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Abstract

We study the long-run aggregate, distributional, and intergenerational effects of
school tracking—the allocation of students to different types of schools—by incorporat-
ing school track decisions into a general-equilibrium heterogeneous-agent overlapping-
generations model. The key innovation in our model is the skill production technology
during school years with tracking. School tracks endogenously differ in their pace of
instruction and the students’ average skills. We show analytically that this technology
can rationalize reduced-form evidence on the effects of school tracking on the distribu-
tion of end-of-school skills. We then calibrate the model using representative data from
Germany, a country with a very early school tracking policy by international standards.
Our calibrated model shows that an education reform that postpones the tracking age
from ten to fourteen generates improvements in intergenerational mobility but comes
at the cost of modest losses in aggregate human capital and economic output, reducing
aggregate welfare. This efficiency-mobility trade-off is rooted in the effects of longer
comprehensive schooling on learning and depends crucially on the presence of general
equilibrium effects in the labor market. Finally, counterfactual analyses suggest that
policies that reduce the parental influence in the school track choice can increase both
social mobility and aggregate economic output, improving aggregate welfare.
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1 Introduction

School tracking—the allocation of school children into different types of schools at some

point during their school career—is a common feature of education policy across OECD

countries. For example, in 2018, 27 out of 37 countries in the OECD had an education

system with at least two distinct school programs available to 15-year-old students.1 The

argument behind tracking is typically one of efficiency: grouping children by ability and

aspirations creates more homogeneous classrooms and allows for tailored instruction levels

and curricula, which improves educational outcomes (Duflo et al., 2011). On the other

hand, as the track decision is often related to the socioeconomic background of children,

tracking may impair socioeconomic mobility across generations and increase inequality in

education and income (Carlana et al., 2022; Meghir and Palme, 2005; Pekkarinen et al.,

2009; Hanushek and Wößmann, 2006). This concern is particularly strong for countries that

track at a relatively young age (Dustmann, 2004). For this reason, school tracking, and, in

particular, its timing, is a recurrent issue in the public and academic debate about education

reforms in countries with an early tracking regime, such as Germany (OECD, 2020a).2

This paper contributes to the debate by quantitatively assessing the long-run aggregate,

distributional, and inter-generational effects of school tracking policies. Any such assessment

needs to consider the effects of tracking on educational outcomes in school and college, the

effects of the supply of different skills on labor market outcomes, and the intergenerational

effects of parental skills differences. Quantitative macroeconomic models of overlapping

generations have proven useful in analyzing these effects and the interplay between them,

but have so far not incorporated how skill accumulation is affected by school tracking policies

(Lee and Seshadri, 2019; Daruich, 2022; Restuccia and Urrutia, 2004; Yum, 2023). We aim

to fill this gap by providing a macroeconomic model that features tracking in secondary

school, allowing us to quantify the role that tracking plays for aggregate and distributional

socioeconomic outcomes, within and across generations.

1An overview of school tracking policies in OECD countries is given in Chapter 3 in OECD (2020b).
We differentiate school tracking, which refers to allocating students into physically distinct types of schools
that differ in the curriculum taught, intensity, and length, from ability grouping within a school, where
the curriculum and educational goals remain the same. School tracking is also common among non-OECD
countries. Based on 2018 PISA data, only two out of 38 non-OECD countries with available information
featured an education system with one comprehensive school program available to 15-year-old students.

2There is substantial variation in the timing of tracking across countries (see Figure V.3.9 in OECD,
2020b, based on 2018 PISA data). Germany and Austria are among the countries with the earliest track
selection, at age 10. The Slovak Republic and the Czech Republic track at age 11; Belgium, the Netherlands,
Switzerland, Indonesia, and Singapore at age 12; Bulgaria at age 13; Argentina, Italy, and Slovenia at age
14; France, Greece, Israel, Japan, Mexico, Portugal and many other countries at age 15. Other countries,
like the US, UK, Australia, or the Scandinavian countries do not track during secondary school.
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The model is built around a parsimonious theory of how school tracking affects the

accumulation of skills in school. Our skill accumulation technology implies that each child

has an optimal pace of instruction, which is increasing in children’s skills. The pace of

instruction can differ across school tracks but not within tracks. Policymakers choose the

pace of instruction across tracks to maximize aggregate skills at the end of secondary school.

We also allow for direct peer effects—children learn more if their school peers have higher

skills. Because of the (endogenous) stratification in skills implied by school tracking, this is

a further channel through which tracking affects skill accumulation in school. Under linear

direct peer effects and absent any shocks to child skills during their time in school, the

skill formation technology implies that the optimal tracking policy should perfectly stratify

children when they start school. However, in the more realistic scenario where children’s

skills develop at different—and hard to predict—tempos as they grow older, early tracking

may lead to lower aggregate end-of-school skills because of a mismatch between children’s

skills and the pace of instruction. Also, early tracking can increase inequality in educational

outcomes. Another interesting implication of tracking is that children who lose in terms of

skills are often concentrated in the track with the lower instruction pace. Thus, our child

skill formation technology rationalizes some of the most robust empirical findings regarding

school tracking in the literature and encompasses the main arguments about school tracking

frequently made in the public discourse.3

We embed our theory of skill accumulation in school into a general-equilibrium life-cycle

incomplete-markets framework of overlapping generations, in which parents care about their

offspring in the tradition of Becker and Tomes (1986). Some aspects of the model are tai-

lored to fit the German Education System. Children are tracked into two school tracks

at the age of ten, typically at the end of four years of comprehensive primary school. Of

the two school tracks, only one permits direct access to college (called academic track), but

there is a second-chance opportunity for children in the other track (called vocational track).

The school track children attend is decided by parents, who are altruistic and principally

decide based on what’s best for their children. However, parental preferences over school

3Empirical estimates of the effects of (early) tracking on average learning outcomes of school children
are often ambiguous (Hanushek and Wößmann, 2006). Evidence for the effects of tracking on inequality is
more consistent, finding that tracking raises educational inequality and tends to predominantly disadvantage
children from lower socioeconomic backgrounds (see, for instance, Meghir and Palme (2005), Aakvik et al.
(2010), and Pekkala Kerr et al. (2013) for evidence from Scandinavian countries and Matthewes (2021) and
Piopiunik (2014), for the case of Germany). While opponents of early tracking argue in favor of postponing
the tracking age as a means to increase equality of opportunity in access to education for disadvantaged
children (for example Wößmann (2020) in Germany), proponents argue that in a comprehensive school,
children who learn quickly are thwarted, while slower-learning children overstrained, resulting in learning
losses (see, for example Esser and Seuring (2020) in Germany).
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tracks can also play a role. End-of-school skills translate into adult human capital, which

evolves stochastically over the working life and determines wages. Going to college allows

access to the college-skill labor market, which affects the wage profile over the working years,

but incurs an opportunity (time) cost and psychic costs that depend on end-of-school skills.

The distribution of human capital across college and non-college workers affects equilibrium

wages, which parents anticipate when they choose the school track for their children. House-

holds can save into a non-state-contingent asset subject to life-cycle borrowing constraints,

and parents can make a non-negative inter-vivos transfer when children become independent.

We solve for the steady-state equilibrium of the model numerically and calibrate the

parameters in two steps. First, we estimate the skill formation technology parameters directly

from German data on school children (Blossfeld et al., 2019) using a latent variable framework

as in Cunha et al. (2010) and Agostinelli et al. (2023). In particular, we use information

on achievement test scores to measure children’s skills at different stages of their school

careers. We then calibrate the remaining parameters to match a set of salient moments

from representative German survey data. The model matches the data well, both in terms

of aggregate moments and in terms of the distribution of skills across school tracks and

parental backgrounds, as well as the transitions through the education system. To test

the model’s validity, we investigate non-targeted moments, such as the determinants of the

school track choice. The model reproduces well the relationship between skills and school

track choice by parental background. In addition, we also check our calibrated model against

Dustmann et al. (2017)’s empirical observation that for children at the margin between two

school tracks in Germany, school tracking is inconsequential for earnings later in life. We do

so by computing the effects of the initial school track on later-in-life economic outcomes for

a set of children who are around the margin between the two school tracks in equilibrium.

Our model confirms that lifetime economic outcomes for these children are similar no matter

which school track they attend.

To better understand the role of skill formation during the school tracking years for

lifetime inequality, we implement a variance decomposition analysis in the spirit of Huggett

et al. (2011) and Lee and Seshadri (2019). We find that around a third of the variation in

lifetime economic outcomes is accounted for at age ten, just after the school track choice.

This share rises to around two-thirds at age eighteen after the college choice, a number

consistent with the literature. This suggests that the evolution of skills during the tracking

years in secondary school is crucial for determining lifetime inequality, underscoring the

importance of understanding skill formation during these years.
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Our main policy interest is in the long-run and welfare effects of later school tracking or,

equivalently, a longer period of comprehensive schooling. We find that a policy reform that

postpones the school tracking age by four years to age fourteen—the average tracking age in

OECD countries—entails an efficiency-mobility trade-off. On the one hand, postponing the

tracking age improves social mobility as it decreases the intergenerational elasticity of income

by around 2.2%. These mobility gains arise primarily because there is less heterogeneity in

skill accumulation during comprehensive schooling, with children who would have gone to

an academic track school losing and children who would have gone to a vocational track

school gaining. This reduces the heterogeneity of end-of-school skills and, in particular, the

skill differences across school tracks. On top of that, by the time the track decision is made,

children from different parental backgrounds become more similar, and the later track choice

depends less on parental background. There is also a source of mobility gains from labor

market adjustments. The decrease in heterogeneity in end-of-school skills translates into

smaller differences in human capital across college and non-college workers, and the wage

premium falls. Moreover, as skills are linked between generations, this also reduces the initial

skill differences of the next generation of children by parental background, reinforcing the

effects on skill heterogeneity. Ultimately, inequality, as measured by the Gini coefficient of

earnings, drops by 0.4%.

On the other hand, our results indicate that postponing tracking comes at the cost of

a 0.1% drop in GDP and a 0.05% drop in consumption equivalent units. This is because

prolonged learning in a comprehensive school track foregoes efficiency gains from tailored

instruction levels in an early tracking system. Quantitatively, these learning losses cannot be

recuperated even though the later tracking decision occurs after more uncertainty about skills

has been resolved. As a result, later tracking leads to lower aggregate end-of-school skills and

lower aggregate output. The 0.1% drop in GDP depends on general equilibrium adjustments

in the labor market that influence school track and college decisions. In partial equilibrium,

holding wages fixed, aggregate output would increase as the share of academic-track children

and college-educated workers rises. Abolishing tracking in favor of comprehensive schooling

altogether would further exacerbate the efficiency-mobility trade-off.4

Finally, we evaluate the effects of reducing the direct influence of a child’s socioeconomic

background on the school track choice. Our data indicate that when parents go against the

4A similar trade-off has been highlighted in the literature about the effects of economic segregation on
growth and inequality (see Bénabou, 1996) and more recently by Arenas and Hindriks (2021) where efficiency
gains from unequal school opportunities arise because of positive assortative matching between parents who
invest more in their children and better schools. In contrast, in our case, efficiency gains arise from matching
similar-ability peers to tailored instruction levels for longer.
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school track recommendation of their children’s primary school teachers, it is generally in fa-

vor of their own educational path. We rationalize this as coming from parental preferences.5

Consistent with previous findings (e.g. Dustmann, 2004), our calibrated model yields that

parental preferences play an important role for school track choices and may result in an

inefficient allocation of children across tracks.6 An important question is whether the con-

sequences of such “misallocation” effects are visible not only in child skill outcomes but also

in the aggregate and distributional outcomes in the economy. We show that eliminating the

preference-driven influence of parental background on the school track leads to improvements

in both social mobility and economic output in the range of 0.9% and 0.04%, respectively,

and raises aggregate welfare by 0.04% in consumption equivalent units. The reason is that

the initial school track choice depends more strongly on skills, which improves the teaching

efficiency in each track and thereby raises the aggregate skill level. These results highlight

that measures, such as well-executed mentoring programs, which provide information and

support to children from lower socioeconomic families and have been effective in alleviating

the negative influence of family background on school track decisions (Raposa et al., 2019),

can not only improve the outcomes of these individual children but also lead to aggregate

efficiency gains in the economy.

Related Literature

This paper links several strands of the literature: the quantitative macroeconomic literature

on inequality and mobility, the literature on children’s skill formation during school years,

and the school tracking literature.

Much research in the quantitative macroeconomic literature on inequality and intergen-

erational mobility shares our focus on the role of skill formation, education, and education

policies (e.g. Becker and Tomes, 1979, 1986; Restuccia and Urrutia, 2004; Lee and Seshadri,

2019; Abbott et al., 2019). While many papers in this literature focus on early childhood

education and the role of parental investments (e.g. Daruich, 2022; Yum, 2023; Caucutt and

5These preferences may refer to actual track tastes, as parents might want their children to follow in
their footsteps (Doepke and Zilibotti, 2017), or to some form of biased information about how each school
track influences later outcomes or about the costs associated with completing it. In our data, we cannot tell
the underlying reasons apart.

6For example, a college-educated parent may push her child into an academic-track school even though
her child’s skills optimally suggest a vocational-track school. This harms her child’s learning outcomes and
affects average learning in that track as the instruction pace endogenously adjusts to the composition of skills
in that track. We calibrate the extent of these asymmetric preferences in our model to replicate the share
of deviations of the chosen school track from what had been recommended by the primary school teachers
in our data.
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Lochner, 2020; Lee and Seshadri, 2019), or study the role of college-education policies (e.g.

Krueger and Ludwig, 2016; Abbott et al., 2019; Capelle, 2022), few papers explicitly include

the secondary schooling stage into their analysis. An exception is Fujimoto et al. (2023),

who study the importance of free secondary schooling for misallocation driven by borrowing

constraints in Ghana. However, in their context, secondary schooling is the highest educa-

tion level. In addition, recent research has highlighted the heterogeneous impact of school

closures in the wake of the Covid pandemic on children at different stages of their schooling

career (Jang and Yum, 2022; Fuchs-Schündeln et al., 2022) and across public and private

secondary schools (Fuchs-Schündeln et al., 2023). Our contribution is to study a widespread

feature of education policy during secondary school—tracking. Even though tracking occurs

in many countries and (early) tracking policies are often made responsible for persistent in-

equality and social immobility in the public debate, an analysis of broad reforms to tracking

policies in the macroeconomic literature is, to the best of our knowledge, missing.7

Our theory of skill formation during schooling years builds on the insights of the liter-

ature on child skill formation, which studies how children’s skills evolve as a function of

endowments, parental and environmental inputs, and schooling and teaching inputs (see, for

instance, Cunha and Heckman, 2007; Cunha et al., 2010; Agostinelli et al., 2023, 2019; Duflo

et al., 2011; Aucejo et al., 2022; Bonesrønning et al., 2022). To incorporate how tracking

affects learning in secondary school, we consider two forms of peer effects.8 First, similar to

Agostinelli (2018), we incorporate direct peer effects, which capture the idea that children

are affected by different-quality peer groups in a school track. Second, following Duflo et al.

