows, such a contract structure

would not be optimal ex ante.
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Lemma 3. A contract is optimal only if s(ω) = min(ω, q) for all ω.

Proof. See Appendix A.1.

Intuitively, the only reason that the retailer may want to undersell in some state ω is

that the contract speciőes a large return shipment of unsold inventory in order to relax

the incentive constraint for the report of some ω̂. However, this yields lower proőts on the

equilibrium path. Therefore, the manufacturer can be made better off by reducing the return

shipment without violating the incentive constraint, which is possible because if the retailer

in any state has the ability and incentive to misreport ω in Γ̂, he would have done so already

in the original contract Γ by selling less.

4.3 Implementing q > q: Local buyback contracts

Lemmas 2 and 3 taken together now make it possible to identify several key features of

optimal contracts that can be used to characterize them constructively. The following result

follows directly from these two lemmas.

Lemma 4. If T1 and R are the ex-post components of an optimal contract, then:

(O1) For any ω, ω̂ ≤ q with T1(ω̂) ≤ pω,

(a) if R(ω̂) ≤ q − ω, then V (ω) ≤ V (ω̂),

(b) if R(ω̂) > q − ω, then V (ω) ≤ V (ω̂) + (p− vr)[R(ω̂)− (q − ω)].

(O2) For all ω ≥ q, T1(ω) = T1(q) and R(ω) = 0.

Lemma 4 implies that in an optimal contract, any demand realization higher than q is

irrelevant to the retailer’s incentive problem, because beyond q payments are ŕat at T1(q)

and returns are zero. Moreover, for any demand realization lower than q, an optimal contract

only needs to prevent two types of deviation: First, if ω̂ is a feasible deviation under s(ω) = ω,

then the retailer’s total transfer V (ω) must be lower than that of ω̂. This is the case of (O1a)

in Lemma 4. Second, if ω̂ is infeasible given the optimal sales at the realized state ω, then

the retailer who wants to deviate must deliberately sell less, i.e., ŝ = q −R(ω̂), to fulőll the

return requirements R(ω̂). In this case, V (ω) can be higher than V (ω̂), but is still bounded

by a (affine) linear function of ω. This is the case of (O1b) in Lemma 4. But as we shall see

momentarily, (O1) does not imply monotonicity.
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Using Lemma 3 and Lemma 4, for any given q, we can relax the problem of őnding the

optimal date-1 component of the contract as follows:

max
T1,R

Eω[T1(ω) + vmR(ω)],

subject to

• the pointwise constraints

T1(ω) = T1(q) and R(ω) = 0, (O2)

for all ω ≥ q, and

0 ≤ R(ω) ≤ q − ω, (FR)

T1(ω) ≤ pω, (FT1)

for all ω ∈ [0, q],

• the incentive constraints (O1) of Lemma 4,

• and the retailer’s participation constraint

(p− vr) Eω [min(ω, q)]− Eω[V (ω)] + vrq ≥ W + u. (IRr)

In the relaxed problem, using the incentive constraints (O1) is still difficult because of

the inherent off-the-equilibrium feasibility constraints. In classical adverse selection models,

incentive-compatibility usually reduces to an envelope formula, which implies that the agent’s

indirect utility function is absolutely continuous (Milgrom and Segal, 2002; Hellwig, 2010).

However, this is not the case in our model due to the presence of (FR) and (FT1). To wit,

consider the following date-1 component of a contract for some given quantity q > q:

T1(ω) =







αω ω < q/2,

pq/2 ω ≥ q/2;
R(ω) =







q − ω ω < q/2,

0 ω ≥ q/2.

The retailer’s total transfer function V is

V (ω) =







αω + vr(q − ω) ω < q/2,

pq/2 ω ≥ q/2;
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and his indirect utility function is

Ur(ω) = ur(ω, ω,min(ω, q)) =



















(p− α)ω ω < q/2,

pω + vr(q − ω)− pq/2 q/2 ≤ ω < q,

pq/2 ω ≥ q.

If α ∈ [p−vr, p], then this contract is admissible. Note that R(ω) > q/2 for any ω ∈ [0, q/2),

while T1(ω) ≥ pq/2 for any ω ≥ q/2. The retailer with type ω ∈ [0, q/2) cannot exaggerate

his type above q/2 due to the liquidity constraint for cash. The retailer with type ω ≥ q/2

does not want to understate his type below q/2 due to the incentive constraint. However, if

α > p − vr, Ur has an upward jump at q/2. If also α > vr, the function V associated with

T1, R is non-monotonic and discontinuous. Figure 2 provides a graphical illustration of this

example.

T1

0 ω

pω

q/2

R

0 ω

q − ω

q/2

V

0 ωq/2

Ur

0 ωq/2 q

Figure 2: The non-monotonicity of V and discontinuity of the indirect utility function

Moreover, unlike in classical models such as Guesnerie and Laffont (1984), incentive-
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T1

0 ω

pω

q/2 q

R

0 ω

q − ω

q/2 q

V

0 ω

Figure 3: The non-monotonicity of T1 and R.

compatibility does not imply the monotonicity of the decision function R. To see this, it

suffices to consider a particularly simple case where V is constant on the whole state space,

as depicted in Figure 3. Such a contract is clearly incentive-compatible because no type

has an incentive to misreport other types (formally, both conditions of Lemma 2 are always

satisőed). Given that V (ω) = T1(ω)+vrR(ω) is constant, the only constraint for T1 is (FT1)

and for R is (FR). Hence, there is considerable leeway in choosing the shapes of T1 and R.

We therefore propose a more complex constructive approach that combines local and

global optimization techniques. The main idea is to show that any admissible contract

that meets the necessary conditions in Lemma 3 and Lemma 4 is strictly dominated by an

admissible contract of a speciőc form, if it does not already have this form. This implies

that optimal contracts exist and are of this form. In order to construct such contracts, we

apply the ironing technique used in traditional screening models (Baron and Myerson, 1982;

Guesnerie and Laffont, 1984) and auction theory (Myerson, 1981), using some results from

real analysis and the theory of convex functions (see, e.g., Rockafellar, 1970; Rudin, 1987).

Our ironing approach works as follows (we provide a full technical description in online

Appendix B.1). Since return shipments are inefficient, it is better to replace them, over any

small interval, with cash transfers. If the retailer’s expected utility remains unchanged after

this process, then we get an improved contract. However, this improvement must satisfy

feasibility. Suppose that we reduce return shipments at (a small interval around) ω̂ from

R(ω̂) to R̂(ω̂), and let ω be a state satisfying pω ≥ T1(ω̂) and R̂(ω̂) < q − ω < R(ω̂). In the

original contract, the relationship between V (ω) and V (ω̂) is governed by (O1b) of Lemma 4,

while in the improved contract, V (ω) and V (ω̂) should satisfy (O1a) of Lemma 4, which is

tighter than (O1b).

Therefore, we start by ironing the total transfer function V to make it nondecreasing on

the state space. This is followed by a restructuring of the function R to make it nonincreasing.

The ironed contract has an important property: pω ≥ T1(ω̂) implies V (ω) ≤ V (ω̂). In other
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words, V satisőes (O1a) of Lemma 4 irrespective of R. We therefore can use cash transfers

to replace return shipments on those ironed intervals.

Figure 4 provides a graphical illustration of the ironing procedure when N = {1, 2}.

V

0 ϕϕ
1

ϕ1 F (q) 1

V

0 ωω1 ω1 q +∞

Figure 4: The ironing approach

The ironed contract has countably many intervals [ωn, ωn), indexed by n ∈ N , such

that on each of them: (1) V (ω) equals a constant tn + vr max(q − ωn, 0); and (2) there is a

minimum level max(q − ωn, 0) of return shipments. Intuitively, for realizations in [ωn, ωn)

the contract can be interpreted as setting a reference repayment level of tn in cash and of

max(q − ωn, 0) of returns. If the retailer’s cash is insufficient (which implies that there are

more unsold units), the manufacturer buys back additional units at a marginal buyback price

vr. Hence, locally in [ωn, ωn), a retailer who considers deviating marginally trades off cash

payments and returns at the rate 1 : vr, as the unrestricted incentive constraint (IC) would

require. In this sense, the new contract, which locally resembles a buyback contract on the

interval [ωn, ωn), provides optimal incentives. This gives rise to the following deőnition.