(2011)’s evidence in Kenyan primary schools and Aucejo et al. (2022)’s findings of comple-

mentarities between classroom composition and teaching practice in the US, we consider

how the instruction levels across tracks adjust endogenously to the skill composition in that

track. For that reason, school tracking is conceptually different from schools of different

7There is an extensive literature in education economics, which theoretically analyzes tracking policies, to
which we relate (see Epple et al. (2002) and Betts (2011) for a general theoretical foundation of tracking). This
literature tends to conclude that the effects of tracking on the level and distribution of educational outcomes
are often theoretically ambiguous and depend on the shape of peer effects, resources between tracks, or the
uncertainty surrounding child abilities. We make a similar point in Section 3. Brunello et al. (2007) offer
an analysis of the optimal timing of tracking focusing on the role that an increasing demand towards more
general skills plays, while Brunello et al. (2012) estimate the efficiency losses of deviating from the optimal
tracking age across Europe, finding losses in the range of half a percent of GDP, on average. Our contribution
to this literature is that we provide a richer framework that incorporates important macroeconomic effects
of tracking on higher education and labor market outcomes and allows us to draw conclusions on the effects
of tracking on mobility across generations.

8A summary of theoretical models of peer interactions and their implications for tracking policies can
be found in Epple and Romano (2011). Sacerdote (2011) provides an overview of empirical approaches to
measuring peer effects in education.
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qualities (often related to neighborhood effects), which would mechanically disadvantage

children in the lower-quality tracks. For example, Arenas and Hindriks (2021) provide a

model of unequal school opportunity, defined as unequal school quality and access probabil-

ity to the best schools, and quantify its effect on intergenerational persistence, highlighting

the role of positive assortative matching between parents who invest more into their children

and high-quality schools. In contrast, schools tracks differ endogenously in their instruction

pace. Choosing a school track is thus less about choosing a “good” versus a “bad” school

but more about choosing a school that fits a child’s learning needs.9

We incorporate the skill formation technology with tracking into a standard life-cycle

model with intergenerational linkages, such that the initial conditions of a new generation

are endogenous, following the work in Daruich (2022); Lee and Seshadri (2019); Yum (2023).

Moreover, we share with these papers the importance of considering GE effects when studying

policy reforms that affect the skill composition in the economy. While the quantitative

macroeconomic literature focuses almost exclusively on the US, where tracking across schools

is uncommon (Fujimoto et al., 2023, is a notable exception as they focus on a developing

country, Ghana), we focus on a country with a very early tracking system—Germany. At

the same time, our school track model is general enough to be used in other countries that

track between schools, such as many European countries, but also Asian countries like Korea

and Singapore, or South American countries like Argentina or Uruguay (OECD, 2020b), and

could even be adapted to be informative for countries where tracking occurs mostly within

schools, across classrooms, such as in the US.

Lastly, this paper connects to an extensive empirical literature that estimates the effects

of school tracking, and, in particular, its timing, on educational and later-in-life outcomes

of students.10 This literature typically either exploits temporal within-country variation in

tracking practices (Meghir and Palme (2005), for Sweden; Aakvik et al. (2010), for Norway;

Bauer and Riphahn (2006), for Switzerland; Malamud and Pop-Eleches (2011), for Romania;

Pekkala Kerr et al. (2013), for Finland; and Matthewes (2021); Piopiunik (2014) for Ger-

many) or between-country variation with a difference-in-differences strategy (Hanushek and

Wößmann, 2006; Ruhose and Schwerdt, 2016). Most studies suggest that earlier tracking

raises inequality in educational outcomes and increases the effect of parental education on

student achievement. Dustmann et al. (2017) use an individual-level instrumental variables

9Similarly, tracking is also different from having private schools or schools with different costs, where
selection into schools is likely to depend on parental wealth directly. The degree to which private schools are
similar to a tracking system will then depend on the correlation between child skills and parental wealth.

10See Betts (2011) for an excellent overview. We relate our model-based predictions of these effects to
the findings in this literature in detail in Appendix C.
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strategy (the date of birth) and find no effect of the school track on educational attainment

or earnings for students at the margin between two tracks. This result suggests that school

tracking in Germany is largely inconsequential in the long run for children whose skills put

them in between tracks when the decision was made, a result that our model accommodates.

We add to this literature a quantitative model-based assessment of the long-term aggre-

gate, distributional, and welfare effects of broad reforms to the school tracking age, which is

difficult to establish empirically.

The remainder of the paper is organized as follows. Section 2 presents our model of over-

lapping generations and tracking during secondary school and introduces the skill formation

technology. In Section 3, we build intuition about the model mechanisms underlying school

tracking by deriving theoretical implications of that technology. Section 4 explains how we

parameterize and calibrate the model. It also offers some validation exercises. In Section 5,

we use the calibrated model to perform a series of counterfactual experiments to quantify

the effects of different school tracking policy regimes. Finally, Section 6 concludes.

2 The Model

Time is discrete and infinite, and one model period, j ∈ {1, ..., 20}, corresponds to the four

years between ages [4j − 2, 4j + 2] in real life. Thus, agents enter the model as two-year-old

children and exit at age 82.11 This frequency allows us to investigate meaningful variations

in school tracking ages. The structure implies that 20 generations are alive at every point in

time. As in Lee and Seshadri (2019), we assume a unit mass of individuals in each period.

A life cycle can be structured into several stages, as illustrated in Figure 1: During the

first four periods, a child lives with her parent, goes to school, and accumulates (school)

skills. School tracking happens at the beginning of child period j = 3. At the beginning

of child period j = 5, at age 18, the child becomes an independent adult, her skills are

transformed into adult human capital, and she can decide to go to college. Both college and

non-college-educated types of labor are used, next to capital, by a representative firm to

produce the final consumption good. Adult agents decide how much labor to supply until

they retire at the beginning of j = 17, at age 66. During the working periods, human capital

grows stochastically. Finally, in j = 9, when they are 34 years old, adults become parents of

a child. Adults make inter-vivos transfers to their children when they turn 18 and become

11We choose this perhaps unorthodox timing to capture that in Germany, children are ten years old when
parents make the secondary school track decision, which resembles reality in Germany. Appendix B.1 gives
an overview of the German Education System.
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Figure 1: Timeline of Life-cycle Events
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2.1 Child Skill Formation

Every new child has an initial ability or skill endowment, ϕ, which is imperfectly transmitted

from her parent.13 When children enter primary school, at the beginning of j = 2, the initial

ability translates into a first child school skill level, θ2, expressed in logarithm, to which we

refer to as skills henceforth.

θ2 = log ϕ. (1)

We think of these skills as stage-specific competencies during the schooling periods, j = 2

to j = 5, that can be observed by everyone and are rewarded on the labor market for both

college and non-college-educated workers.

12For the remainder of the text, we will denote all child variables with primes whenever both parental
and child states are present. The child of a parent who is in period j is in period j′ = j − 8.

13As in Cunha and Heckman (2007), we do not differentiate between abilities and skills, as both are partly
endogenously produced and partly exogenously determined pre-birth. The initial ability thus captures genetic
components and investments made by parents into their child’s development during early childhood, infancy,
and even in-utero.
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Subsequently, the evolution of skills depends on the schooling system. During primary

school (j = 2), the system is comprehensive, meaning that there is only one track to which

all schools belong, denoted by S = C. During secondary school, there are two distinct school

tracks, a vocational track S = V and an academic track S = A.14 School tracks can differ

in their pace of instruction, denoted by P S, which reflects the differences in the intensity

and depth with which school subjects are taught.15 Notably, the pace of instruction in each

school track is endogenous in the sense that the education policymaker can choose it in

every period to achieve her goals. For our analysis, we assume that the policymaker has

an efficiency goal and maximizes aggregate end-of-school skills.16 We further assume that

all classrooms and schools in the same track are identical. Thus, if a child is allocated to a

particular track, we can think of her as attending a “representative” classroom and school

for that track. This implies that all children in a given track are exposed to the same set of

classroom and school peers.

The technology of (log) skill formation during the school years j = 2, 3, 4, of a child in

school track S, is then given recursively by:

14While in principle a larger number of school tracks is conceivable, we restrict our analysis of tracking to
two school tracks as this corresponds to a typical number across OECD countries. Typically, the two tracks
serve the purpose of preparing children for academic higher education at a college or similar institution or
to prepare children for a more vocational career.

15In Germany, the curricula and core subjects are no longer materially different across school tracks. The
main difference between academic and vocational schools is that the former results in direct qualification to
enter university, while the latter does not. In academic track schools, topics are generally taught more densely
and comprehensively than in vocational track schools, preparing students for higher education. Moreover,
students typically have more options for elective subjects at later stages of secondary school. Vocational
track schools, by contrast, are less demanding in terms of the required learning effort, and graduation occurs
after fewer years. A detailed comparison between the teaching intensity and learning goals across Germany
is provided in Dustmann et al. (2017). Note that heterogeneity in instruction paces across tracks does not
entail systematic differences in teacher quality or resources devoted to teaching across tracks that could also
affect child skill development. In Appendix B.1, we summarize information on expenditure per student as
well as teacher quality across different school tracks in Germany.

16For example, in Germany, the curricula in the different tracks are set by each federal state under some
general federal education goals. They consist of learning and competence goals, methods, and specific topics
that should be taught in each school track, subject, and grade. The curricula are subject to frequent review
and renewal. For example, as of 2023, 14 out of 16 federal states in Germany updated the curriculum in the
last four years and 7 out of 16 in the last two years. The concrete implementation of the curricula, however,
is in the hands of the teachers and individual schools, who have some discretionary margin to adjust the
instruction paces to the needs of their pupils. Therefore, we view the pace-setting process as a mix of
overarching learning goals and individual adjustment across school tracks. To the best of our knowledge,
there is no clear teaching goal about the distribution of end-of-school skills formulated by German education
policymakers.
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θj+1 = κθj + αθ̄Sj + g(θj, P
S
j ) + ζE + ηj+1

ηj+1 ∼ N (0, σ2
ηj+1

).
(2)

Next period’s skills are directly affected by past skills θj and parental education E, which we

take as a proxy for the home environment in which a child grows up, including differences in

parental investments into child skills by parental background (Heckman and Mosso, 2014).

By ηj+1, we denote unobserved i.i.d. shocks to the skills. This type of uncertainty in

the formation of child skills is crucial for analyzing school tracking policies. We interpret

these shocks as stemming, for example, from unexpected heterogeneity in child development

speeds (such as late-bloomers), but also health shocks that can permanently influence the

skill formation trajectory of a child.17

The school track can affect next period’s skills in two ways: First, through direct in-

teractions with peers in a track, which affect future skills linearly through the average skill

level of other children in school track S, denoted by θ̄Sj , as is common in the peer effects

literature (Sacerdote, 2011).18 Second, through the pace of instruction in her school track,

P S
j , as governed by the function g, which we assume takes the following form:

g(θj, P
S
j ) = βP S

j + γθjP
S
j −

δ

2
(P S

j )
2. (3)

This functional form implies firstly that for each skill level θj, there exists an individually-

optimal instruction pace, P ∗
j (θj), that maximizes future skills in each period. Secondly, if

γ > 0, there is a positive complementarity between the individually optimal pace and the

individual skill level, such that higher-skilled children also prefer a higher pace of instruc-

tion. This is motivated by evidence on the heterogeneous effects of teaching or instructional

practices depending on prior student achievement and, in particular, by evidence on “match”

effects between teaching practices and classroom skill composition (see Duflo et al. (2011),

17Our assumption of shocks as the source of skill formation uncertainty is slightly different from the idea
that the “true” academic potential of a child cannot be perfectly observed and must be learned over time
from signals, such as school grades. We discuss the differences that a model with imperfectly observed child
skills would imply in Appendix Section D.

18We concentrate on the case with a linear-only direct peer externality governed by α. As summarized in
Epple and Romano (2011), many studies find that such linear-in-means peer effects are sizable and robust
across settings. Evidence on non-linear peer effects in the classroom is more ambiguous. For that reason,
we do not incorporate non-linearities in peer effects directly. Instead, we consider the endogenous setting
of instruction levels across school tracks as a channel through which non-linear peer effects arise. We note,
however, that non-linear peer effects could have important implications for the assessment of tracking policies.
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Aucejo et al. (2022) and references therein). As we will demonstrate theoretically in Section

3 and quantitatively in Section 5, this complementarity plays a central role in providing the

rationale behind any efficiency argument in favor of school tracking policies.

Given (3), it is clear that aggregate learning is maximal if every child is taught at her

preferred instruction pace in every period. However, there is only one instruction pace per

school track. Given this constraint, a policymaker seeking to maximize expected future skills

would then set the pace in each track to the one that is optimal for a child with exactly the

average skill level in that track, as summarized in Lemma 1.

Lemma 1. The pace of instruction a policymaker would set in each school track to maximize

expected skills in the next period is given by

P S
j = P ∗

j (θ̄
S
j ) =

β + γθ̄Sj
δ

(4)

where θ̄Sj is the average skill level of children in track S.

Proof. Follows from taking the first order condition of the conditional expected value E(θj+1|S)

in (2) with respect to P S
j using (3) and under the i.i.d. assumption of ηj+1, and the fact

that maximization of skills in each school track is a necessary condition for maximizing

unconditional skills.

According to Lemma 1, the instruction pace setting implies that future child skills depend

non-linearly on her peers’ skills. Specifically, skill gains decrease monotonically with the

distance between a child’s own skills and the average skill level in that track, or equivalently

with the distance between her optimal instruction pace and the one she is currently taught

at.19 Consequently, for a child with a low skill level, going to a school track with a high

instruction pace tailored to a higher average skill level can be harmful to the point that she

actually learns less, despite being surrounded by better peers, than if she had attended a

school with a lower pace.

After finishing school, at the beginning of j = 5, child skills are transformed one-to-one

into the first adult human capital level, h5,

h5 = exp(θ5). (5)

19See Appendix A.1 for the derivation. Our formulation of learning hence implies that non-linear peer
effects are driven by how the instruction levels are adjusted (as found, for example, in Duflo et al., 2011;
Lavy et al., 2012). Moreover, it provides a micro-foundation for efficiency gains in average learning that
stem from more homogeneous peer groups. We discuss the theoretical consequences of tracking under these
assumptions in Section 3.
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2.2 Preferences

Preferences over consumption and labor supply of adults in each period are given by

u(cj, nj) =
(cj/q)

1−σ

1− σ
− b

n
1+ 1

γ

j

1 + 1
γ

(6)

where cj denotes household consumption and q is an adult consumption-equivalent scale that

is larger than one whenever there is a child in the household and one otherwise. Risk aversion

is captured by σ. Individuals incur disutility from working nj hours, which is governed by b

and the Frisch elasticity of labor supply, γ. All future values are discounted by β.

2.3 Educational Choices

There are two types of educational choices agents make during their life. The first and

novel education choice is the secondary school track parents choose for their children. We

assume that the utility of parents also depends on the track their children attend, through

a stochastic academic-track utility cost χ(E) ∼ HE(χ), whose distribution can depend on

parental education E. This will allow us to capture that empirically, the school track de-

cision is significantly affected by parental socio-economic status, even conditional on school

performance, test scores prior to the track decision, and the track recommended by pri-

mary school teachers. Moreover, when parents deviate from the primary school teacher’s

recommendation, it is usually toward their own education path.20

There may be multiple reasons behind these parent-specific academic track costs. For

example, there may be a cost associated with acquiring information about school tracks

that is lower whenever a parent went to that track herself. Similarly, parents may feel

better able to support their child in a track they are more familiar with. Parents may also

systematically over- or underestimate their children’s potential or have strong preferences for

their child following in their footsteps. Whatever their exact reason, deviations in parent’s

track choice from the recommended path may lead to learning inefficiencies. For example,

a child with low skills could be sent to the academic track by parents who have preferences

20See Appendix B.2 for some reduced-form evidence on the school track choice and deviations from the
recommended tracks, by parental background. Importantly, children who deviate from the recommended
school track perform differently than the others. Children who deviate from vocational to academic perform
worse than the average kid in the academic track, and the reverse happens for children who deviate from
academic to vocational. The fact that deviating from the recommended track does not seem to benefit
children in terms of their achievements indicates that it is not the case that parents “know” the true potential
of their child better or can support them better.
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for this track. This would lead to learning losses not only for the individual child but also

create an externality for all other children as the instruction pace is endogenous to the peer

composition.

Second, after finishing school, newly independent adults decide whether to go to college.

In line with the literature (e.g. Daruich, 2022; Fuchs-Schündeln et al., 2022), we assume

that going to college entails a “psychic” utility cost ψ(S, θ5, ν(E
p)) that may depend on the

secondary school track S, the end-of-school skills θ5 and an idiosyncratic college taste shock,

ν(Ep) ∼ GEp

(ν) , whose distribution may be influenced by the parent’s education level Ep.21

This formulation can accommodate two important features of the transition between

secondary and college education in the data. Firstly, the share of students with an academic

track secondary school degree who get a college degree is significantly higher than those

with a vocational secondary school degree.22 Secondly, independently of the school track,

the likelihood of college education in the data is increasing in the end-of-school skills.Finally,

the random taste shocks reflect heterogeneity in the higher education decision coming from

parental background or channels outside of the model, as is common in this literature.

2.4 Adult Human Capital, Labor Income and Borrowing

During the working career (j = 5 to j = 16), human capital grows according to

hj+1 = γj,E hj εj+1, log εj ∼ N (0, σ2
ϵ ) (7)

following Yum (2023), where γj,E are age- and education-specific deterministic growth rates

and εj+1 are market luck shocks, which follow an i.i.d. normal distribution in logs, with zero

mean and constant variance σ2
ε , as in Huggett et al. (2011). Human capital remains constant

after retirement. Gross labor income is then given by

yj = wE hj nj (8)

where wE denotes the effective wage per unit of human capital paid to workers with higher

education E.

21We add the superscript “p” here to indicate that Ep is the college education of the parent of a newly
independent adult who chooses her own college education E.

22In Germany, every graduate from an academic track secondary school automatically obtains a college-
entrance qualification, while graduates from vocational tracks do not. However, there exist a variety of
“second-chance” opportunities to obtain college-entrance qualification for vocational-track graduates, such
as evening schools (see Dustmann et al., 2017).
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Note that all prices, including wE, implicitly depend on the distribution of agents in the

economy, which we suppress for notational convenience. After retiring, each agent receives

retirement benefits πj(h17, E), which depend on the last education-specific human capital

level before retirement.23 Throughout their life, adult agents can save into a risk-free asset

a, which pays a period interest rate r. As in Lee and Seshadri (2019), we assume that each

agent’s borrowing is constrained by the amount that can be 100% repaid in the next period

using a government transfer g. Moreover, agents cannot borrow against the future income

of their children. The per-period borrowing constraint can thus be written as

aj+1 ≥
−g

1 + r
. (9)

In the following, we provide a recursive formulation of the agent’s decisions in each life cycle

stage.

2.5 Recursive Formulation of Decisions

At the beginning of each adulthood period prior to retirement, individuals learn about their

market luck shock realization and, in case they have a child, about the child skill shock

realization. Based on this information, they decide on consumption (cj), savings (aj+1), and

hours worked (nj). In addition, there are two education choices—the school track and the

college decision—and parents decide on inter-vivos transfers in period j = 13. All decisions

are subject to the human capital growth technology (7), the borrowing constraint (9), a

working time constraint nj ∈ [0, 1] and a period budget constraint

cj + aj+1 = yj + (1 + r)aj − T (yj, aj) (10)

where labor income is defined as in (8) and T (yj, aj) gives taxes net of lump-sum transfers,

which consist of labor income and capital taxes.

2.5.1 Parenthood (Age 34-50, periods j = 9, ..., 13)

Parent with a Young Child (j = 9, 10) The state space in these periods consists of

the parent’s education E, her human capital, hj, and her assets aj. Parents observe their

child’s initial ability ϕ at the start of the first period of the child’s life, when she is two years

old, which corresponds to the child’s first school skill at age six, as given by (1).

23As is common in the literature, we let benefits depend on human capital in this way to proxy for lifetime
earnings, which form the basis of pension benefits in reality.
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Future skills θj′+1 evolve according to (2) given the optimal pace of instruction as defined

in Lemma 1. In particular, primary schools are comprehensive track schools, such that the

evolution of a child’s skills depends on the average skill level of all children in their cohort,

θ̄j′=2. The problem of the parent can then be written as:

Vj(E, hj, aj, ϕ, θj′) = max

cj ,aj+1,nj

{
u(
cj
q
, nj) + β EVj+1(E, hj+1, aj+1, ϕ, θj′+1)

}

s.t. θj′+1 = κθj′ + αθ̄Sj′ + g(θj′ , P
∗
j′(θ̄j′)) + ζE + ηj′+1

(7)− (10)

(11)

where expectations are taken over child skill shocks (ηj′+1), market luck shocks (εj+1), and

in period j = 10 also over school track taste shocks χ(E).

The School Track Decision (j = 11) When the child turns ten, at the beginning

of her third period of life, the parent decides on whether to send her to the vocational or

academic track school, S ∈ {V,A}. The decision of parents is not constrained by any edu-

cation policy (but parents do generally obtain a track recommendation from their children’s

primary school).24 Once a child is tracked, she remains in that track for two periods, until

the end of secondary school, when she turns 18.25 Parents make the track decision by com-

paring the value of sending the child to a vocational track school with that of sending her

to an academic track school. These (interim) values are given by

W11(E, h11, a11, ϕ, θ3, S) = max
c11,a12,n11

{
u(
c11
q
, n11) + β EV12(E, h12, a12, ϕ, θ4, S)

}

s.t. θ4 = κθ3 + αθ̄S3 + g(θ3, P
∗
3 (θ̄

S
3 )) + ζE + η4

(7)− (10)

(12)

24This has become common practice in Germany, where in the majority of federal states, parents are
completely free in making the secondary school track choice for their children. Only in three states, Bavaria,
Thuringia, and Brandenburg, academic school track access is conditional on a recommendation by the
primary school teachers. These recommendations are often tied to achieving a certain grade point average
in Math and German in primary school. However, even in these states, children without a recommendation
can take advantage of a trial period in an academic track school, after which the child will be assessed again.

25We abstract from track switches during secondary school, as these are relatively rare in the data. For
example, in 2010/11, only around 2.5% of children in the first stage of secondary school in Germany switched
school tracks (Bellenberg and Forell, 2012). Moreover, this number includes switches among different tracks
that we group into the vocational track, so it is likely an upper bound of the track switches between the
vocational and academic tracks. However, this does not preclude track switches between the end of secondary
school and the beginning of possible tertiary education, which we allow in our model.
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for each track S. They encode several incentives that influence the track decision. On the

one hand, academic track attendance makes, ceteris paribus, college access more likely, which

results in higher human capital growth and productivity over the life cycle. The returns to

college education depend on the demand for college-type labor. On the other hand, parents

know that her child’s skill formation depends on the average skill level in a school track θ̄S3 ,

both directly through peer interactions but also indirectly through the endogenous optimal

instruction pace P S
3 . Thus, parents need to anticipate the distribution of children across

tracks when making the track decision, which becomes an aggregate state, which we keep

implicit.

On top of that, the track decision is also affected by the stochastic academic track utility

shock, χ(E) ∼ HE(χ). Parents then make the discrete track choice using (12) after observing

a draw of χ(E). Thus, we can define the value of a parent after this shock realization at the

beginning of period j = 11 as

V11(E, h11, a11, ϕ, θ3) = max
S∈{V,A}

{W11(E, h11, a11, ϕ, θ3, S = V ),

W11(E, h11, a11, ϕ, θ3, S = A)− χ(E)}.
(13)

Remaining Parenthood (j = 12, 13) In period j = 12, when the child is 14 years old

and starts the second period of secondary school, the parent solves the following problem:

W12(E, h12, a12, ϕ, θ4, S) = max

c12,a13,n12

{
u(
c12
q
, n12) + β EV13(E, h13, a13, ϕ, θ5, S)

}

s.t. θ5 = κθ4 + αθ̄S4 + g(θ4, P
∗
4 (θ̄

S
4 )) + ζE + η5

(7)− (10)

(14)

where the child’s school track S, which has been decided in the previous period, is now

included in the parent’s state space.

Just before her child reaches the age of 18 and becomes independent, the parent decides

on a financial inter-vivos transfer that her child receives, a′5, while taking into account the

child’s future value Vj′=5. As in Daruich (2022), we model this as an interim decision problem

and assume that the parent already knows the realization of her market luck shock and her

child’s final skill shock but does not know the realization of the college taste shock ν ′(E).

The transfer cannot be negative, so parents cannot borrow against the future income of

their child. The strength of parental altruism is governed by the factor Λ. The value at the
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beginning of period 13 is then

V13(E, h13, a13, ϕ, θ5, S) = max
a′5≥0

{
Ṽ13(E, h13, a13 − a′5) + ΛEν′ Vj′=5(θ5, a

′
5, ϕ, S, E)

}

s.t. ν ′(E) ∼ GE(ν ′)

(15)

where Ṽ13 is the value for a parent with savings a13 after the inter-vivos transfer has been

made

Ṽ13(E, h13, a13) = max
c13,a14,n13

{u(c13, n13) + β EV14(E, h14, a14)}

s.t. c13 + a14 + a′5 = y13 + (1 + r)a13 − T (y13, a13)

(7)− (9)

(16)

so that the transfer a′5 enters the budget constraint.

2.5.2 Work Life Without a Dependent Child (Age 18-34 and 50-66, periods

j = 5, 6, 7, 8 and j = 14, 15, 16)

Independence (j = 5) After turning 18, the state space of a newly independent adult

comprises the secondary school track she graduated from S, end-of-school skills θ5, initial

assets a5, which she received from her parents, initial ability ϕ and her parent’s education

Ep, which affects the distribution of the stochastic college taste shock ν(Ep). Conditional on

the realization of that shock, the young adult first decides whether to go to college (E = 1)

or not (E = 0) by solving the problem

V5(θ5, a5, ϕ, S, E
p) = max

E∈{0,1}
{W5(E = 0, h5, a5, ϕ),

W5(E = 1, h5, a5, ϕ)− ψ(S, θ5, ν(E
p))}

(17)

where W5 denotes the values of college and non-college education, given by

W5(E, h5, a5, ϕ) = max
c5,a6,n5∈[0,n̄(E)]

{u(c5, n5) + β EV6(E, h6, a6, ϕ)}

s.t. (7)− (10)
(18)

and end-of-school skills are transformed into adult human capital h5 according to (5). While

agents can work during college education, they only receive the vocational wage rate w0.

Moreover, obtaining a college education reduces the time available for work, as individuals
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spend part of their total time endowment studying, thus n̄(E = 1) < 1.

Remaining Work Life (6, 7, 8 and j = 14, 15, 16) In periods 6 and 7, which corre-

spond to ages 22 to 30, adults solve

Vj(E, hj, aj, ϕ) = max
cj ,aj+1,nj

{u(cj, nj) + β EVj+1(E, hj+1, aj+1, ϕ)}

s.t. (7)− (10).
(19)

In period j = 8, when they are age 30 to 34, adults know that they will have a child at

the start of the next period. For that reason, they take expectations over the initial ability

of their future child, ϕ′, on top of the expectations over the market luck shock. Thus, we

obtain that in period 8

V8(E, h8, a8, ϕ) = max
c8,a9,n9

{u(c8, n8) + β EV9(E, h9, a9, ϕ
′)}

s.t. log ϕ′ = ρϕ log ϕ+ ϵϕ, ϵϕ ∼ N (0, σ2
ϕ)

(7)− (10)

(20)

where ϵϕ is an intergenerational shock. For periods j = 14, 15, 16, when they are age 54 to

66, adults are again without a child and solve the standard life-cycle savings problem

Vj(E, hj, aj) = max
cj ,aj+1,nj

{u(cj, nj) + β EVj+1(E, hj+1, aj+1)}

s.t. (7)− (10)
(21)

where the initial ability ϕ has been transmitted to the child and does not enter the state

space anymore. In the last period prior to retirement, j = 16, agents no longer need to take

expectations over market luck shocks, as human capital remains constant during retirement.

2.5.3 Retirement, j = 17, 18, 19, 20

Everybody retires at the beginning of model period 17, corresponding to age 66, and receives

retirement benefits πj(h17, E). After period 20, at age 82, agents die with certainty and exit
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the model. The values in these periods are

Vj(E, h17, aj) = max
cj>0,aj+1

{u(cj, 0) + βVj+1(E, h17, aj+1)}

s.t. cj + aj+1 = πj(h17, E) + (1 + r)aj − T (0, aj)

and (9).

(22)

2.6 Aggregate Production, and Government

A representative firm produces output according to the Cobb-Douglas production function

Y = AKαH1−α, where A denotes total factor productivity, K is the aggregate physical

capital stock, and H is human capital defined by:

H = [φH
σf

0 + (1− φ)H
σf

1 ]
1
ϵ . (23)

H0 is the aggregate labor supply in efficiency units of non-college workers, and H1 is that of

workers with college education. The physical capital stock depreciates at rate δf .