Deőnition 1. A contract is a local buyback contract if there exist countably many disjoint

intervals [ωn, ωn) and an equal number of constants tn, indexed by n ∈ N , such that:

(a) For any ω,

(a.1) if ω ∈ [ωn, ωn), then T1(ω) = min(pω, tn), R(ω) = max(q − ωn, 0) + max((tn −

pω)/vr, 0),

(a.2) if ω /∈
⋃

n∈N [ωn, ωn), then T1(ω) ≤ pmin(ω, q), R(ω) = max(q − ω, 0).
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(b) For any n ∈ N , tn ≤ (p− vr)ωn + vr min(ωn, q).

(c) V (ω) is nondecreasing and continuous.

One can immediately verify from Deőnition 1 that any local buyback contract is ad-

missible. By (a) and (b), it satisőes (FT1) and (FR). For incentive-compatibility, note

that the retailer has no incentive to exaggerate his type because V (ω) is nondecreasing. If

ω ∈ [ωn, ωn), the retailer cannot understate his type below ωn, because R(ω̂) > q−ωn for all

ω̂ < ωn, and he does not want to deviate to ω̂ ∈ [ωn, ω), because V is constant on [ωn, ωn).

If ω /∈
⋃

n∈N [ωn, ωn), he cannot understate his type because R(ω̂) > max(q − ω, 0) for all

ω̂ < ω.

Lemma 5 shows why these contracts are important.

Lemma 5. If a contract implementing q > q is optimal, then it is a local buyback contract.

Proof. Assume that Γ implementing q > q is optimal, and Γ̂ is the corresponding local

buyback contract constructed from the ironing procedure. By construction, the retailer’s

total transfer function in Γ̂ is exactly V̂ . Since V̂(1) = V(1), the retailer’s expected total

transfer in Γ̂ is identical to that of Γ.

Suppose that T1(ω) > T̂1(ω) for some ω ∈ [ωn, ωn). Then T1(ω) > tn. There are three

possible cases to be discussed.

Case 1: V (ω) ≤ kn. Then R(ω) < q − ωn for some ωn < q. Recall that in the right

neighborhood of ωn, V is strictly increasing, so there exists ω̂ > ωn such that ω̂ ≤ q −R(ω)

and V (ω̂) > kn ≥ V (ω), a contradiction to (O1a) of Lemma 4.

Case 2: V (ω) > kn for some ωn ≤ q. Then there exists ω̂ ∈ (ω, ωn] such that V (ω̂) ≤ kn <

V (ω). By (O1a) of Lemma 4, T1(ω̂) > pω ≥ T1(ω) > tn, which implies that R(ω̂) < q − ωn.

The state ω̂ őts the assumption of Case 1 and will again lead to the same contradiction.

Case 3: V (ω) > kn for some ωn = +∞. Then T1(ω) > tn = kn. Since limω→+∞ V (ω) =

kn, there exists ω̂ > ω such that V (ω̂) = T1(ω̂) < T1(ω) ≤ V (ω), a contradiction to (O1a) of

Lemma 4.

Therefore, T1(ω) ≤ T̂1(ω) for any ω ∈ [ωn, ωn). Since Eω[V̂ (ω)|ωn ≤ ω < ωn] =

Eω[V (ω)|ωn ≤ ω < ωn], we have Eω[R̂(ω)|ωn ≤ ω < ωn] ≤ Eω[R(ω)|ωn ≤ ω < ωn].

Moreover, for any ω /∈
⋃

n∈N [ωn, ωn), Γ and Γ̂ are identical. In expectation, Γ̂ uses (weakly)

more cash and (weakly) less return shipments than Γ. Thus, Γ̂ is also optimal, and there

must be T1(ω) = T̂1(ω) = min(pω, tn) for almost all ω ∈ [ωn, ωn).

If T1(ω) = pω, then R(ω) < max(q−ω, 0). Otherwise, by (O1b) of Lemma 4, both (FT1)

and (FR) bind for any states lower than ω, V is therefore strictly increasing from 0 to ω,

and ω cannot be an interior point of an ironed interval. Now that (FT1) is binding while
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(FR) is slack at ω, V is weakly decreasing in the neighborhood of ω. If T1(ω) = tn, then

V is constant in the neighborhood of ω. Thus, on the whole interval [ωn, ωn), V is weakly

decreasing. Note that V (ωn+) ≥ kn. If V (ωn−) < kn, then V has an upward jump at

ωn, a contradiction to (O1b) of Lemma 4. Hence, V (ωn−) ≥ kn. Recall that V̂ equals the

constant kn on [ωn, ωn). The monotonicity of V must imply that V also equals the constant

kn on [ωn, ωn). In summary, Γ is equivalent to Γ̂.

Figure 5 depicts how we construct the local buyback contract used in Lemma 5. In the

top panel, the black line is an arbitrary admissible contract. The blue lines illustrate our

ironing approach, which yields the local buyback contract in the bottom panel.

T1

0 ωωn−1 ωn ωn ωn+1

R

0 ωωn−1 ωn ωn ωn+1

V

0 ωωn−1 ωn ωn ωn+1

T1

0 ωωn−1 ωn ωn ωn+1

R

0 ωωn−1 ωn ωn ωn+1

V

0 ωωn−1 ωn ωn ωn+1

Figure 5: Constructing a local buyback contract

4.4 Implementing q > q: Buyback contracts

Lemma 5 transforms the problem of őnding optimal contracts into the problem of őnding

optimal local buyback contracts. In any local buyback contract, T1 and R can have dis-

continuities only at ωn. Therefore, the assumption that T1 and R have only őnitely many
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discontinuities restricts our attention to local buyback contracts with |N | = N < +∞. The

analysis is further simpliőed if one assumes that the distribution of retail demand has a non-

decreasing hazard rate, i.e., that f(ω)/[1 − F (ω)] is nondecreasing. From now on we make

this assumption, which, while not without loss of generality, is standard in the mechanism

design literature and is satisőed by many commonly used distributions (see, e.g., Bagnoli

and Bergstrom, 2005).

When |N | is őnite, without loss of generality denote N = {1, 2, . . . , N}. For convenience,

we rank the set of cutoffs {ωn, ωn|1 ≤ n ≤ N} by ascending order of n, and denote ω0 = 0.

Thus, N = n(q), and

ωn−1 ≤ ωn ≤ ωn ≤ ωn+1 for any 1 ≤ n ≤ N − 1. (13)

The following result completes our characterization of local buyback contracts, by łőlling

in the holesž between the buyback intervals.

Lemma 6. If a local buyback contract is optimal, then for each ω ∈ [ωn, ωn+1) and 0 ≤ n ≤

N − 1,

T1(ω) = tn + p(ω − ωn). (14)

Proof. (O1b) of Lemma 4 requires that V ′(ω) ≤ p − vr, and Deőnition 1 requires that

R(ω) = q − ω, so (14) is equivalent to V ′(ω) ≤ p − vr being binding on any [ωn, ωn+1).

Suppose that (14) does not hold for some n. We can reduce ωn+1 to ω′
n+1 and increase T1(ω)

to make (14) hold on [ωn, ω
′
n+1). Here, ω′

n+1 is chosen to keep tn+1 unchanged and V (ω)

continuous.15 The resulting contract is still a local buyback contract which uses more cash

and less return shipments in expectation. The retailer is worse off, but he can be compensated

by the manufacturer with lump-sum transfers. The manufacturer is strictly better off even

after the compensation. Therefore, a binding (14) is necessary for optimality.

Figure 6 graphically illustrates our discussion. In the top panel, the blue line is an

arbitrary local buyback contract. The red lines depict how we increase T1(ω) to make (14)

bind, which yields the improved contract in the bottom panel.

Using the continuity of V , as well as (13) and (14), we can write {tn}2≤n≤N as functions

15If n = N , we can simply raise T1(ω) on [ωN ,+∞) and the argument continues to hold.
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Figure 6: Improving a local buyback contract

of the cutoffs {ωn, ωn}1≤n≤N and t1. To see this, one can compute that

V (ω) =



















tn + vr(q − ωn) ω ∈ [ωn, ωn), 0 ≤ n ≤ N − 1,

tn + vr(q − ωn) + (p− vr)(ω − ωn) ω ∈ [ωn, ωn+1), 0 ≤ n ≤ N − 1,

tN ω ∈ [ωN ,+∞).

Continuity implies that

tn + vr(q − ωn) + (p− vr)(ωn+1 − ωn) = tn+1 + vr(q − ωn+1), 1 ≤ n ≤ N − 1,

tN−1 + vr(q − ωN−1) + (p− vr)(ωN − ωN−1) = tN ,

which, by recursive substitution, can be simpliőed to

tn = t1 − pω1 + (p− vr)ωn + vr min(ωn, q)− (p− vr)
n−1
∑

j=2

(ωj − ωj). (15)
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Thus, (b) and (c) of Deőnition 1 boil down to the recursive relationship (15) plus the following

constraint for t1:

t1 ≤ (p− vr)ω1 + vrω1, with equality if ω > 0. (16)

As a result, both contracting parties’ expected payoffs in any local buyback contract can be

pinned down by the cutoffs {ωn, ωn}1≤n≤N , t1, and the quantity q. Thus, standard techniques

for constrained optimization problems can be applied.

Let L be the Lagrangian of the manufacturer’s optimization problem, and λ be the La-

grangian multiplier of the retailer’s participation constraint (IRr). If Γ maximizes Eω[um(ω)]

subject to (IRr), the sequence {ωn, ωn}1≤n≤N , the parameters t1, q, and λ must jointly be a

stationary point of the Lagrangian

L = Eω[um(ω)] + λ(Eω[ur(ω, ω,min(ω, q))]−W − u),

subject to (13)-(16), as well as the complementary slackness constraints for (IRr):

λ ≥ 0, λ(Eω[ur(ω, ω,min(ω, q))]−W − u) = 0.

Omitting constant terms in L, we have:

L =

∫ +∞

0

[(1− λ)T1(ω)− (λvr − vm)R(ω)]dF (ω)− cq. (17)

It is now straightforward to complete the optimization problem. We start by discussing

the range of λ. If λ ≤ vm/vr, then L is strictly increasing in Eω[R(ω)] (unless λ = vm/vr) and

Eω[T1(ω)]. If λ ≥ 1, then L is strictly decreasing in Eω[T1(ω)] (unless λ = 1) and Eω[R(ω)].

In both cases, the Lagrangian has no interior stationary point. Therefore, λ ∈ (vm/vr, 1),

which immediately tells us that (IRr) binds in any optimal contracts.

An examination of the őrst-order necessary conditions shows that the Lagrangian has an

interior stationary point only when N = 1. The resulting contract thus has the following

structure.

Deőnition 2. A contract is a buyback contract if there exist a constant t ∈ [0, pq], such
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that for any ω,

T1(ω) = min(pω, t);

R(ω) =







q − ω ω < ω,

max((t− pω)/vr, 0) ω ≥ ω;

where ω = max
(

0, t−vrq
p−vr

)

.

Put simply, Deőnition 2 comes from taking N = 1 and ω1 = q in Deőnition 1. We now

have:

Proposition 2. The optimal contract implementing q > q is a buyback contract with a

binding (IRr).

Proof. See Appendix A.2.

To see the intuition why more than one interval in Deőnition 1 is not optimal, consider

increasing both ω1 and ω1 by ε > 0 sufficiently small. According to the recursive relationship

(15), this increases t1 by εp while keeping all other tns unchanged. By Deőnition 1, these

increments will reduce return shipments by ε and increase cash repayments by εp on the

interval [t1/p, ω1), and will increase return shipments by ε(p−vr)/vr on the interval [ω1, t1/p).

The gross effect on the Lagrangian is, approximately,

ε[p(1− λ) + (λvr − vm)][F (ω1)− F (t1/p)]−
ε(p− vr)(λvr − vm)

vr
[F (t1/p)− F (ω1)].

Note that t1/p is a convex combination of ω1 and ω1. Therefore, when F is not too concave,

which is ensured by the nondecreasing hazard rate, the gross effect will be positive. This

pushes ω1 to its largest possible value and implies that the optimal local buyback contract

must have N = 1 and ω1 = q.

By Deőnition 2, in a buyback contract the retailer must repay t to the manufacturer in

cash, regardless of the state of demand. If pω ≥ t, the retailer can fulőll this obligation and

no return is needed. If pω < t, return shipments must be added to make up the difference

in value. This is as if the manufacturer buys back unsold inventories from the retailer.

Buyback price. Our analysis yields further insights into the pricing of optimal buyback

contracts. In fact, there are two types of optimal buyback contracts. To see this, with a

slight abuse of notation, let us write T1 as a function of R, denoted by T1 = T1(R). One can
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therefore deőne the buyback price b(R) as

b(R) =
t− T1(R)

R
.

Intuitively, b(R) is the menu of per-unit prices offered by the manufacturer if the retailer

returns R units of unsold inventory. The price is set to ensure that the retailer can repay

exactly t in cash together with the returns R. Depending on the buyback price scheme, a

buyback contract may now exhibit two different structures.

Constant buyback price. If ω = 0, then T1(ω) = pω and R(ω) = (t − pω)/vr for any

ω < t/p. The buyback price is a constant b(R) = vr for all R.

Variable buyback price. If ω > 0, then when ω ∈ [ω, t/p), the buyback price is still vr,

but when ω < ω, T1(ω) = pω, R(ω) = q − ω, so T1(R) = p(q − R). The buyback price is

therefore

b(R) =
t− p(q −R)

R
= p−

pq − t

R
.

which is increasing in R.

Proposition 2 shows that the pricing strategy of the optimal buyback contract depends

on order quantity. In particular, let q be the solution for

S(q) + (c− vr)q = W + u. (18)

Clearly, comparing (6) and (18), q < q. As the following proposition shows, the buyback

price becomes variable if and only if the order quantity is larger than q.

Proposition 3. The optimal contract implementing q > q

(a) has a constant buyback price when q < q ≤ q;

(b) has a variable buyback price when q > q.

Proof. See Appendix A.3.

Figure 7 provides a graphical illustration of Proposition 3.

The above analysis exhibits some interesting similarities and differences between our

constructive approach and other ironing approaches in the literature. All these approaches

start with taking the convex closure of certain components of a mechanism. The ironing

approach in Myerson (1981), as well as other papers in screening, monopoly pricing, and

auction, makes use of this convexity to obtain a monotone allocation rule, which is both

necessary and sufficient for incentive-compatibility and thus serves as a natural base for
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0 ωt/p

R

0 ωt/p

b(R)
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vr

q

(a) Constant buyback price (q ≤ q)

T1

0 ωω t/p

R

0 ωω t/p

b(R)

0 R

vr

q − ω q

p

(b) Variable buyback price (q > q)

Figure 7: Two types of buyback contracts

overall optimization. However, in our model, incentive-compatibility itself does not imply

monotonicity neither of T1 and R, nor of the indirect utility Ur, nor their continuity. We

use ironing to get a monotonic V , but additional structures of T1 and R (the local buyback

structure) are still needed for local optimality. In this sense, our approach can be applied to

problems with incentive constraints weaker than that of the standard screening problems.