The government taxes labor income progressively, such that labor income net of taxes

amounts to ynet = λy1−τn (Heathcote et al., 2017). It also taxes capital income linearly

according to τaraj. All tax revenue is used to finance retirement benefits πj and fixed lump-

sum social welfare benefits g that are paid to every household.

2.7 Equilibrium

We solve for the model’s stationary equilibrium and its associated distribution using the

numerical strategy in Lee and Seshadri (2019). Stationarity implies that the cross-sectional

distribution over all states in every age-period j is constant across cohorts. As is standard, the

equilibrium requires that households and firms make optimal choices according to their value

functions and firm first-order conditions, respectively. Moreover, the aggregate prices for

physical capital and both types of human capital r, w0, and w1 are competitively determined

and move to clear all markets. Note that we do not require the government budget to clear

as well. Instead, we assume that all government revenues that exceed the financing of all

social welfare programs result in wasteful government spending (or spending that is linearly

separable in the utility of households).

A special feature of our model is that learning during the school years depends on the

distribution of children across school tracks. Importantly, an equilibrium therefore requires

that parents form expectations over the skill distribution across school tracks, which have
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to coincide with the actual distributions in equilibrium. Appendix A.2 gives a detailed

definition of the equilibrium.

3 Developing Intuition: Tracking and Skill Formation

Our formulation of the skill formation technology during the schooling years in (2) constitutes

the novel cornerstone of our model. We now develop some intuition about what it implies for

skill accumulation with and without school tracking. Our focus in this section is exclusively

on the secondary schooling years (periods 3 and 4), and we ignore transitions to higher

education and the labor market. Moreover, we simplify parents’ preferences, such that they

only care about their child’s expected end-of-school skills and have no other preferences

regarding the school track choice. Finally, we assume for simplicity that κ = 1 and that

there are no direct parental influences, ζ = 0, nor stochastic track costs, χ = 0.

All other assumptions are maintained. In particular, policymakers set the instruction

paces in each school track to maximize expected end-of-school skills, such that the pace-

setting rule in Lemma 1 holds. Moreover, we assume that the distribution of child skills at

the beginning of secondary school is normal and centered around 0.

3.1 Comprehensive School versus Tracking

We start by comparing a comprehensive schooling system (C), in which all children attend

the same school track, to a tracking system (T ) in which all children are tracked into a

vocational or academic track. For simplicity, we consider only one period of schooling here.

Thus, if θ3 are the skills at the beginning of secondary school, θ4 can be considered the skills

at the end of school. A key implication of this simplifying assumption, when combined with

the timing of skill shocks in (2), is that skill evolution during secondary school occurs as

if there were no skill shocks during that time. As we will see, this implies that aggregate

end-of-school skills are always greater with tracking than in a comprehensive system.

The Allocation of Children across Tracks

We consider two alternative allocation mechanisms. In the first one, a policymaker (or a

teacher) allocates children across tracks directly. As before, the goal of the policymaker is

to maximize the expected end-of-school skills across all children (maxS E(θ4)).

The second alternative consists of each parent making the track decision unilaterally for

her child i with skill level θi,3. A parent’s only goal is to maximize her child’s expected end-
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of-school skill level (maxS E(θi,4)). Parents know the distribution of θ3. We can thus think

of this mechanism as a simultaneous move game played among parents, where each parent’s

strategy set consists of the two tracks she can send her child to, and the next period’s skills

give the payoffs.

Proposition 1 shows that, in both alternatives, the track decision that results in the

optimum or equilibrium is governed by a sharp cut-off skill level. A policymaker would

optimally split the distribution exactly at its mean. Intuitively, this generates the highest

aggregate end-of-school skills as it minimizes the variance of skills in each track, thereby

creating peer groups that are as homogeneous as possible. In doing so, the policymaker

internalizes that any effects coming from the direct peer externality offset each other across

tracks. Thus, all gains achieved from making average peer skills in one track higher are lost

as the average level in the other track becomes smaller.

In contrast, if parents are the decision-makers, they decide regardless of the aggregate

outcomes. The equilibrium of this implied game still features a sharp skill threshold, which

is characterized by the skill level at which a child’s expected end-of-school skills are exactly

equal in both tracks. This threshold is smaller than the optimal threshold a policymaker

would pick whenever the direct peer effects are positive (α > 0). The reason is that, because

of positive direct peer effects, children with skills just below the policymaker’s threshold

would benefit individually from going to the academic track (with higher average skills). As

parents do not internalize the effect of their decision on average skills in each track, they will

therefore send their children to the academic track.

Proposition 1. The allocation of children across tracks is characterized by a skill threshold

θ̃3, such that all children with initial skills below θ̃3 go to one track and all children with

initials skills above θ̃3 go to the other track.

• If the policymaker does the track allocation, the optimal skill threshold corresponds to

the average initial skill level θ̃∗3 = E[θ3] = 0.

• If parents do the track allocation, the skill threshold depends on the direct peer exter-

nality α. With α > 0, the threshold is smaller than θ̃∗3.
26

Proof. In Appendix A.1.

26We rule out an (uninteresting) equilibrium of the track choice game in which parents randomly allocate
their child into one of the two tracks, leading to the same distribution of skills in both tracks and, hence,
the same pace of instruction.
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Next, we compare the comprehensive and tracking systems in terms of their effects on end-

of-school skills. We refer to an optimal tracking system, when the policymaker makes the

track allocation with the goal to maximize end-of-school skills, as in Proposition 1.

The End-of-School Distribution

Proposition 2 shows that independently of the sorting mechanism, expected end-of-school

skills in an optimal tracking system are always larger than in a comprehensive system, pro-

vided that γ ̸= 0 and δ > 0. Intuitively, this advantage comes from more homogeneous

peer groups in each track in terms of their skills. Since learning decreases with the variance

of skills among children in a track, more homogeneity on average increases end-of-school

skills. Therefore, the gain from tracking increases the smaller the conditional variance of

skills across tracks, as given in equation (24). The gain from tracking further increases in

the complementarity between own skills and instruction pace, γ. The stronger the com-

plementarity, the more it pays to stratify children by their skills. Moreover, the advantage

increases in the variance of initial child skills σ2
θ3
but decreases in δ, which ultimately governs

the concavity of learning with respect to the instruction pace.

A full tracking system may lead to larger inequality in end-of-school skills. In particular,

condition (25) states that the variance of end-of-school skills might be larger in a tracking

system with positive peer externalities if tracking occurs at the optimal skill threshold. This

is more likely to hold the larger the direct peer externality α.

Similarly, an optimal tracking system necessarily leaves some children worse off compared

to a comprehensive system. These children have initial skills around the tracking threshold

and would be closer to their optimal instruction pace in a comprehensive system. In an

optimal tracking system with θ̃3 = 0, these children thus occupy the center of the distribution

and would, given a choice, prefer a comprehensive system. If there are no direct peer effects,

an equal share of children in both tracks lose relative to the comprehensive counterpart.

However, with positive peer effects, the losses are concentrated among the track with the

lower average peer level. This reflects a robust finding of the empirical school tracking

literature that the children at the bottom of the skill distribution suffer from a tracking

system (e.g. Matthewes, 2021).

Proposition 2.

• Expected end-of-school skills in a full tracking system are larger than in a fully compre-

hensive system. This holds regardless of who makes the track decision, i.e., regardless

23



of the tracking skill threshold θ̃3. The gain from tracking is given by

E(θ4|T )− E(θ4|C) =
γ2

2δ

(
σ2
θ3
− E(V ar[θ3|S])

)
. (24)

• The end-of-school skill distribution in a full tracking system has a “fatter” right tail. In

case of tracking at the optimal skill threshold θ̃3 = E(θ3), the variance of end-of-school

skills in a full tracking system is larger than the variance in a fully comprehensive

system iff

α2 + 2α

(
1 +

βγ

δ

)
− (8− π)

γ4

πδ2
σ2
θ3
> 0. (25)

• Children with initial skills inside a non-empty interval lose from a full tracking system

in terms of their end-of-school skills relative to a fully comprehensive system. With

α = 0, the losses are symmetric in both tracks. With α > 0, the losses are concentrated

in the track with the lower average skill level.

Proof. In Appendix A.1.

The main reason why T always beats C here in terms of aggregate skills is the simplifying

assumption of no skill shocks during students’ time in school. As a result, the tracking

decision made at the start of secondary school is optimal throughout secondary school.

3.2 Early versus Late Tracking

Let us now consider a two-period secondary schooling system, like in our full model, where

there can be skill shocks during the time students are in secondary school. In this case, the

skills at the end of school are θ5. We are interested in a comparison between the end-of-

school skill distribution in an early tracking system, ET , and a late tracking system, LT . In

both cases, the allocation of children to tracks is done optimally by a policymaker, maximiz-

ing the expected aggregate end-of-school skills (maxS E(θ5)). The early tracking system is

characterized by a track allocation in j = 3 that is maintained throughout secondary school.

The late tracking system is characterized by all children going to a comprehensive school in

the first period, followed by tracking at the beginning of the second secondary school period

(j = 4). Hence, in the case of LT , children are allocated to school tracks after the skill

shocks η4 are realized, while in the case of ET , the school track decision was made before

the realization of these shocks.
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Proposition 3 says that expected end-of-school skills in an optimal LT system can be

larger than in an optimal ET system if the variance of the skill shocks is large enough. Intu-

itively, this represents the key disadvantage of early tracking. Since the first track allocation

is maintained throughout secondary school, it does not correct for skill shocks during that

time. As a result, some students are mismatched in the second period of secondary school

(j = 4). The LT system avoids this mismatch by making the track allocation later. But

this comes at the cost of less aggregate skill accumulation during the C stage. Hence, when

students are subject to skill shocks during secondary school, there is a trade-off between the

pace of learning in the first stage of secondary school and the quality of the student-track

match in the second stage of secondary school.

Proposition 3. Expected end-of-school skills in the two-period model are larger in an optimal

late tracking system than in an optimal early tracking system iff

σ2
η4

σ2
θ3

> 1 + α + α2 + β +
β2

2
+ 2α(1 + β) +

γ2

2π
σ2
θ3
. (26)

Proof. In Appendix A.1.

These results illustrate that the skill technology alone entails non-trivial theoretical impli-

cations for the effects of school tracking on end-of-school skills. In particular, even when the

track allocation is performed optimally, the timing of tracking balances a trade-off between

efficiency gains from learning in more homogeneous peer groups and those from the ability

to react to child skill shock realization.

In sum, our parsimonious skill technology can therefore accommodate the ambiguous

empirical findings on the effects of tracking on the level of educational achievements, in

addition to the estimated association of tracking with higher inequality and disproportional

disadvantages among the lower-skilled groups. However, this alone does not allow us to

quantify the macroeconomic effects of school tracking policies. Indeed, the quantitative

importance of these forces for economic outcomes within and across generations not only

depends on the estimates of the child skill technology parameters and the size of the skill

shock variances but also on how they interact with other essential features of the model

(and reality). For example, second-chance opportunities at the time of the college decision

may make the effect of the (early) track choice less consequential for labor market outcomes.

On the other hand, asymmetric parental preferences over school tracks may reinforce inter-

generational persistence of education, while harming learning efficiency during the school

years. Finally, the track decision is not just concerned with purely maximizing skills but
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takes into account future labor market prospects, which also depend on the share of children

attending each track. To quantify these channels through the lens of our model, we now

describe the calibration procedure.

4 Model Calibration

We calibrate the model to the German Education System (described in detail in Appendix

B.1) following a two-step approach. In the first step, we estimate the parameters of the child

skill formation technology during the school years, as well as other selected model parameters

directly from the data. In the second step, the remaining parameters are estimated using the

simulated method of moments by matching the moments from the stationary equilibrium

distribution of the model to their empirical counterparts. Table 4 summarizes the externally

calibrated parameters, and Table 5 presents the internally estimated ones.

4.1 Data and Sample Selection

The calibration is based on two data sources, and complemented by official statistics on

education in Germany.27 The first source is the German National Educational Panel Study

(NEPS), which comprises detailed longitudinal data on the educational process, acquired

competencies, as well as the learning environment, and context persons of six cohorts of par-

ticipants in nationally representative samples in Germany, starting in 2010 (Blossfeld et al.,

2019).28 A key component of the information collected is regular standardized assessment

tests of school children’s competencies in areas such as mathematics, reading, sciences, or

grammar.29 In addition, there is information about school track recommendations by pri-

mary school teachers and the final school track choices. We restrict the sample to individual

observations containing information on the school and class of a child in a given year.

The second data source is the German Socioeconomic Panel (SOEP), an annual repre-

sentative household survey from which we use the 2010-2018 waves (Goebel et al., 2019).

The data contains rich information on labor supply, income, and education on the individual

level. We use this data source primarily to construct empirical moments for the working

27See Bildungsberichterstattung (2018) and Appendix B.5 for details on these statistics and the sources
of our target moments.

28The NEPS is carried out by the Leibniz Institute for Educational Trajectories (LIfBi, Germany) in
cooperation with a nationwide network. We use data from Starting Cohorts 2,3, and 4, survey waves 2011-
2018 (NEPS Network, 2022).

29See also Appendix Section B.3 for more details on the tests as well as the scaling procedure adopted by
the NEPS.
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stage of the life cycle, as will be detailed below. For this reason, the only sample selection

we do is dropping those workers with hourly wages below the first and above the 99th per-

centile while keeping both workers and non-workers. We convert all income data to 2015

Euros using a CPI index for inflation adjustment.

We begin by detailing how we measure, identify, and estimate the parameters of the skill

formation technology, as these constitute the most critical ingredient of our model. Then,

we describe the functional forms and estimation strategies for all remaining parameters.

4.2 Estimation of the the Child Skill Formation Technology

We specify the empirical analog of the production technology of (the logarithm) of child i’s

skills that we take to the data as follows:30

θi,j+1 = ω0,j + ω1,jθi,j + ω2,j θ̄
S
−i,j + ω3,jθ

2
i,j + ω4,j(θi,j − θ̄Sj )

2
+ ω5,jEi + ηi,j+1, (27)

Note that (27) is a rearranged version of the skill technology (2) after substituting in (3)

and the optimal pace of instruction in each school track as given by Lemma 1.31 Moreover,

in principle, we allow all parameters to be specific to the period j.