4.5 Optimal order quantity

Going back to Subsection 4.1, our őnal step is to investigate whether the manufacturer indeed

beneőts from implementing a quantity higher than q.

Proposition 4. (a) When qFB ≤ q, the optimal contract is a wholesale contract imple-

menting q∗ = qFB.

(b) When qFB > q, the optimal contract is a buyback contract implementing a quantity

q∗ ∈ (q, qFB). Moreover, if q∗ > q, the buyback price is variable; if q∗ ≤ q, the buyback

price is constant.
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Proof. See Appendix A.4.

In a nutshell, when (6) holds, optimal contracts are wholesale contracts with the őrst-best

quantity. When (6) fails, optimal contracts are buyback contracts, with inefficient returns

of unsold inventories at date 1, which are necessary for ex-post truth-telling and incentivize

the contracting parties to reduce the probability of oversupply ex ante. Consequently, the

second-best quantity is smaller than the őrst-best. The date-0 cash repayment T0 does

not enter the manufacturer’s objective function, thus it is irrelevant to the optimality of

contracts.

The explicit characterization of the solution in the proof of Proposition 4 makes it pos-

sible to study the comparative statics regarding the retailer’s initial cash holding W and

reservation utility u. Here, the sum W + u can be interpreted as a measure of the retailer’s

bargaining power.

Note that qFB depends on neither W nor u. By (6) and (18), the two cutoffs q and q are

increasing in W +u. Moreover, it is easy to show that the optimal order quantity q is weakly

increasing in W + u. This implies the following comparative statics with respect to W + u,

which can be easily proved by using the explicit expressions from the proof of Proposition 4.

Proposition 5. There are two thresholds W V B > WCB > 0 such that

(a) If W +u < W V B, the optimal contract implements q∗ > q and is buyback with variable

buyback pricing.

(b) If W V B < W + u < WCB, the optimal contract implements q < q∗ < q and is buyback

with constant buyback pricing.

(c) If W + u > WCB, the optimal contract implements q∗ = qFB and is wholesale.

In words: When the retailer has a lot of liquidity and/or good alternative sources, i.e.

when W + u is large, the optimal contract is a wholesale contract with a őxed date-1 cash

transfer and zero return shipment. As the retailer’s bargaining power decreases, the opti-

mal contract shifts from wholesale to buyback, and the retailer must return inventory at a

constant buyback price. When the retailer’s bargaining power decreases further, the overall

date-1 return obligation increases, and when it passes a certain threshold, the optimal con-

tract becomes a buyback contract with variable pricing. The manufacturer then raises the

buyback price in low-demand states to extract more revenue from the retailer in high-demand

states.

This relationship between bargaining power and contract structures actually corresponds

to observed practice. Large retailers such as Walmart or Target are less likely to delay
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payments to suppliers and can salvage their inventory directly as they face weaker őnancial

constraints and better sourcing alternatives, while smaller groceries or bookstores often spec-

ify buyback terms in their contracts with producers. Our analysis provides further insights

on the optimal pricing of these buyback contracts, which to our knowledge have not yet been

investigated systematically. The existing supply chain contracting literature usually com-

pares various contracts observed in practice (e.g., Cachon, 2003; Chen, 2003) and derives

managerial implications. Our approach speaks directly to the question of contract optimal-

ity. Remarkably, even though salvaging unsold inventory at the retailer is more efficient, the

manufacturer optimally can buy back some of it to alleviate the ex-post adverse selection

problem.

5 Discussion and Extensions

The benchmark model of the previous sections is a bare-bones version of a standard con-

tracting model in a vertical relationship. In this section we discuss several modiőcations

and extensions and show how our technique and results can be adapted to these different

scenarios.

5.1 Firesales

The limited liability constraint at date 1 results from the assumption that at the market

price p the retailer has a limited market and may therefore be cash-constrained ex post.

This is a fairly typical situation. Yet, as an alternative it may be instructive to consider a

modiőed setting where the retailer has the option to salvage unsold inventories to a third

party at a őresale price vr before making payments to the manufacturer at date 1. This

changes his liquidity constraint as follows.

Denoting by sf (ω) the amount of inventory thus salvaged by the retailer, we have sf (ω) ≤

q−s(ω). Without loss of generality we continue to assume that T0 = W . Now the incentive-

compatibility constraint becomes

ps(ω)− T1(ω) + vr[q − s(ω)−R(ω)] ≥ pŝ− T1(ω̂) + vr[q − ŝ−R(ω̂)] (IC′)
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for all ω, ω̂, ŝ, and ŝf such that

0 ≤ ŝf ≤ q − ŝ (IC′-FSf )

0 ≤ ŝ ≤ min(ω, q) (IC′-FS)

0 ≤ R(ω̂) ≤ q − ŝ− ŝf (IC′-FR)

T1(ω̂) ≤ pŝ+ vrŝf . (IC′-FT1)

Note that neither sf nor ŝf enters (IC′). They only affect (IC′-FSf ), (IC′-FR), and (IC′-FT1).

Two observations are key for understanding the ex-post problem in this setting. First,

suppose that (s, sf , T1, R) is feasible in the model with őresales. Deőne T̃1 = T1 − vrsf and

R̃ = R+ sf . Then (s, T̃1, R̃) is feasible in the model without őresales. To see this, note that

the only function of sf is to enlarge the set of possible deviations for the retailer. Allowing

for őresales therefore actually tightens his incentive-compatibility constraint. On the other

hand and second, őresales conducted by the retailer are more efficient than salvaging by the

manufacturer (vr > vm). Therefore, to the extent that a contract in the baseline model uses

salvaging by the manufacturer with positive probability, contracts in the extended model

will try to avoid this.

This implies that the optimal contract of Propositions 4 and 5 will be optimal in the

extended model if W + u > WCB, because it does not make use of inefficient liquidations.

For W+u < WCB, however, the optimal contract of Section 4 does use inefficient liquidation.

Hence, in the extended model there is a tradeoff between truth-telling incentives through

returns and efficiency achieved by retail őresales. Note that the optimal contract of Section

4 is feasible and incentive-compatible in the extended model, because the optimal buyback

price is always (weakly) greater than the őresale price vr. Hence, under these contracts the

retailer never has a (strict) incentive to use őresales as an instrument to generate ex-post

cash. However, this contract is no longer optimal. By arguments similar to those in the

previous section, one can show that the tradeoff is optimally resolved by a łrevisedž buyback

contract that combines (inefficient) returns and (efficient) retail salvaging. Without proof,

we provide this result in the following proposition.

Proposition 6. In the model in which the retailer can use őresales to generate cash, if a

contract with date-1 component (s, sf , T1, R) is optimal for implementing q > q then there
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exists a constant t ∈ [0, pq], such that for any ω,

T1(ω) =







pω if ω < ω,

t if ω ≥ ω;

R(ω) =







q − ω if ω < ω,

0 if ω ≥ ω;

sf (ω) =







(t− pω)/vr if ω ∈ [ω, t/p),

0 otherwise.

where ω = max
(

0, t−vrq
p−vr

)

, and (IRr) binds.

Comparing Proposition 6 with Proposition 2, one can see that the two optimal contracts

are distinct only when ω ∈ [ω, t/p), which corresponds to a positive sf . Since t > pω, the

manufacturer’s utility from the optimal contract with őresales is always strictly higher than

the optimal contract without őresales. But although returns are inefficient, the optimal

contract continues to use them as a truth-telling incentive if ω > 0, i.e. if W + u is small.

If W + u is larger, such that ω = 0, the optimal contract uses no returns and essentially

mimics the efficiency properties of a wholesale contract by means of retail őresales.

5.2 Price-dependent demand

The model described in Section 2 has assumed that the retail price p is exogenous. This

is probably a good assumption if the manufacturer is sufficiently remote and unacquainted

with the retailer’s local market, and if that market is sufficiently competitive. Alternatively,

the retail price could be contractible and therefore endogenous to the contracting problem.

In this section, we therefore relax our restriction and allow for a price-dependent stochastic

demand function F (·; p). This parameterized-distribution-function approach provides greater

ŕexibility than standard state-space models and encompasses different speciőc state-space

formulations.16 That pricing is determined before the demand realization is consistent with

the long-standing literature on price-setting newsvendor problems (Petruzzi and Dada, 1999).

16As an example, consider the basic demand model Q = Q(p, θ) where Q ≥ 0 is market demand and θ ∈ Θ
a random variable with probability measure µ. For any p and 0 ≤ ω1 < ω2, we have 0 ≤ µ({θ|Q(p; θ) ≤
ω1}) ≤ µ({θ|Q(p; θ) ≤ ω2}) ≤ 1. Hence, F (ω; p) = µ({θ|Q(p; θ) ≤ ω}) is a well-deőned family of distribution
functions. Other examples can easily be constructed.
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We assume that F (·; ·) is atomless and differentiable in both ω and p, and write

Fp(ω; p) =
∂F (ω; p)

∂p
, f(ω; p) =

∂F (ω; p)

∂ω
> 0.

By deőnition, Fp(·; p) is the marginal effect of price on the distribution of demand, f(·; p) is

the density function of F given price p.17 In line with traditional models, such as the state-

space model sketched above, we assume that F (·; p) satisőes őrst-order stochastic dominance,

i.e., for any p and ω > 0, Fp(ω; p) > 0. This assumption implies that retail demand is more

likely to be higher when the price is lower. To avoid unbounded solutions, we also assume

that limp→∞ F (ω; p) = 1 for all ω > 0. That is, when the price is sufficiently high, retail

demand becomes arbitrarily small.

Expected feasible demand and social surplus are as in Section 3,

Q(q; p) = q −

∫ q

0

F (ω; p)dω,

S(q; p) = (p− vr)Q(q; p)− (c− vr)q,

respectively. To avoid excessive technical details, we assume that social surplus is concave

in p and q, and Spq(q; p) ≥ 0. Assuming that p is observable and contractible, the deőnition

of a retail contract must be extended to Γ = (p, q, T0, s, T1, R).

When information is symmetric, the őrst-order conditions for maximizing surplus are

F (q; p) =
p− c

p− vr
, (19)

Q(q; p) = −(p− vr)Qp(q; p). (20)

The concavity of S ensures that these conditions are sufficient and the solution unique. De-

note the solution by (pFB, qFB). Then the őrst-best contract generates surplus S(qFB; pFB).

When information is asymmetric, we maintain the assumption in Section 4.4 that F has

a nondecreasing hazard rate, i.e., given any p, f(ω; p)/[1 − F (ω; p)] is nondecreasing in ω.

Since p is observable and determined before the realization of demand, it continues to be

true that optimal contracts must be either wholesale or buyback. Following an argument

similar to Lemma 1, for any p, let q(p) be the largest solution of

S(q(p); p) + cq(p) ≤ W + u. (21)

q(p) is the maximum quantity that can be implemented by a wholesale contract (with full

17We will use subscripts p and q to denote partial derivatives throughout this section.
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surplus extraction) under price p. As a result, the őrst-best quantity qFB can be implemented

by a wholesale contract under the őrst-best price pFB if and only if qFB ≤ q(pFB).

Now we consider any p and hold it őxed. To implement a q > q(p), the parties have to

turn to a buyback contract. In this case, the optimal price and quantity are characterized

in Proposition 7.

Proposition 7. Suppose the retail price is endogenous and contractible. Then

(a) when qFB ≤ q(pFB), the optimal Γ is a wholesale contract implementing qFB at a price

pFB;

(b) when qFB > q(pFB), the optimal Γ is a buyback contract implementing q∗ < qFB at a

price p∗ < pFB.

Proof. See Appendix B.2.

Intuitively, the efficiency loss in a buyback contract comes from return shipments, so

the manufacturer is more reluctant to have łexcess supplyž rather than łexcess demandž.

Consequently, she will deliver less products ex-ante and request a lower retail price to reduce

the probability of oversupply. This logic also applies to Proposition 4.

5.3 Multiple retailers

It is common in practice that a manufacturer sells her products through different retailers.

The manufacturer may want to maintain a relatively high retail price for her products,

but retailers usually compete with each other and attract customers by cutting down retail

prices. As a result, the manufacturer sometimes őxes the retail price through contracts. This

mechanism is the so-called Resale Price Maintenance (RPM) that has been well studied in the

literature (e.g., Marvel and McCafferty, 1984; Shaffer, 1991; Deneckere et al., 1996; Jullien

and Rey, 2007; Asker and Bar-Isaac, 2014) and intensively discussed in legal practice.18

However, there is still őerce debate about whether RPM is anti-competitive and should

be prohibited by policymakers. In this section, we extend our benchmark model to allow

for multiple retailers and see whether downstream competition changes the manufacturer’s

incentive to control retail price and quantity.

Consider an environment that is identical to the benchmark model in Section 2 with

the only exception that now there are n symmetric retailers, indexed by superscript j ∈

{1, 2, . . . , n}. At date 0, the manufacturer offers a contract to each retailer. The contract for

18See, e.g., Leegin Creative Leather Products, Inc. v. PSKS, Inc., dba Kay’s Kloset...Kay’s Shoes, 551
U.S. 877 (2007). https://www.supremecourt.gov/opinions/06pdf/06-480.pdf.
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retailer j speciőes the date-0 price pj, quantity qj, cash transfer T j
0 , the date-1 cash repayment

T j
1 and the return shipment Rj. The last two components are contingent on retailer j’s report

ω̂j.19 Retailers then decide whether to accept their corresponding contracts simultaneously.

At date 1, the retail demand ω is realized, and retailers make their reports. In the spirit

of Kreps and Scheinkman (1983), we assume that demand is allocated according to efficient

rationing, and when some retailers post the same price, their allocated demand should be

equal. Moreover, the distribution of demand F (ω; p) is determined by the highest price in

the market, i.e., max{p1, p2, . . . , pn}. We say that a collection of contracts Γ1,Γ2, . . . ,Γn are

optimal if they maximize the manufacturer’s proőts subject to all the constraints listed in

Section 2.

Optimal contracts are then characterized by Proposition 8.

Proposition 8. If Γ1,Γ2, . . . ,Γn are optimal, then they are identical. Moreover, let

p∗ = p1, q∗ = nq1, T ∗
0 = nT 1

0 , T ∗
1 (ω) = nT 1

1 (ω), R∗(ω) = nR1(ω).

Then Γ∗ = (p∗, q∗, T ∗
0 , T

∗
1 , R

∗) is optimal when there is only one retailer with initial wealth

nW and reservation utility nu.

Proof. See Appendix B.3.

According to Proposition 8, optimal contracts with multiple retailers are closely related

to the optimal buyback contract in the single-retailer model. It is as if that retailers are

merged together before contracting with the manufacturer. Therefore, by Proposition 4, the

structure of optimal contracts as well as the equilibrium price and quantity depends on nu.

In particular, by part (a) of Proposition 4, the őrst-best quantity will be implemented when

the single retailer’s reservation utility is sufficiently high, which translates into sufficiently

many retailers in the present model. We formally state this result in Corollary 1.

Corollary 1. When n is sufficiently large, the manufacturer distributes the őrst-best quantity

qFB evenly to all retailers. In this case, her proőts decreases with n.

Corollary 1 describes the effect of competition under RPM. Since the manufacturer fully

controls the retail price through contracts, she distributes her products equally among re-

tailers. As the number of retailers increases, the manufacturer has to produce more to make

sure that each retailer receives at least u. The total supply thus increases to the őrst-best

level qFB. After this point, the total supply becomes constant, so the manufacturer’s proőt

decreases as competition becomes more intensive.