In the estimation, we also distinguish between θ̄S−i,j, which denotes the average skill level

of the child i’s classroom peers, and θ̄Sj , which refers to the average skill level of all children

in a school that belongs to track S. Note that in the model, θ̄S−i,j = θ̄Sj , since we assume

a representative school and class per track (or alternatively, identical classes conditional

on school tracks). In the data, however, there is heterogeneity across classes, even within

schools and tracks. Since we are interested in capturing skill development effects that arise

from direct interactions with peers, which are likely occurring in a specific classroom, we

exploit this heterogeneity in the estimation.32 Finally, the intercept ω0,j can be a function

30Following the work in Cunha et al. (2010), much of the empirical and quantitative literature using child
skill formation technologies employs parametric specifications of the constant elasticity of substitution (CES)
form. As noted in Agostinelli and Wiswall (2016), this requires, under standard parameter restrictions, that
all input factors are static complements. An alternative is to use a nested CES structure as in Fuchs-
Schündeln et al. (2023); Daruich (2022). To retain tractability, we follow Agostinelli and Wiswall (2016) and
opt for the trans-log approach. In our formulation, all inputs into child skill formation, and in particular
school inputs and parental inputs, are therefore substitutes, which is in line with the literature (Kotera and
Seshadri, 2017). We also experimented with relaxing this assumption by including interaction terms between
school inputs and parental education, which were, however, insignificant.

31The coefficients ωn,j , n = 0, ..., 5 relate to those in (2) and (3) as follows: ω0 = β2

2δ
, ω1 = (κ+ β

γ
δ), ω2 =

α, ω3 = −ω4 = γ2

2δ
, and ω5 = ζ for all j. We formally test the restriction ω3 = −ω4 after the estimation.

32Given that we control for school fixed effects in the estimation, our identification of the direct peer
effects is therefore close to the literature on estimating peer effects using classroom-fixed-effects methods

27



of age and gender in the empirical estimation, and the parental educational attainment E is

a time-constant dummy that equals one if child i comes from a household in which at least

one parent is college educated.

As is common in the child skill formation literature (Cunha et al., 2010; Agostinelli and

Wiswall, 2016), we think of skills θj as latent variables that are only imperfectly measured

in the data. Therefore, we employ a log-linear measurement system for latent skills, using

a series of achievement test scores as noisy measures of child skills in each period. The

identification strategy of the scales and loadings of each measure using their covariances

follows Cunha et al. (2010). We aggregate the individual measures into a composite unbiased

index using Bartlett factor scores, as in Agostinelli et al. (2023), to account for measurement

error. Appendix B.4 details skills measurement and the estimation procedure.

Table 1: Child Skill Technology Parameters Estimates

Dependent Variable: θi,j+1

Grade 9 on Grade 5
Coefficient Variable

ω̂1,3 θi,j 0.664***
(0.022)

ω̂2 θ̄S−i,j 0.003

(0.020)

ω̂3 θ2i,j 0.008*

(0.004)

ω̂4 (θi,j − θ̄Sj )
2 -0.011*

(0.006)

ω̂5,3 E = 1 0.034***
(0.010)

Obs. 1,847

Notes: This table presents the coeffi-
cients of regressions of skills in grade 9
on skills in grade 5, skills squared, the av-
erage skill level of peers, distance to the
average skill in the track squared, and par-
ent’s education dummy. Standard errors
are clustered at the school level. We con-
trol for year of birth, gender, and school-
fixed effects. Source: NEPS.

(see the discussion in Epple and Romano, 2011). This also has the added benefit that we can identify a
model that includes θ̄S

−i,j , (θ̄
S
j )

2, and the interaction θθ̄Sj , even if we consolidate schools into a maximum of
two school tracks in the data, which, as discussed in Appendix B.1 resembles reality in Germany over the
past decade.

28



We present our preferred estimates of the skill production technology parameters in

Table 1 and provide robustness checks with different specifications in Appendix B.4. These

estimates are based on the NEPS Starting Cohort 3 data, between school grades 5 and 9,

which corresponds to period 3 in our model. Since children are in a comprehensive primary

school track before grade 5, we cannot estimate the age-, and track-specific coefficients for

period 2. In addition, in grade 12, some parts of the tests are track-specific, which makes

the estimates unreliable for period 4. For those reasons, we assume that the estimates of the

skill technology parameters ω2, ω3, and ω4 between school grades 5 and 9 are representative

of the entire schooling career. That is, we drop the j index on those technology parameters.

Recall that θi,j is the logarithm of child skills. Hence, we can interpret the coefficients

as elasticities. Thus, ω̂1 = 0.66 means that a 1% increase in latent skills at the beginning

of primary school is associated with a 0.66% increase in end-of-primary school skills. This

own-skill productivity is close to the literature’s common values (see estimates in Cunha

et al., 2010; Agostinelli et al., 2019). During secondary school, the estimated coefficient

ω̂2 is positive but rather small and statistically insignificant. Existing estimates of linear-

in-means peer effects models range from small negative effects to large positive effects of

a one-unit increase in average peer test scores on student achievement.33 Translating our

estimates into such an effect, we find that a one-unit increase in average peers’ test scores

raises own future tests by around 0.01. As such, we are at the lower end of typical estimates

during primary and secondary school, which is in line with other research that uses within-

school classroom variation (see Epple and Romano, 2011) that typically arrive at lower

estimates compared to studies that use some form of random assignment of peers. Finally,

the estimated coefficient ω̂4 is negative and statistically significant at 10%. It indicates that

a 1% increase in the squared distance to the average skill level in a track is associated with

an up to 0.011% decrease in the next period’s skills. This lends empirical support to the idea

that the instruction pace in every track is tailored to the average skill level, and deviations,

in both directions, from this level can hurt individual skill development. Importantly, we

cannot reject the hypothesis that ω̂3 = −ω̂4, which is in line with our assumptions.34

33Table 4.2. in Sacerdote (2011) provides an overview about existing estimates using a variety of identi-
fication strategies.

34The estimated negative effect ω̂4 is therefore conform with findings in the literature, which test the
effects of skill-based tracking on later achievement directly (for example Duflo et al. (2011) argue that the
large achievement gains of tracked students relative to non-tracked students are the result from indirect
effects of peers that operate through the adjustment of teaching behavior) or test the effects of classroom
heterogeneity on achievement. As summarized in Sacerdote (2011), many, but not all, findings in this
literature point to the fact that classroom heterogeneity reduces test scores, which is consistent with the idea
that tracking raises outcomes in both tracks. In terms of effect sizes, it is difficult to compare our estimates
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The parameters we use in the skill formation technology in the model are then ω2 = ω̂2,

and ω4 = ω̂4 as reported in Table 1. Moreover, we set −ω3 = ω4 = ω̂4. The parameters ω1,3

and ω5,3 also come from Table 1, while ω1,2, ω1,4, ω5,2, and ω5,4 are estimated internally to

match the own-skill elasticities from a regression of future skills on past skills and parental

education, as reported in Table 2. Finally, the constant parameter ω0 is set to zero.

Table 2: Evolution of Child Skills

Grade θi,j+1 on Grade θi,j and E
Dependent Variable: Grade 4 Grade 9 Grade 12

(Cohort 2) (Cohort 3) (Cohort 4)

Panel A: All students
θi,j 0.649*** 0.811***

(0.011) (0.016)

E = 1 0.072*** 0.044***
(0.007) (0.009)

Obs. 4,023 2,070
Panel B: Academic students

θi,j 0.566*** 0.745*** 0.825***
(0.019) (0.025) (0.019)

E = 1 0.049*** 0.035*** 0.033***
(0.011) (0.012) (0.009)

Obs. 1,371 1,195 2,327

Notes: This table presents the coefficients of regressions of current skills on
past skills and parents’ education dummy. Standard errors are clustered at the
school level. Models control for year of birth, gender, and school-fixed effects.
Source: NEPS.

4.3 Remaining Parameters

4.3.1 Preferences

We set the inverse elasticity of intertemporal substitution to σ = 2, a value that is common

in the literature. The Frisch elasticity of labor supply is set to 0.5. The disutility shifter b is

estimated internally to match the average time worked in the SOEP data, which is 0.36 when

the total time available after sleep and self-care is assumed to be 13 hours on a weekday and

normalized to 1.

We internally calibrate the time discount factor β, so the equilibrium interest rate

amounts to 4% annually. The altruism parameter Λ is calibrated such that the ratio of

to existing ones as we are measuring the heterogeneity across tracks directly and not across classrooms.
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average inter-vivos transfers to average labor income in the model corresponds to average

higher education costs of children to average four-year labor income in the data. According

to a 2016 survey by the German Student Association, the monthly costs of living during

the higher education stages for a student without children are, on average, 830 Euros per

month (Dohmen et al., 2019). We expect the parents to bear the bulk of these costs and

assume that they support their child for an average of four years (the length of time it takes

on average to complete higher education studies). Then, the ratio of total costs to average

4-year labor income is approximately 0.49, which we take as our target moment.

4.3.2 Academic School Track Costs

The stochastic school track costs χ(E) are assumed to follow the distribution χ(E) ∼

HE(χ) ≡ N (µχ,E, σ
2
χ). We parameterize the mean µχ,E as follows:

µχ,E = µχ,A +




χ1 if E = 1

χ0 if E = 0,
(28)

so that µχ,A > 0 represents a uniform utility cost of academic-track attendance (for example,

stemming from the academic track being more demanding and psychologically taxing), and

the parameters χ0 and χ1 represent asymmetric preferences or costs for the academic track

by parental college education. We calibrate χ0 and χ1 to match the share of deviations

from secondary school track recommendations by parental education in the data, while µχ,A

is calibrated to match the overall share of academic track recommendations (0.44).35 The

variance of the track tastes σ2
χ is calibrated to match the variance of the residuals coming

from a regression of school track on end-of-primary-school skills, which is 0.166.

4.3.3 Initial Child Skills, and Child Skill Shocks

The transmission of initial ability ϕ, which equals the initial child skill level, across gener-

ations follows an AR(1) process with persistence coefficient ρϕ and variance σ2
ϕ. Since the

35Primary school teachers typically give these recommendations before the transition to secondary school.
They are based on both a reflection of the child’s achievement during primary school and the teachers’
assessment of the academic potential and success probability of the child in an academic track school. Thus,
we argue that the recommendations are forward-looking and, since primary school teachers typically observe
the children over multiple years every day during the week, based on a similar information set as the parents.
Therefore, we consider the recommended school track in the model as the one a parent would have chosen
without any specific school track taste (χ1 = χ0 = 0). Then, deviations from that unbiased track choice by
parental education map into deviations from teacher recommendation. Details on these moments are given
in Appendix B.2.
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initial ability is designed to capture any residual correlation in economic outcomes across

generations, we calibrate it to match the intergenerational elasticity of incomes in Germany.

Kyzyma and Groh-Samberg (2018) estimate an elasticity between the income rank of indi-

vidual labor earnings between children and parents using the SOEP data of 0.24, which we

take as our target statistic.36 The variance σ2
ϕ is then estimated to match the variance of

pre-school skills in the data, which we normalize to 0.1.

As discussed in Section 3, the size of shocks to child skills has important implications

for the effects of school tracking policies as they can give rise to efficiency losses from early

tracking. To quantify the importance of child skill shocks in our model, we internally estimate

the shock variance σ2
η,j+1, for j = 2, 3, 4. As target moments, we choose the correlation of a

child’s skill percentile rank across periods. In this way, we capture all changes in a child’s

relative position in the skill distribution in a given period that cannot be accounted for by

the deterministic components of the skill formation technology or by track choices.

4.3.4 College Costs

We parameterize the “psychic” college cost function following Daruich (2022):

ψ(S, θ5, ν(E
p)) = exp(ψ0 + ψS=V + ψθθ5 + ν(Ep))

ν(Ep) ∼ GEp

(ν) ≡ N (µν,Ep , σ2
ν).

(29)

We estimate the two parameters ψ0 and ψS=V to match the share of graduates from an

academic secondary school who follow up with a college education and the share of vocational

secondary school graduates who obtain a college education. We discipline the coefficient ψθ

that multiplies end-of-school skills by matching the regression coefficient on test scores from

a regression of a college graduation dummy on end-of-school test scores, controlling for the

secondary school track.

We calibrate the two parental education-specific means of the college taste shock pa-

rameters to be symmetric deviations from 0, such that µν,Ep=1 = ∆(µν,Ep) and µν,Ep=0 =

−∆(µν,Ep) to match the ratio of the share of children from college-educated parents who

themselves go to college (0.63) and the share of children from non-college-educated parents

36As is common in the literature, Kyzyma and Groh-Samberg (2018) compute the correlation of income
ranks using average labor earnings over five years. We compute rank-rank correlations of four-year labor
income, according to the period length of our model, and then compare the ranks of 30-34-year-old children
to those of their parents when they were 46 to 50 years old, which is similar to the sample used by Kyzyma
and Groh-Samberg (2018). As in Lee and Seshadri (2019), we normalize average labor income across the
entire working population to be one in the data and in the model. In the latter, we do this by setting the
technology parameter A in the firm production function.
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who go to college (0.20) in the data. Finally, we calibrate the variance of these shocks, σ2
ν ,

to match the variance of the residuals from the above regression of college education on

end-of-school skills and school track.

The final component of college costs is not a part of the “psychic” costs but reflects the

time cost of obtaining a college education. We assume that studying for a college degree

takes away around 60% of the total time available for work for four years or one model

period.37 Thus, we set the maximum remaining time during the higher education stage to

n̄(E = 1) = 0.40.

4.3.5 Human Capital Growth

We estimate the deterministic human capital growth profiles for both types of education,

γj,E, for j = 5, ..., 16, using wage regressions in the SOEP data, following the approach in

Lagakos et al. (2018).38 The resulting experience-wage profiles for four-year experience bins

are shown in Table 3, expressed in growth relative to the previous bin. We set the {γj,E}
16
j=5

parameters to these values.

Finally, we calibrate the variance of the market luck shocks, σ2
ε , such that our model repli-

cates the standard deviation of (normalized) labor income across the working-age population

in the data, which is around 0.86.

4.3.6 Firms and Government

Following large parts of the literature, we set the capital share in the aggregate production

function to α = 1/3. Moreover, we set σf = 1/3 such that the elasticity of substitution

37A standard estimate is that full-time studying takes around 40 hours per week, which amounts to
around 60% of the maximum weekly work hours, which we set to 65. Moreover, the average study length in
Germany is eight semesters or four years.

38Concretely we create, separately for each education group, four-year work experience bins. We then
estimate Mincer regressions of wages on years of schooling and potential work experience, controlling for
time and cohort effects of the form:

logwict = α+ βsict + δxict + γt + ζc + ϵict,

where wict is the wage of individual i, who belongs to birth cohort c and is observed at time t. Wages are
defined as total annual labor earnings divided by hours worked. We denote by sict the years of schooling
and by xict work experience, which is defined as

xict = ageict − 18 if sict < 12

xict = ageict − sict − 6 else.