19For simplicity, we assume that retailer j’s contract cannot depend on the other retailer’s report.
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6 Concluding Remarks

In this paper, we have analyzed optimal contracts in the archetypal model of a supply

chain between a manufacturer and retailer with demand-supply mismatch. If downstream

demand is private information, the optimal contract takes the form of either a wholesale or

a buyback contract, which provides a uniőed microeconomic foundation for retail contracts.

We generalize existing analytical tools by combining the ironing approach of Myerson (1981)

and others with global Lagrangian optimization tools and can thus study the comparative

statics of the optimal contract explicitly.

The model of this paper is very simple and already presents a number of technical diffi-

culties. We have discussed a few extensions, which can be accommodated in our modelling

framework and solved with the techniques developed here. Generalizations to more complex

supply chains with richer interactions will require further work. An example is the problem

of supply chain coordination, to alleviate the problem of demand-supply mismatch. Our sim-

ple assumption has been that production precedes sales, which is certainly appropriate for

many production-in-advance industries, in particular when geographic distance is important

(see, e.g., Ganapati and Wong (2023)). But in other situations some coordination may be

feasible, for example through reordering additional units or using wholesale intermediaries.

This type of model would introduce a more intricate dynamic dimension into the problem

and link it to the theory of dynamic screening models. Further developments of the the-

ory presented here should address the relation between supply chain contracts and őnancial

contracts, the determination of the optimal size of a chain, or the question of how vertical

relationships, demand volatility, and inventory management affect the market structure of

the retail sector. In this respect, (e.g., Hortaçsu and Syverson, 2015) leaves us a promising

research agenda of combining theory and practice in the future.
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Appendix

A.1 Proof of Lemma 3

For any admissible Γ, denote by A = {ω : s(ω) < min(ω, q)} the set of states ω in which

sales are not maximal. Suppose that A has a positive measure.

Ignoring some measure-theoretic őne points, choose a measurable function ε(ω) > 0 on

A and an alternative contract Γ̃ such that for all ω ∈ A, s̃(ω) = s(ω) + ε(ω) < min(ω, q),

R̃(ω) = R(ω) − ε(ω) > 0,20 and T̃1(ω) increases T1(ω) in a way that keeps the retailer’s

utility unchanged:

T̃1 = (p− vr)(s̃− s) + vr(R− R̃) + T1 = pε+ T1.

Thus, for any ω ∈ A, Ṽ = T̃1 + vrR̃ = V + (p − vr)ε. By construction, the new contract

satisőes the feasibility constraints (FS), (FR), and (FT1). We now use Lemma 2 to verify

that it is incentive-compatible.

For ω ∈ A and ω̂ /∈ A, note that Ṽ (ω) − V (ω) = (p − vr)(s̃(ω) − s(ω)), so (IC1) and

(IC2) of Lemma 2 follow from the original contract. For ω /∈ A and ω̂ ∈ A, note that

Ṽ (ω̂)−V (ω̂) = (p− vr)(R̃(ω̂)−R(ω̂)), so (IC1) and (IC2) hold when R(ω̂)− (q−min(ω, q))

is of the same sign as R̃(ω̂)− (q −min(ω, q)). When R(ω̂) > q −min(ω, q) > R̃(ω̂), we have

V (ω) + (p− vr)(min(ω, q)− s(ω)) ≤ V (ω) + (p− vr)(q − R̃(ω̂)− s(ω))

≤ V (ω̂) + (p− vr)ε(ω)

= Ṽ (ω̂).

For ω, ω̂ ∈ A, (IC1) and (IC2) follow from combining the previous two cases. The case when

ω, ω̂ /∈ A is trivial. Thus

The retailer’s utility is unchanged in Γ̃, so Γ̃ satisőes (IRr). Since the extra revenue from

Γ̃ goes entirely to the manufacturer, she is strictly better off:

T̃1 + vmR̃ = T1 + pε+ vmR̃ > T1

for all ω ∈ A. Therefore, Γ is strictly dominated by Γ̃, a contradiction.

Hence, any optimal contract has s(ω) = min(ω, q) for almost all ω. The piecewise

continuity of T1 and R implies that this is true pointwise.

20Note that by construction of A, R(ω) ≥ q − s(ω) > max(0, q − ω) ≥ 0.
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A.2 Proof of Proposition 2

Suppose that N ≥ 2. We őrst compute partial derivatives for the Lagrangian by ignoring

the recursive relationship (15). For 1 ≤ n ≤ N − 1,

∂L

∂ωn

= −

[

(1− λ)(pωn−1 − tn−1) + (λvr − vm)

(

ωn − ωn −
tn − pωn

vr

)]

f(ωn),

∂L

∂ωn

= −(1− λ)p[F (ωn+1)− F (ωn)] + (λvr − vm)[F (ωn)− F (ωn)],

∂L

∂tn
= (1− λ)[F (ωn+1)− F (tn/p)]−

λvr − vm
vr

[F (tn/p)− F (ωn)],

and for n = N ,

∂L

∂ωN

= −

[

(1− λ)(pωN−1 − tN−1) + (λvr − vm)

(

q − ωN −
tN − pωN

vr

)]

f(ωN),

∂L

∂tN
= (1− λ)[1− F (tN/p)]−

λvr − vm
vr

[F (tN/p)− F (ωN)].

After accounting for the recursive relationship (15), two cases are to be discussed.

Case 1. Suppose that ω1 > 0. Then t1 = (p − vr)ω1 + vrω1. Inserting this to the

expression of ∂L/∂ω1 gives us ∂L/∂ω1 = 0. Moreover, ω1 has an interior solution, so

dL

dω1

=
∂L

∂ω1

+ (p− vr)
N
∑

n=1

∂L

∂tn
= 0 =⇒

N
∑

n=1

∂L

∂tn
= 0.

Therefore,

dL

dω1

=
∂L

∂ω1

+ p
∂L

∂t1
− (p− vr)

N
∑

n=1

∂L

∂tn
=

∂L

∂ω1

+ p
∂L

∂t1
.

Case 2. Suppose that ω1 = 0. Then t1 becomes an independent variable, so

dL

dt1
=

N
∑

n=2

∂L

∂tn
.

Therefore,

dL

dω1

=
∂L

∂ω1

− p
N
∑

n=2

∂L

∂tn
=

∂L

∂ω1

+ p
∂L

∂t1
.
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In both cases,

dL

dω1

=
∂L

∂ω1

+ p
∂L

∂t1

= [(1− λ)p+ (λvr − vm)][F (ωn)− F (tn/p)]−
(p− vr)(λvr − vm)

vr
[F (tn/p)− F (ωn)].

(A.1)

Observe that

∂L

∂q
= −(λvr − vm)F (q) + (1− λ)p[1− F (q)]− c.

Since ∂L/∂q = 0 is necessary for optimality, we have

1− F (q) =
c+ λvr − vm

(1− λ)p+ λvr − vm
. (A.2)

By nondecreasing hazard rate, for any ω ∈ [t1/p, ω1],

f(ω) ≥
[1− F (ω)]f(t1/p)

1− F (t1/p)
≥

[1− F (q)]f(t1/p)

1− F (t1/p)
,

which implies that

F (ω1)− F (t1/p) =

∫ ω1

t1/p

f(ω)dω ≥
(ω1 − t1/p)[1− F (q)]f(t1/p)

1− F (t1/p)
. (A.3)

Similarly, for any ω ∈ [ω1, t1/p],

f(ω) ≤
f(t1/p)[1− F (ω)]

1− F (t1/p)
≤

f(t1/p)

1− F (t1/p)
,

which implies that

F (t1/p)− F (ω1) =

∫ t1/p

ω
1

f(ω)dω ≤
(t1/p− ω1)f(t1/p)

1− F (t1/p)
. (A.4)

Plugging (A.2), (A.3), and (A.4) into (A.1) yields

dL

dω1

≥
c(p− vr)(ω1 − ω1)f(t1/p)

p[1− F (t1/p)]
> 0,

which contradicts N ≥ 2. Hence, an optimal contract must have N = 1 and a binding (IRr).
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A.3 Proof of Proposition 3