We assume no experience effect on wage growth in the last eight years of work to disentangle time from
cohort effects, following the HLT approach in Lagakos et al. (2018).
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Table 3: Human Capital Growth Profiles

Experience Wage Growth
(Years) Non-College College

0 1.00 1.00
4 0.96 1.15
8 1.09 1.19

12 1.10 1.11
16 1.04 1.06
20 1.02 1.01
24 1.00 0.99
28 1.01 0.97
32 0.99 0.98
36 1.01 0.99
40 0.99 1.01

Notes: This table provides wage growth
estimates by year of experience and edu-
cational attainment. Source: SOEP

between college and non-college human capital in the firm production equals 1.5 (Ciccone

and Peri, 2005). The weight on non-college human capital in the CES aggregator, φ, is

estimated internally. Following the arguments in Lee and Seshadri (2019), we calibrate it to

match the share of college-educated workers in the SOEP data. The TFP parameter A is

calibrated such that the model produces average earnings of 1.

Regarding the tax and transfer system, we set the labor income tax scale to λ = 0.679 and

the labor tax progressivity parameter to τl = 0.128 following estimates in Kindermann et al.

(2020). The linear capital tax is set to τa = 0.25, corresponding to the final withholding

tax rate on realized capital gains, interest, and dividends in Germany. The size of the

lump sum government transfers is set to g = 0.06, which in equilibrium amounts to 6%

of average labor earnings. Finally, we set pension benefits to πj(h17, E) = Ωh17wE during

retirement and calibrate the scale parameter Ω internally, such that the average replacement

rate corresponds to 40% (Mahler and Yum, 2023).

4.4 Method of Simulated Moments Estimation Results

In total, we calibrate 26 parameters internally using the method of simulated moments to

match 26 target data moments. The parameters, their estimated values, model-implied

moments, and target data moments are presented in Table 5.

The model fits the data well, both in terms of aggregate moments and concerning the

distribution of child skills, school tracks, and higher education. For example, the share of
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Table 4: Parameters calibrated externally

Parameter Value Description Source

Household
σ 2.0 Inverse EIS Lee and Seshadri (2019)
γ 0.5 Frisch Elasticity Fuchs-Schündeln et al. (2022)
q 1.56 HH Equiv. Scale Jang and Yum (2022)
n̄(E = 1) 0.40 Time Cost of College 40 hours/week for 4 years

Firm
σf 1/3 E.o.S (H0, H1) Ciccone and Peri (2005)
δf 6% Annual Depreciation Kindermann et al. (2020)

Government
τn 0.128 Labor Tax Progressivity Kindermann et al. (2020)
λ 0.679 Labor Tax Scale Kindermann et al. (2020)
τa 0.25 Capital Tax Rate Tax Rate on Capital Gains in Germany
g 0.06 Lump-sum Transfers 6% of Annual Labor Income

Notes: This table presents the externally calibrated parameters and their corresponding
sources.

college graduates in the simulated economy is 35%, which is in line with the German data

in the 2010s. The share of children in an academic track school is 44%. The model also

matches the transition rates from academic and vocational secondary school into college (at

around 66% and 11%) and the effect of secondary school skills on college attendance, while

it slightly overestimates the share of college graduates from non-college households.

Parental school track preferences significantly affect the school track decision, both in

the model and the data. In particular, around 23% of college-educated parents overrule a

recommendation for their child to go to a vocational track school, while 16% of non-college

parents overrule an academic track recommendation in favor of a vocational track school.

To match the correlation between child skill ranks across school periods, the model re-

quires large child skill shocks, especially during primary school, with a standard deviation of

0.052. The estimated own skill elasticity increases between primary school ages (0.65) and

end-of-secondary school ages (0.81). At the same time, the parental education intercept in

the child skill technology decreases from 0.072 to 0.032.

4.5 Validation Exercises

We assess the model’s validity using two approaches. First, as is standard in the literature,

we compare non-targeted moments from our model simulated data to their counterparts in

the NEPS data or using estimates from other research papers. Second, we investigate the

effects of school track choice on later-in-life economic outcomes for a set of marginal students
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Table 5: Internally Calibrated Parameters

Parameter Value Description Target Data Model

Preferences
β 0.935 Discount Factor Annl. Interest Rate 0.04 0.04
b 20.7 Labor Disutility Avrg. Labor Supply 0.36 0.36
Λ 0.31 Parental Altruism Transfer/Income 0.49 0.49

School Track Tastes
µχ,A 0.048 Uniform A-Track Costs Share A-Track Recommend. 0.44 0.44
χ0 0.0020 Mean A-Track Cost if E = 0 Share of Dev. from A if E = 0 0.16 0.16
χ1 -0.0036 Mean A-Track Cost if E = 1 Share of Dev. from V if E = 1 0.23 0.23
σχ 0.17 ·10−3 Std. A-Track Cost Shock Reg. S on θ: var(residuals) 0.166 0.168

Child Skill Technology
ω1,2 0.65 Own Skill Elasticity (j = 2) Reg. θ3 on θ2 & E: coef. θ2 0.649 0.649
ω5,2 0.072 Coefficient on E (j = 2) Reg. θ3 on θ2 & E: coef. E 0.072 0.072
ω1,4 0.81 Own Skill Elasticity (j = 4) S = 1, Reg. θ5 on θ4 & E: coef. θ4 0.825 0.812
ω5,4 0.032 Coefficient on E (j = 4) S = 1, Reg. θ5 on θ4 & E: coef. E 0.033 0.032

Transmission of Initial Skills (Ability)
σϕ 0.032 Std. of Intergen. Shock Variance of initial skills 0.10 0.12
ρϕ 0.9 Persistence of Ability IGE (income rank) 0.24 0.23

College Costs
ψ 0.77 Intercept Share in CL from A-Track 0.66 0.65
ψV 0.16 Add. Costs for V-Track Share in CL from V-Track 0.11 0.11
ψθ -0.35 Coefficient on θ5 Reg. E on θ4 & S: coef. θ4 0.40 0.50
∆(µν,Ep) 0.034 Diff. in Means by Ep Share in CL from Non-CL HH 0.20 0.28
σν 0.008 Std. Taste Shock Reg. E on θ4 & S: var(residuals) 0.137 0.138

Idiosyncratic Shocks
σε 0.011 Std. Market Luck Shock Std(Log Labor Income) 0.86 0.84
ση3

0.052 Std. Learning Shock j = 3 Rankj=2-Rankj=3 0.72 0.73
ση4

0.030 Std. Learning Shock j = 4 Rankj=3-Rankj=4 0.79 0.80
ση5

0.032 Std. Learning Shock j = 5 Rankj=4-Rankj=5 if S = 1 0.74 0.75

Miscellaneous
Ω 0.1 Pension Anchor Replacement Rate 0.40 0.40
A 3.31 TFP Avrg. Labor Earnings 1.0 1.0
φ 0.543 Weight Non-CL H0 College Share 0.35 0.35

Notes: This table presents the internally calibrated parameters, targeted moments, and their model-generated
counterfactuals. See Appendix B.5 for details on the sources of the target moments.
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and compare the results to the null effects reported in Dustmann et al. (2017) for Germany.

Non-targeted Moments

We summarize selected non-targeted moments and their data or external counterparts in

Table 6. The first set of moments pertains to child skills. Our model features slightly

smaller differences in average child skills by parental education and comparable differences

in average skills by school track. In both data and model, these differences increase between

primary and secondary school, before staying relatively constant.39 In general, differences

across school tracks are larger than differences across parental education. Our model also

produces realistic child skill rank-rank correlations within school tracks.

Table 6: Non-targeted Moments

Moment Data Model

Child Skill Moments
Differences in average skills by parental education (in standard deviation)

Primary School 0.53 0.44
Beginning Secondary School 0.66 0.53
Middle Secondary School 0.71 0.54

Differences in average skills by school track (in standard deviation)
Beginning Primary School* 0.84 0.80
Beginning Secondary School 1.10 1.14
Middle Secondary School 1.11 0.95

Rank-rank coefficients
Rankj=2 − Rankj=3 if S = 1* 0.62 0.66
Rankj=3 − Rankj=4 if S = 1 0.68 0.73
Rankj=2 − Rankj=3 if S = 0* 0.64 0.67
Rankj=3 − Rankj=4 if S = 0 0.74 0.74

Skill evolution during secondary school
Reg. θ4 on θ3 and E: coef. θ4 0.81 0.66
Reg. θ4 on θ3 and E: coef. E 0.04 0.04

Intergenerational Mobility and Inequality
Parental Income Gradient (Dodin et al., 2021) 0.52 0.32
Q5/Q1 A-track on income (Dodin et al., 2021) 2.13 1.82
Q1 A-track on income (Dodin et al., 2021) 0.34 0.30
Gini Coefficient of Income 0.29 0.26
College Wage Premium 1.35 1.46

Notes: This table presents non-targeted moments and their model-generated
counterfactuals.
* We exploit the panel structure of the datasets and group students by future
school track assignation.

The second set of moments relates to further measures of intergenerational mobility and

39See for instance Passaretta et al. (2022); Nennstiel (2022); Schneider and Linberg (2022) who investigate
the NEPS data and find stable or growing socioeconomic status gaps in children’s skills.
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cross-sectional inequality. To assess the model’s validity here, we compare its implications

vis-à-vis the estimates on social mobility in Germany reported in Dodin et al. (2021). Using

a different data set than we, they regress academic-track school graduation of a child on the

percentile income rank of her parents, finding that a ten-percentile increase in the parental

rank is associated with a 5.2 percentage point increase in the probability of graduating from

an academic track school. In our model, a comparable estimate yields a 3.2 percentage point

increase. Moreover, Dodin et al. (2021) report absolute graduation rates for children from

the first quintile of the income rank distribution (Q1) of 34% and a ratio of the fifth income

rank quintile over the first quintile of 2.13. Our model-generated data squares well against

these external estimates (30% and 1.82, respectively).

We also investigate the model fit regarding the non-targeted determinants of the school

track choice in relation to parental education and end-of-primary school skills. We delegate

this discussion to Section 5.1, where we decompose the track determinants quantitatively.

Long-term effects of Track Choice for Marginal Students

Dustmann et al. (2017) analyze the long-term labor market effects of early school track

choice in Germany using a quasi-experimental setting. Their identification strategy makes

use of the existence of a (fuzzy) cut-off age for school entry in the German system. Children

born just before the cut-off age are less likely to go to an academic track secondary school

simply because they are younger and, therefore, less developed than their class peers at the

time of the track decision. This induces a quasi-randomness in secondary school track choice

based on the date of birth. The authors then investigate the effect of that date of birth

on later-in-life wages, employment, and occupation. They find no evidence that the track

attended in secondary school affects these outcomes for the marginal children around the

school entry cut-off.40

We use our model-simulated data to perform a similar exercise. In particular, we compare

the later-in-life outcomes of children who are very similar in terms of their state variables

at the time of school track choice but end up going to different school tracks. To that end,

we calculate the average present values of lifetime income and lifetime wealth conditional

on all states prior to entering secondary school—parental human capital, assets, education,

and initial ability and skills—of children who go to an academic track school and children

40Note that Dustmann et al. (2017) control for the effect that being born after the cut-off age directly
harms a child’s later wages since it means that her labor market entry is later so that at any given age, she
will have accumulated less work experience.
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who go to a vocational track school.41 Conditional on all other states, differences in the

track allocation can only arise due to the stochastic track utility shock, which we can also

interpret as arising from age-at-school-entry effects.

We find that going to the academic track instead of the vocational track is associated

with a 6.6% higher present value of lifetime labor income, and a 4.4% higher present value

of lifetime wealth for these, otherwise very similar children. While not zero, these differences

seem relatively small in relation to overall inequality in these outcomes. For example, the

6.6% higher present value of lifetime labor income is around 1/10th of a standard deviation

of lifetime labor income. Moreover, in our model, the track choice is only between one

vocational and one academic track, whereas Dustmann et al. (2017) consider three tracks, of

which two can be classified as vocational. We would generally expect children at the margin

of these two vocational tracks to show fewer differences in lifetime outcomes. In sum, we

conclude that the implications of model with respect to the effect of tracking on marginal

children are not at odds with the reduced-form evidence presented in Dustmann et al. (2017).

5 Quantitative Results

Our model allows us to understand the effects of school tracking not only for marginal chil-

dren but for the whole distribution of children, their educational and labor market outcomes,

as well as their economic mobility relative to their parents. To that end, we first quantify the

main determinants of the secondary school track and the importance of skill accumulation

during secondary school for lifetime inequality. We then use the model to study the effects

of reforms of the timing of school tracking. Finally, we perform counterfactual analyses of

economies in which we reduce the parental influence on the school track choice.

5.1 The School Track Choice and Sources of Lifetime Inequality

5.1.1 Determinants of the School Track Choice

Our calibrated model predicts that children’s skills largely determine the school track choice.

Figure B.2 shows the relationship between skills and the academic track choice, separately

by parental education. The model-generated data matches remarkably well the increasing,

S-shaped probability of academic-track attendance in skills observed in the NEPS data.

41Concretely, we partition all continuous states into 10 groups of equal size each. Lifetime labor income
is computed as the discounted sum of all labor income during the adult periods, and lifetime wealth is that
sum plus the initial monetary transfer from the parent to their independent child.
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Figure 2: Probability of attending the Academic School Track
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Notes: This figure shows the share of children attending the academic school track as a function of their skills.
The triangles and dots are data moments and stand for children from college and non-college backgrounds,
respectively; the baseline model simulated analogs are in dashed and solid lines —data source: NEPS, cohort
3. All observations are weighted so that the shares of children in each track correspond to the targeted ones.

Parental education is another important independent driver of the school track choice as

can be seen in Figure B.2. Even for the same end-of-primary school skills, children from

college-educated parents are significantly more likely to go to an academic track school than

children from non-college parents, both in the data and the model.

In the model, parental education can influence the track choice, net of the effects coming

through child skills, human capital, or wealth, in three ways. First, college-educated parents

know their children learn faster than their non-college-educated counterparts. This comes

from the estimated direct parental education effect in the child skill production technology,

ω5. This knowledge may prompt college parents to send their child to the academic track

even if their child’s skills are lower than those of a child from a vocational parent. Second,

parents know their child will receive a college taste shock that depends on their parent’s

education, governed by µν,Ep . In anticipation of this, college parents, for instance, may

have a stronger incentive to send their child to an academic track school as this, everything
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else equal, increases the likelihood of college admission. Thirdly, even net of college tastes,

parents face asymmetric academic track utility costs χ(E).

Table 7: School Track Choice Determinants
Dependent Variable: S = A

(1) (2) (3) (4)
Baseline ω5,j=3,4 = 0 ∆(µν,Ep) = 0 χ0 = χ1 = 0

θ3 0.78 0.79 0.86 0.82
E = 1 0.42 0.38 0.18 0.32

Notes: This table reports the coefficient estimates of regressions of an
academic school track dummy on beginning of primary school skills
and parental education, controlling for all other states at the time
of the tracking decision and a constant. Column (1) corresponds to
the baseline economy. In Column (2), we shut down the channel of
differential parental inputs in periods 3 and 4. Column (3) considers
the case of identical college taste shock by parental education. In
Column (4), we remove the parental preference bias for education.

To understand how important each of these channels for the school track choice is, we

perform a series of three counterfactual experiments (Columns (2)-(4) in Table 7), in which

we isolate each effect by setting to zero the parental education effect parameter ω5,j=3,4,

the means in college taste shocks across parental education ∆(µν,Ep), or the asymmetry in

academic track costs χE.
42

In all cases, the coefficient on parental education drops, and the coefficient on skills before

the track decision increases relative to the baseline economy (in Column (1)). The magnitude

of the effects, however, varies across the counterfactual scenarios. While shutting down the

parental education parameter has little effect (Column (2)), shutting down the college taste

shocks across parental education approximately halves the coefficient on parental education

(Column (3)). Asymmetric academic school track costs also matter as shutting them down

reduces the coefficient on parental education by around 24% (Column (4)).

5.1.2 Sources of Lifetime Inequality

In the spirit of Huggett et al. (2011) and Lee and Seshadri (2019), we can decompose how

much of the variation in lifetime economic outcomes of our model agents can be explained

42In doing so, we again solve for the stationary general equilibrium, allowing prices to clear the markets
and average child skills across tracks to be consistent with the parents’ track decision. In Column (2) in Table
7, we isolate the effects of the first channel by solving the model with ω5,j=3,4 = 0 yet leaving ω5,j=3,4 > 0 in
the simulation of the distribution. That is, we assume that parents do not take into account the direct effect
of their own education on child skill development during secondary school when making the track decision.
The skills, however, still evolve as in the baseline model.
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by various factors at various ages. As before, we focus on (the present value of) lifetime

labor income and wealth as our economic outcomes of interest.

Table 8: Contributions to Lifetime Inequality

Share of Explained Variance
Life Stage States Lifetime Earnings Lifetime Wealth

Independence (age 18) (S, ϕ, h5, a5, E,E
p) 69% 65%

(S, ϕ, h5, E
p) 60% 61%

(S, ϕ, a5, E,E
p) 49% 42%

School Track Choice (age 10) (S, ϕ, θ3, h11, a11, E) 30% 33%
(S) 16% 15%

Pre-Birth (parent age 30) (E, ϕ, h8, a8) 14% 21%

Notes : This table shows how much of the variation in lifetime economic outcomes is explained by
different factors at different ages.

Row 1 of Table 8 summarizes that 69% of the variation in lifetime labor income can be

accounted for by all states at the age of 18. These states are the school track in secondary

school S, human capital h5, transfers received from the parent a5, the college choice E,

parental college education Ep, and the initial ability ϕ. In terms of lifetime wealth, this

number is around 65%.43 Thus, our model suggests that lifetime outcomes are already

largely predetermined when agents become independent and can enter the labor market.

Note that all uncertainty regarding school skills has resolved and the college decision has

been made at this stage. The remaining unresolved uncertainty over human capital (market

luck) shocks during the working years has, therefore, more minor effects on lifetime inequality.

The explained share of variation in lifetime outcomes remains high if we only condition on

the states before the college decision has been made and the inter-vivos transfers have been

realized (Row 2). This suggests that these states are not major sources of lifetime inequality.

On the contrary, if we only exclude human capital h5 (Row 3), the share of explained variance

in lifetime earnings drops by 20 percentage points, and the share of explained variance in

lifetime wealth by 23 percentage points. This highlights the importance of variation in initial

human capital, and therefore of end-of-school skills, as a driver of lifetime inequality.

Using the same methodology, we can also evaluate how much lifetime inequality is al-

ready determined at the time of the school track choice. Conditioning on all states at that

age, around a third of lifetime earnings and wealth variation is explained (Row 4). Yet

the explained share is significantly smaller than after school, suggesting that the learning

43These numbers are comparable with estimates for the U.S. (Lee and Seshadri, 2019; Huggett et al.,
2011; Keane and Wolpin, 1997).
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outcomes during secondary school play an important role in shaping later-in-life inequality.

Conditioning on the initial school track choice alone can account for 16% of lifetime earnings

variation and 15% of lifetime wealth variation. However, this should not be interpreted as

the marginal effect of school track choice on lifetime outcomes, as the initial school track

choice is, for example, highly correlated with child skills at that age.

The last row of Table 8 shows the contribution of parental states prior to the birth of

their children to their children’s lifetime outcomes. At this stage, all uncertainty regarding

child skills and human capital has not yet been realized (i.e., ϕ denotes the parent’s ability).

Around 14% of the variance in lifetime earnings of the yet-to-be-born child is predetermined

by parental education, ability, human capital, and wealth. For lifetime wealth, this share

is higher at 21%, pointing to the critical role of wealth transfers. For example, using the

same decomposition of the unconditional variance of transfers into parental states pre-birth,

we find that more than a third of the variation in transfers (35%) is predetermined before

the child’s birth. In contrast, only around 23% of the variation in human capital at age

18 is predetermined before birth, highlighting the role of the schooling years and shocks in

shaping adult human capital.44

5.2 The Timing of School Tracking

In countries with an early tracking system, such as Germany, it is often argued that postpon-

ing the tracking age will improve social mobility without incurring efficiency losses. While

some reduced-form estimates, exploiting cross-country, federal-state level, or time differ-

ences in tracking policies exist, little is known about the aggregate, distributional, and

inter-generational consequences or welfare effects of a large-scale reform that changes the

timing of school tracking.

To evaluate such a reform in the context of Germany, we conduct a series of counterfactual

experiments using our calibrated model, in which we postpone the tracking age from ten to

fourteen or abolish tracking during secondary school altogether. In each experiment, we

assume that in the periods preceding tracking, all children attend a school that belongs to

a comprehensive school track, just like during primary school in j = 2. All parameters,

44In comparison to Lee and Seshadri (2019) in the U.S. case, our estimated contribution of parental states
prior to the birth of a child to her eventual lifetime outcomes is somewhat smaller (in particular they find
that almost half of the lifetime wealth variation is pre-determined at that stage. These differences may
reflect that firstly, intergenerational mobility estimates in Germany tend to be smaller than in the U.S.
Secondly, we incorporate explicitly the uncertainty in child skill realizations over the childhood years, while
Lee and Seshadri (2019) focus on endogenous parental investments that could explain in particular the large
explanatory power of pre-birth parental states for child human capital.
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including those governing school academic track costs and college costs, remain the same as

in the baseline economy.45 We then compare steady-state equilibrium outcomes, which can

be considered long-run outcomes of the policy change.

We present the effects of the counterfactual experiments on aggregate, distributional,

and social mobility outcomes in Panel A of Table 9. In addition, we calculate the relative

changes in average welfare, defined as the percent change in consumption that a newborn

in the baseline economy would require in every period to be equally well off as in the policy

counterfactual. Following the literature, we calculate this consumption equivalence welfare

measure under the veil of ignorance, meaning that all policy functions remain unchanged.46

5.2.1 Postponing School Tracking by Four Years

Columns (1) and (2) present the results of postponing tracking from age ten to age fourteen,

corresponding to the average tracking age in OECD countries (OECD, 2020b). In Column

(1), wages (w0, w1) and the interest rate r remain at the same values as in the baseline

case. That is, we compare the partial equilibrium outcomes of the policy counterfactual.

In Column (2), prices adjust; that is, we compare the general equilibrium outcomes of the

policy counterfactual. As before, the instruction paces during all school stages are set to the

level that is optimally chosen by a policymaker given the allocation of children across tracks.

We find an efficiency-equity trade-off of postponing tracking in general equilibrium but

not in partial equilibrium. In partial equilibrium, Column (1), both aggregate output Y and

aggregate human capital H increase by 0.2%.47 At the same time, cross-sectional inequality,

as measured by the Gini coefficient of labor income, drops by 0.4%. Similarly, the college

wage premium decreases, and the ratio of the 90th to 10th percentile of income decreases.

Mobility is improved, as indicated, for example, by the intergenerational elasticity of income,

which drops by 3.5%. In a similar vein, the dependence of going to an academic track school

on parental income drops by 15%. These effects translate into an improvement in average

welfare from postponing tracking, in the range of 0.18% consumption equivalent units.

In contrast, the model-predicted effects of postponing tracking change, once we allow for

the adjustment of wages on the labor market and, therefore, general equilibrium effects of

the human capital changes in the economy. Column (2) of Table 9 reports that, while the

45In the case of no tracking, we assume that the fixed college utility costs (ψ+ψv) are a weighted average
of the baseline economy.

46Appendix Section A.3 provides our welfare definition.
47Given that aggregate production is Cobb-Douglas in both physical capital and human capital, this

implies that also aggregate physical capital increases.
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Table 9: Timing of Tracking Counterfactual Experiments - Results

Changes in %
(1) (2) (3)

Economy PE GE GE
Tracking Age 14 14 Never

Panel A - Aggregate, Distributional and Intergenerational Outcomes

Efficiency
Output (Y ) +0.2 -0.1 -0.2
Human Capital (H) +0.2 -0.1 -0.4

Cross-sectional Inequality
Gini of earnings -0.4 -0.4 -0.8
College wage premium -4.0 -0.2 -2.8
90th/10th percentile of income -0.1 -0.4 -0.8

Mobility
Intergenerational income mobility (−income rank-rank coef.) +3.5 +2.2 +23.9
Parental income on academic track (Dodin et al., 2021) -15 -6.8 -

Welfare (CEV) +0.18 -0.05 -0.08

Panel B - Educational Outcomes

% Academic track +5.4 +2.0
. . . if college parents +2.2 +1.5
. . . if non-college parents +6.8 +2.4

% College +3.9 -0.3 -0.2
. . . if college parents +2.9 +0.5 -18.1
. . . if non-college parents +3.4 -0.9 +16.7
. . . if academic track -0.4 -1.7
. . . if vocational track +3.0 +0.5

Average end-of-school skills (θ̄5) +4.3 -1.6 -2.7
Average middle-of-school skills (θ̄4) +7.5 -2.1 -1.8
Variance of end-of-school skills (V ar(θ5)) -0.3 -0.2 -2.1
Variance of middle-of-school skills (V ar(θ4)) -0.7 -0.9 -2.7

Correlation between academic track and initial skills -20 -14
Correlation between end-of-school skills and initial skills -0.5 -0.1 -3.3
Correlation between college graduation and initial skills -18 -12.6 -69.5
Correlation between college parents and end-of-school skills -6.0 -6.0 -26.2
Correlation between college graduation and end-of-school skills -4.1 -3.5 -12.9

Notes: This table presents changes in outcomes in % due to postponing the school tracking choice
by four years (from the age of ten to the age of fourteen) or abolishing tracking altogether. Column
(1) displays percentage changes due to postponing tracking in partial equilibrium, that is, if prices
are unchanged. Column (2) shows the effects of postponing tracking in general equilibrium. Column
(3) presents the effect of abolishing school tracking in general equilibrium.
Intergenerational mobility is measured as the negative of the income rank-rank coefficient.
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gains in terms of inequality and social mobility persist, albeit at a smaller level, the effects

on aggregate human capital and output reverse as both decrease by 0.1%. Our quantitative

results therefore indicate that postponing tracking incurs a trade-off between equality and

mobility improvements on the one hand, and aggregate efficiency losses on the other hand,

once general equilibrium effects are taken into account.48 Moreover, average welfare when

measured in terms of consumption equivalent units slightly decreases relative to the early

tracking benchmark.49

Understanding the sources of the efficiency-mobility trade-off

In our model, aggregate efficiency in terms of output and human capital is driven by the

level of skills learned during school as they translate into adult human capital. As we

argued in Proposition 3 in Section 3, the effect of postponing tracking on end-of-school skills

for one cohort of children is theoretically unclear even when the track decisions are made

optimally, and depends in particular on the degree of uncertainty about the skill evolution.

On top of that, over multiple generations, aggregate human capital also depends on the

share of college-educated workers in the economy. This is because, on the one hand, college-

educated workers mechanically experience steeper productivity growth over their working

career (through γj,E), and on the other hand, college-educated parents provide higher inputs

into the skill development of the next generation of children, which increases end-of-school

skills and human capital.50

In partial equilibrium, when the college wage premium remains high, our model predicts

that these effects lead to efficiency gains. As indicated in Panel B of Table 9, the share of

college parents in the new steady state increases by 4.1%, and so does the share of children in

academic track schools (+5.4%) and average end-of-school skills (+4.3%). In fact, because of

the higher parental inputs, average child skills already before tracking at age ten are higher

in the partial equilibrium late tracking case compared to the early tracking economy. This

48This result can be viewed in a similar spirit to the efficiency-mobility trade-off in Bénabou (1996),
who has shown that policies aimed at improving mobility may entail penalties in terms of growth, or more
recently in Arenas and Hindriks (2021), who argue that more equal school opportunities by parental income
raises social mobility but come at the cost of modest efficiency losses in terms of human capital.

49It should be noted that the standard consumption equivalent welfare measure used by us and in the
related literature does not take into account improvements of intergenerational mobility that occur across
cohorts. Rather, the standard welfare measure (see definition in Appendix Section A.3) only captures the
trade-off between efficiency and redistribution within cohorts. Whether our welfare conclusions regarding a
postponement of the school tracking age hold also if a planner takes into account mobility is an interesting
question that requires future research.

50Labor supply can also affect aggregate human capital, but it stays approximately constant across the
policy counterfactual experiments.
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can be seen in Figure 3, where we plot the evolution of average child skills in the early

tracking economy (red), the late tracking economy in partial equilibrium (green), and the

late tracking economy in general equilibrium (blue).

In the general equilibrium case, however, the college share remains approximately at its

baseline level as college wages (in efficiency units) adjust downwards and non-college wages

upwards. For that reason, parental inputs are approximately the same as in the baseline,

early tracking case, which results in very similar average child skills at age 10 in steady state

(see Figure 3). Our calibrated model then predicts that postponing tracking leads to losses

in average skills. Concretely, average skills in period j = 4, that is right before late tracking,

drop by 2.1%, and end-of-school skills, drop by 1.6%, on average. As explained in Section 3,

these learning losses intuitively arise from the prolonged period of comprehensive school,

during which instruction becomes less efficient. Moreover, our model predicts that these

losses cannot be recuperated by learning efficiency gains that arise when more uncertainty

about child skills is resolved in the late tracking case (see Figure 3).51 The learning losses

from longer comprehensive schooling also serve as an explanation for the raised incentive to

send a child to an academic track school (+2% relative to early tracking), where average

peer skill levels are higher, which partially compensates for less efficient learning.52

The effects of later tracking on inequality and mobility are fundamentally also rooted in

the consequences of the policy change on the skill distribution. As reported in Panel B of

Table 9, one more model period of comprehensive school decreases the overall heterogeneity

in skills in the middle of secondary school (i.e. V ar(θ4) drops by 0.9%.). Intuitively, this

is because children who would have gone to a vocational track school in the early tracking

economy are now exposed to, on average better peers, while children who would have gone to

an academic track school are now surrounded by, on average, lower skills.53 On top of that,

one more period of comprehensive school in the late tracking case harms relatively more

children from college-educated households as they would have been more likely to go to an

51The skill growth between the middle and end of secondary school in both the early and late tracking
cases is quite similar. This is a consequence of the fact that the heterogeneity of skills in each track also
remains at a similar level in both cases. As argued in Section 3, the conditional variances of skills in each
track are necessarily smaller in the late tracking case when skill shocks are present and the track decision is
made optimally. However, in our counterfactual experiment, parents make the late track decision, subject
to the same asymmetric preference shocks as before. Quantitatively, this results in slightly larger deviations
of the track choices from the recommended tracks compared to the baseline early tracking case (+2%).