If the buyback price is constant, the manufacturer’s expected utility is

Eω um(ω) = W − cq +

∫ t/p

0

[

pω + vm

(

t− pω

vr

)]

dF (ω) +

∫ +∞

t/p

tdF (ω)

= W − cq + t−

(

1−
vm
vr

)

p(t/p−Q (t/p)),

where t is determined by a binding (IRr),

Eω ur(ω, ω,min(ω, q)) = S(q) + cq − t

= W + u. (A.5)

Hence,

Eω um(ω) = S(q)− u−

(

1−
vm
vr

)

p(t/p−Q (t/p)). (A.6)

If the buyback price is variable, the manufacturer’s expected utility is

Eω um(ω) = W − cq +

∫ ω

0

[pω + vm(q − ω)]dF (ω)

+

∫ t/p

ω

[

pω + vm

(

t− pω

vr

)]

dF (ω) +

∫ +∞

t/p

tdF (ω),

where t is determined by a binding (IRr),

Eω ur(ω, ω,min(ω, q)) = S(q) + cq −

∫ ω

0

[pω + vr(q − ω)]dF (ω)−

∫ +∞

ω

tdF (ω)

= W + u. (A.7)

Hence,

Eω um(ω) = S(q)− u−

(

1−
vm
vr

)

[p(t/p−Q (t/p))− (p− vr)(ω −Q(ω))] . (A.8)

The cutoff between the case of constant price and that of variable price can be derived

from taking ω → 0 (and thus t → vrq) on the right-hand side of (A.5) (or equivalently the

right-hand side of (A.7)). Both approaches will give us (18). Then, ω = 0 if and only if

q ≤ q, and ω > 0 if and only if q > q. It is immediate from (6) and (18) that q < q.
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A.4 Proof of Proposition 4

Note that if the manufacturer offers a wholesale contract implementing q, her payoff is simply

W − cq. If she offers a buyback contract that implements q ∈ (q, q], her payoff is determined

by (A.6). The őrst-order derivative of Eω um(ω) is

dEω um(ω)

dq
= S ′(q)−

(

1−
vm
vr

)

[1−Q′(t/p)] t′(q)

= S ′(q)−

(

1−
vm
vr

)

F (t/p)[p− (p− vr)F (q)]. (A.9)

In the second equality, we use t′(q) = S ′(q) + c = vr + (p− vr)(1− F (q)), which comes from

(A.5). When q → q from the right, we have t → 0, and, more importantly,

lim
q→q+

Eω um(ω) = S(q)− u = W − cq,

lim
q→q+

dEω um(ω)

dq
= p− (p− vr)F (q)− c > 0.

The last inequality follows from (4) and qFB > q. In other words, there must be some q > q

that gives the manufacturer a strictly higher payoff than the wholesale contract.

If the manufacturer offers a buyback contract that implements q > q, her payoff is

determined by (A.6). The őrst-order derivative of Eω um(ω) is

dEω um(ω)

dq
= S ′(q)−

(

1−
vm
vr

)

[vr + (p− vr)Q
′(ω)ω′(q)−Q′(t/p)t′(q)]

= S ′(q)−

(

1−
vm
vr

)[

vrF (t/p) + (p− vr)
(F (t/p)− F (ω))(1− F (q))

1− F (ω)

]

.

(A.10)

In the second equality, we use:

t′(q) =
S ′(q) + c− vrF (ω)

1− F (ω)
= vr + (p− vr)

1− F (q)

1− F (ω)
,

ω′(q) =
t′(q)− vr
p− vr

=
1− F (q)

1− F (ω)
,

both of which come from (A.7).

Since q∗ is the optimal quantity that the manufacturer wants to implement using a

buyback contract, it should be a stationary point of Eω um(ω), which is given by either (A.9)

or (A.10). In both cases, S ′(q∗) > 0, which implies q∗ < qFB from (4).
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Online Appendix

B.1 The Ironing Approach

In this section, we provide formal statements and proofs of the ironing approach and the

derivation of local buyback contracts in Section 4.3.

Assume that Γ implements q > q and satisőes the necessary conditions in Lemma 3 and

Lemma 4. Let V be the associated total transfer as deőned in (8). We őrst construct a

new function V̂ by mapping V into the quantile space. For any ϕ ∈ [0, 1], let V(ϕ) be the

accumulated total transfer for all types below F−1(ϕ).21 That is,

V(ϕ) =

∫ F−1(φ)

0

V (ω)dF (ω) =

∫ φ

0

V (F−1(ϕ̂))dϕ̂.

By construction, V(ϕ) is increasing, absolutely continuous, and admits a (RadonśNikodym)

derivative V ′(ϕ) = V (F−1(ϕ)). Using ϕ = F (ω), we have V ′(F (ω)) = V (ω).

Denote by V̂ the lower convex envelope of V , which is the largest convex function below

V , formally deőned by

V̂ = sup{U|U is convex and U(ϕ) ≤ V(ϕ) for all ϕ ∈ [0, 1]}.

Since V̂ is convex, it is absolutely continuous and admits a nondecreasing (RadonśNikodym)

derivative V̂ ′. The łironed total transfer functionž is deőned as

V̂ (ω) = lim
ω̂→ω+

V̂ ′(F (ω̂)). (B.1)

Clearly, V̂ is right-continuous and nondecreasing. Furthermore, V̂(1) = V(1), so V̂ has the

same expectation as V with respect to the probability measure given by F . In what follows,

we establish several properties of V̂ that will allow us to construct an alternative contract

that dominates Γ.

Note that by construction, there exists countably many disjoint intervals [ϕ
n
, ϕn), indexed

by n ∈ N , such that V̂(ϕ) is linear on every [ϕ
n
, ϕn) and is strictly convex otherwise. Since

by (O2) of Lemma 4, V is linear on [F (q), 1], there exists one n ∈ N , say n(q), such that:

(1) [F (q), 1) ⊆ [ϕ
n(q)

, ϕn(q)); and (2) for all n ̸= n(q), ϕn ≤ F (q). By applying the inverse

mapping F−1, which maps [0, 1] to the extended real line, we deőne ωn = F−1(ϕ
n
) and

ωn = F−1(ϕn) for all n. Thus, ωn(q) ≤ q, ωn(q) = +∞, and for n ̸= n(q), ωn ≤ ωn ≤ q.

21Recall that F is an atomless distribution, so F−1 : [0, 1] 7→ [0,+∞) is well-deőned.
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Several observations follow from this construction. First, on each [ϕ
n
, ϕn), V̂(ϕ) is linear,

so V̂ ′(ϕ) is constant, and we denote this constant value by kn. By (B.1), for any ω ∈ [ωn, ωn),

V̂ (ω) = kn. Since V is enveloped by V̂ from below,

kn ≤ V (ωn) ≤ pωn + vr(q − ωn). (B.2)

Second, for any ϕ /∈
⋃

n∈N [ϕ
n
, ϕn), V̂(ϕ) = V(ϕ). By convexity, for almost all ω /∈

⋃

n∈N [ωn, ωn), V̂ (ω) = V (ω).

Third, for any ω /∈
⋃

n∈N [ωn, ωn), R(ω) = max(q − ω, 0). Suppose contrary to the

assertion that R(ω) < q − ω for some ω < q. Let ω̂ be a type satisfying ω ≤ ω̂ ≤ q − R(ω).

Then T (ω) ≤ pω̂ and R(ω) ≤ q−ω̂, which, by (O1a) of Lemma 4, implies that V (ω̂) ≤ V (ω).

Since the analysis applies to any ω̂ ∈ [ω, q − R(ω)], V is concave on [F (ω), F (q − R(ω))].

Passing to the convex envelope of V shows that ϕ = F (ω) must belong to some [ϕ
n
, ϕn) on

which V̂ is linear, a contradiction.

Finally, V̂ is continuous. Suppose contrary to the assertion that V̂ (ω−) < V̂ (ω) = V̂ (ω+)

at some ω, where V̂ (ω−) and V̂ (ω+) represent the left and right limit of V̂ at ω, respectively.

Then V̂ has subdifferential [V̂ (ω−), V̂ (ω+)] at ϕ = F (ω), implying that V̂ has a kink at ϕ.

Hence, V(ϕ) = V̂(ϕ). Since V is enveloped by V̂ from below, V (ω−) ≤ V̂ (ω−) < V̂ (ω+) ≤

V (ω+). However, by (O1b) of Lemma 4, for any ω̂ < ω,

V (ω) ≤ V (ω̂) + (p− vr)[R(ω̂)− (q − ω)] ≤ V (ω̂) + (p− vr)(ω − ω̂).

When ω̂ converges to ω from the left, V (ω) ≤ V (ω−). Similarly, for any ω̂ > ω,

V (ω̂) ≤ V (ω) + (p− vr)(ω̂ − ω).

When ω̂ converges to ω from the right, V (ω+) ≤ V (ω) ≤ V (ω−), a contradiction.

Using the function V̂ and the set of cutoffs {ωn, ωn}n∈N , we are ready to construct an

alternative contract Γ̂, deőned as22

T̂1(ω) =







min(pω, tn) ω ∈ [ωn, ωn),

V (ω)− vr max(q − ω, 0) ω /∈
⋃

n∈N [ωn, ωn),
(B.3)

R̂(ω) =







max(q − ωn, 0) + max((tn − pω)/vr, 0) ω ∈ [ωn, ωn),

max(q − ω, 0) ω /∈
⋃

n∈N [ωn, ωn),
(B.4)

22To save notation, we allow the operators min and max to take arguments on the extended reals. That
is, for any z ∈ R, min(z,+∞) = z and max(z,−∞) = z.
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where tn = kn − vr max(q − ωn, 0). This implies

tn ≤ (p− vr)ωn + vr min(ωn, q) for any n ∈ N . (B.5)

Clearly, Γ̂ as constructed from (B.3)-(B.5) is a local buyback contract.

B.2 Proof of Proposition 7

First, note that S(q; p) becomes negative for sufficiently large p and q, so it is without loss to

solve the manufacturer’s optimization problem under the assumption that p and q are both

bounded. In this case, the optimal (p, q) must be an interior stationary point of Eω um(ω).

Hence we can use őrst-order necessary conditions to quantify (p, q).

When 0 < t ≤ vrq, (A.6) becomes

Eω um(ω) = S(q; p)− u−

(

1−
vm
vr

)

p [t/p−Q (t/p; p)] . (B.6)

By őrst-order conditions,

Sq(q; p) =

(

1−
vm
vr

)

F (t/p; p)tq,

Sp(q; p) =

(

1−
vm
vr

)

[F (t/p; p)tp + (t/p)Qq(t/p; p)− pQp(t/p; p)−Q(t/p; p)].

By (A.5), tq = Sq(q; p) + c = p − (p − vr)F (q; p) > 0, so Sq(q; p) > 0. Also, tp = Sp(q; p) =

Q(q; p) + (p− vr)Qp(q; p), so

Sp(q; p) =

(

1−
vm
vr

)

[F (t/p; p)Sp(q; p) + (t/p)Qq(t/p; p)− Sp(t/p; p)− vrQp(t/p; p)]

≥

(

1−
vm
vr

)

[F (t/p; p)Sp(q; p)− Sp(q; p) + (t/p)Qq(t/p; p)− vrQp(t/p; p)].

where the inequality comes from Spq ≥ 0. Thus, Sp(q; p) ≥ 0.

When t > vrq, (A.8) becomes

Eω um(ω) = S(q; p)− u−

(

1−
vm
vr

)

{p [t/p−Q (t/p; p)]− (p− vr)[ω −Q(ω; p)]} . (B.7)
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By őrst-order conditions,

Sq(q; p) =

(

1−
vm
vr

)

[F (t/p; p)− F (ω; p)]tq,

Sp(q; p) =

(

1−
vm
vr

)

[(t/p− tp)Qq(t/p; p)− pQp(t/p; p)−Q(t/p; p)

+ (tp − ω)Qq(ω; p) + (p− vr)Qp(ω; p) +Q(ω; p)].

By (A.7),

tq =
Sq(q; p) + c− vrF (ω; p)

1− F (ω; p)
= vr + (p− vr)

1− F (q; p)

1− F (ω; p)
> 0,

tp =
Sp(q; p)−

∫ ω

0
ωdF (ω; p)

1− F (ω; p)
= ω +

Sp(q; p)−Q(ω; p)

Qq(ω; p)
.

Thus, Sq(q; p) > 0, and Sp(q; p) can be further simpliőed as:

Sp(q; p) =

(

1−
vm
vr

)

[(t/p− tp)Qq(t/p; p)− Sp(t/p; p)− vrQp(t/p; p)

+ (tp − ω)Qq(ω; p) + Sp(ω; p)].

Furthermore,

Spq(q; p) = 1− F (q; p)− (p− vr)Fp(q; p) < 1− F (q; p),

which implies

Sp(t/p; p)− Sp(ω; p) =

∫ t/p

ω

Spq(q; p)dq <

∫ t/p

ω

[1− F (ω; p)]dq = [1− F (ω; p)](t/p− ω).

Therefore,

Sp(q; p) >

(

1−
vm
vr

)

[(t/p− tp)Qq(t/p; p)− vrQp(t/p; p)].

Assume that Sp(q; p) ≤ 0, then tp ≤ ω ≤ t/p, which again implies Sp(q; p) > 0, a contradic-

tion. Hence, Sp(q; p) > 0.

Finally, recall that Spq(q; p) > 0, so Sq(q; p) > 0 and Sp(q; p) > 0 jointly imply that

q∗ < qFB and p∗ < pFB.
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B.3 Proof of Proposition 8

Since retailers are symmetric, it suffices to prove the proposition when n = 2. First, we

show p1 = p2 by contradiction. Suppose that p1 < p2. Then increasing p1 will not change

the distribution of ω as demand is determined by the higher price p2. If the manufacturer

increases p1 and the date-1 cash repayment T 1
1 uniformly so that the retailer is indifferent,

she can extract more surplus from Γ1 without affecting her payoff from Γ2. Therefore, the

manufacturer optimally offers p1 = p2. It is then straightforward to see that Γ1 and Γ2 are

identical. Moreover, they are both buyback or wholesale contracts, because by Proposition

4, the optimality of both contracts is robust to any distribution of demand (as long as the

monotone hazard rate condition is satisőed).

Suppose that Γ1 and Γ2 are both buyback contracts with constant buyback prices. Then

the manufacturer’s expected payoff is

Eω um(ω) = 2

{

W − cq1 +

∫ ω1

0

[

1

2
p1ω +

vm
vr

(

t1 −
1

2
p1ω

)]

dF (ω; p1) +

∫ +∞

ω1

t1dF (ω; p1)

}

= 2(W − cq1) +

∫ ω1

0

[

p1ω +
vm
vr

(2t1 − p1ω)

]

dF (ω; p1) +

∫ +∞

ω1

2t1dF (ω; p1),

(B.8)

where ω1 = 2t1/p1, and t1 is determined by a binding (IRr),

t1 =

∫ 2q1

0

[

1

2
p1ω + vr

(

q1 −
1

2
ω

)]

dF (ω; p1) +

∫ +∞

2q1
p1q1dF (ω; p1)−W − u

=
1

2
(p1 − vr)Q(2q1; p1) + vrq

1 −W − u. (B.9)

By comparing (B.8) and (B.9) with (B.6), we can conclude that the manufacturer’s

expected utility is equivalent to that from our benchmark model where the only retailer has

reservation utility 2(W + u). A similar argument applies to the case where the buyback

prices for both contracts are variable. Hence, the proposition is proved.
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