52This also explains why, in the partial equilibrium case, the share of college workers increases in the first
place. When learning becomes less efficient, more parents send their child to the academic track. This in
turn, makes college education more likely, even when skills are lower, which raises the college share.

53As we have shown in Proposition 2 in Section 3, the effect of tracking on the overall variance of skills
depends crucially on the presence of these direct peer effects.
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Figure 3: Evolution of Average Child Skills in Counterfactual Experiments
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Notes: This figure shows the evolution of average child skills from age 10 to 18. The baseline model simulated
data is a red-solid line; the late tracking economy in partial equilibrium in a green-dotted-dashed line; and
the late tracking economy in general equilibrium in a blue-dashed line.

academic track school and benefits relatively more children from non-college households,

who would have been more likely to go to the vocational track. Moreover, these children

are more likely to occupy the center of the skill distribution, who, as we have argued before,

are the children that gain most from comprehensive schooling. As a result, differences in

skills between parental backgrounds decrease, and relatively more children from a non-college

parental background go to an academic track school once they are tracked in the late tracking

case (+2.4%) relative to children from college parents (+1.5%). This can explain the increase

in mobility as measured by the dependence of academic track graduation on the parental

background.

The lower inequality in skills after one more period of comprehensive school translates

into smaller differences in average skills between children in the academic and vocational

track, once they are tracked. This is reinforced by the reduced differences between parental

backgrounds in the track choice, and the fact that the track decision itself becomes less

dependent on skills. The overall effect of postponing tracking on the child skill differences

between tracks is plotted in the left panel of Figure 4, comparing the early tracking baseline

economy (red) and the late tracking GE economy (blue). Smaller differences in skills across

school tracks then entail smaller differences in adult human capital across college and non-

college workers, which is again aided by the fact that relatively more children from the
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Figure 4: Differences in Average Child Skills in Early and Late Tracking Economy
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Notes: These figures show the standardized differences in average skills between school tracks (left panel)
and parental education (right panel) from age 6 to 18. The baseline model simulated data is a red-solid line,
and the late tracking economy in general equilibrium is in a blue-dashed line.

vocational school track go to college after the policy change. Given that college education

and end-of-school skills and, thereby, human capital are the main determinants of income,

overall earnings inequality therefore declines.

A consequence of these effects is that not only the school track but also the end-of-school

skills, and the probability of going to college becomes less dependent on the initial skills,

which are transferred from parents to children (see bottom rows of Panel B in Table 9). For

that reason, intergenerational mobility, if defined as the dependence of economic outcomes of

the child on parental economic outcomes, decreases. Interestingly, our model predicts that,

in steady state, college attainment of children from college parents is still as likely or even

slightly more likely than in the baseline, early tracking case. However, since college- and

non-college parents become more similar in terms of their human capital, mobility in terms

of income still improves.

Finally and importantly, the effects on inequality and mobility (as on efficiency) are rein-

forced through intergenerational linkages. For example, as college and non-college-educated

parents become more similar in terms of their skills, and so do their children who inherit
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these skills. The differences in skills in terms of standard deviations between parental back-

grounds are shown in the right panel of Figure 4. Notably, the relative differences between

children of different parental backgrounds in the late-tracking GE case are reduced already

at age 6.

We provide a comparison of our model’s predictions regarding the effects of later tracking on

learning outcomes to related findings from the empirical literature in Appendix C. Overall,

we maintain that our estimated effects are not at odds with existing empirical evidence. In

particular, our model predicts learning gains for children from lower socioeconomic back-

grounds and a decreased dependence on educational outcomes in secondary school on family

background, which are among the most robust empirical findings in the literature. The fact

that we estimate average learning losses from such a pervasive school tracking age reform

can, in our eyes, not be refuted by existing evidence (nor can it be corroborated). It ul-

timately rests on the assumption of complementarity between child skills and the teaching

practices in school, as highlighted in Section 3, which is itself based on empirical evidence

(e.g. Duflo et al., 2011; Aucejo et al., 2022). The strength of our model-based approach is

that it informs not just the short-term effect of school tracking on learning and educational

outcomes of school children, but how these translate into higher education and labor market

outcomes over multiple generations.

5.2.2 Abolishing School Tracking

Column (3) of Table 9 reports the results of a counterfactual economy, in which we abolish

tracking altogether while allowing wages and the interest rate to adjust. All children go to

comprehensive schools for the entirety of their schooling years, and instruction occurs at the

same pace that is optimal for the overall average skill level. As a consequence, child skills

become significantly more equal (i.e. V ar(θ5) drops by 2.1%). Moreover, as parents can

no longer influence their children’s skill evolution by choosing a specific school track, the

correlation between parental background and end-of-school skills drops sharply (-26.2%). As

a result, and despite college-specific preferences, mobility in higher education also increases.

In particular, children from non-college parents are 16.7% more likely to graduate from

college than in the baseline economy, and children from college parents are 18.1% less likely

to do so. Overall, mobility as measured by the (negative of the) intergenerational income

elasticity improves significantly (+23.9%).

Similarly, a completely comprehensive school system reduces cross-sectional inequality
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markedly. For example, the Gini coefficient of earnings drops by 0.8%, as does the ratio of the

90th to 10th percentile of income. In addition, the differences in human capital across college

and non-college workers become smaller, which decreases the college wage premium by 2.8%.

On the other hand, abolishing tracking altogether makes learning even less efficient relative

to the late tracking economy. On average, end-of-school skills are around -2.3% smaller in

this economy. This leads to losses in aggregate human capital (-0.4%) and output (-0.2%).

Similarly and despite considerable equality gains, a completely comprehensive school system

worsens average welfare in consumption equivalent units by 0.08%.

5.3 Limiting Parental Influence in the School Track Choice

In this section, we evaluate the effects of reducing parental influence on the school track

choice without modifying the timing of school tracking. As discussed before, any force

that impacts the school track allocation net of child skills is, in theory, detrimental to the

efficiency of teaching and thus skill development in secondary school, if it dilutes the homo-

geneity of peer groups in each track. An interesting question is whether the consequences of

such “misallocation” effects are visible not only in terms of child skill outcomes but also in

the aggregate and distributional outcomes of the economy. Our model provides a suitable

environment to investigate such effects.

We evaluate two counterfactual scenarios: first, we shut down the asymmetry in academic

track utility costs faced by parents of different education levels (χ0 = χ1 = 0). As we argued

before, this asymmetry is a parsimonious way of capturing multiple reasons why parents

systematically bias the school track choice toward their own educational path.54 Second, we

enforce that the school track allocation is governed exclusively by a sharp skill threshold,

such that all children with skills below the threshold are allocated to the vocational track,

while all children with skills above the threshold go to the academic track, regardless of the

parental background. This threshold is chosen, such that the overall share of children in the

academic track is constant relative to the baseline economy.55

54We focus on this experiment as we view this as being the easiest to address by policies. For example, if
the asymmetric school track costs are coming from information frictions, mentoring programs have proven
very effective and almost cost-free in alleviating some of these frictions, as argued by Resnjanskij et al.
(2021). While in the counterfactual scenario, we diminish parental influence from all socioeconomic groups,
mentoring programs mostly target at-risk youths. Interventions that target all socioeconomic groups are
rarer. An exception is Hakimov et al. (2022) who provide information about their chances of success at
graduating college to all children, independently of their socioeconomic backgrounds. They find a reduction
in the social elite college admission gap mostly driven by an increase in the admission of high-achieving low
SES students to elite colleges.

55As derived in Section 3, the optimal tracking policy from the point of view of a policymaker who is only
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Table 10: Effects of School Track Choice Counterfactuals

Changes in %
(1) (2)

χ0 = 0 Skill
χ1 = 0 Threshold

Panel A - Aggregate, Distributional and Intergenerational Outcomes

Output (Y ) +0.04 +0.12
Human Capital (H) +0.05 +0.15
Gini of earnings 0.0 +0.8

Intergenerational income mobility (− Income rank-rank coef.) +0.9 -6.5
Parental Income on Academic Track (Dodin et al., 2021) -25 +34

Welfare (CEV) +0.04 -0.01

Panel B - Educational Outcomes

% Acadmic track -0.7 0.0
. . . if college parents -8.6 -12
. . . if non-college parents +9.6 +15.6

% College 0.3 0.0
. . . if college parents -3.5 -8.8
. . . if non-college parents +3.9 +7.2
. . . if academic track +0.5 -3.5
. . . if vocational track 0.0 +14.4

Average end-of-school skills (θ̄5) +0.8 +3.0
Average middle-of-school skills (θ̄4) +0.2 +4.9
Average skills in V -Track upon tracking (θ̄3|S = V ) -0.4 -50.0
Average skills in A-Track upon tracking (θ̄3|S = A) +1.2 +38.5
Variance of end-of-school skills (V ar(θ5)) +0.2 +1.9
Variance of middle-of-school skills (V ar(θ4)) -0.2 +0.9
Variance in V -Track upon tracking (V ar(θ3|S = V )) -0.4 -39.1
Variance in A-Track upon tracking (V ar(θ3|S = A)) -0.4 -18.1

Correlation between A-Track and Skills in period 3 +5.7 +59.4
Correlation between academic track and initial skills +5.4 +79.5
Correlation between end-of-school skills and initial skills -0.6 +0.9
Correlation between college graduation and initial skills +0.9 +54.1

Notes: Column (1) displays percentage changes relative to the baseline economy entailed by
the absence of parental preference for education, and Column (2) displays percentage changes
entailed by skill treshold-rule for school tracking. All results are coming from the new general
equilibrium distribution.
Intergenerational mobility is measured as the negative of the income rank-rank coefficient.
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Table 10 shows that shutting down the asymmetry in academic track utility costs or enforcing

a tracking threshold improves aggregate output. As before, this is mirrored by an increase

in aggregate human capital in the economy, in both cases. Note that both the share of

college-educated agents and the share of children in academic track schools remain constant

relative to the baseline case (see Panel B of Table 10). Both counterfactual scenarios lead to

an increase in average skills at the end of secondary school. This increase arises from the fact

that the variation in child skills within the school tracks becomes smaller, both when elimi-

nating parental track preferences and especially when enforcing a tracking threshold. Since

lower heterogeneity in skills within a school track improves learning efficiency, as derived in

Section 3, this leads to higher end-of-school skills and thus higher adult human capital. This

is consistent with the explanation of the learning efficiency-reducing misallocation effects

that arise when parental background or any other factors drive the school track choice inde-

pendently from skills. Unsurprisingly, without asymmetry in parental academic track costs

and even more so with a sharp, purely skill-based allocation rule, the correlation of school

track with parental education decreases, and skills themselves become more important in

explaining the track choice.

However, while mobility, as measured by the negative of the intergenerational income

elasticity, increases in the first counterfactual experiment (Column (1)), it decreases sub-

stantially when introducing a strict skill threshold (Column (2)). The reason for this is that

purely skill-based tracking also increases the overall heterogeneity in skills markedly (i.e.

V ar(θ5) increases by around 2%). In particular, while it increases learning on average, a

cut-off-based school track allocation predominantly benefits the children in academic track

schools. The argument is similar to Proposition 2 in Section 3: When factors other than

skills determine the track choice, child skills in each track become more heterogeneous. In

some sense, each track is thus more like a comprehensive school. As argued in Proposition

2, the learning losses from moving towards a stricter tracking system relative to a more

comprehensive system are asymmetric and concentrated in the lower track, whenever the

direct peer effects are positive, which is the case. Quantitatively, this effect can be seen in

Panel B. in Table 10, where average skills in the vocational track at the point of the track

decision decrease while they increase in the academic track.

interested in maximizing aggregate end-of-school skills and cannot condition on the parental background,
would be to track children at a threshold that is exactly equal to the average child skill level prior to the track
decision. Given that the distribution of child skills is quite symmetric, this would result in a roughly equal
split of children between tracks, which ensures that the variance of child skills in each track is minimized.
However, to be comparable to the baseline economy, we select a threshold that will result in the top 44% of
children in terms of their skills being allocated to the academic track and the rest to the vocational track.
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As a result, cross-sectional inequality as measured by the earnings Gini coefficient rises

by 0.8% in the case of a skill threshold compared to the baseline economy. Furthermore,

larger inequality among college and non-college parents feeds into larger inequality in skills

of their children. Consequently, the school track, end-of-school skills and college outcomes

become significantly more dependent on the initial skill level in an economy with a strict

skill-based separation, explaining lower mobility even though both education choices are less

dependent on parental education (see Panel B of Table 10).

Perhaps surprisingly, overall welfare in terms of consumption equivalence variation in this

counterfactual economy is slightly lower than in the baseline, despite increased output. On

the one hand, this is due to the fact that cross-sectional inequality increases, which lowers

welfare. On the other hand, when tracking is based on a skill threshold some parents no longer

receive utility from being able to send their child to their preferred track. In contrast, when

shutting down these parental track preferences directly, income inequality does not increase,

as end-of-school skills are only slightly more dispersed. Given that aggregate human capital

and output are higher, welfare is also increased by around 0.04% in this scenario.

In sum, these results point to an important role that measures such as mentoring pro-

grams, which have been shown to alleviate the influence of family background on school

track decisions that is not justified by skill selection, can play in improving both aggregate

efficiency and mobility at the same time. In contrast, reverting to a purely merit-based

school track selection is, according to the predictions of our model, not welfare-enhancing

and dampens equality and social mobility.

6 Conclusion

What is the role of education policies for aggregate productivity, inter-generational mobility,

and inequality? We focus on the role of school tracking, a common—and controversial—

education policy that has not been studied so far in the macroeconomic literature. As

the long-run macroeconomic effects of school tracking involve the interaction of different

markets and play out across generations, our analysis relies on a rich dynamic GE model

with overlapping generations.

The key ingredient in our model is a parsimonious theory of skill formation in school.

Skills are accumulated at a speed that depends on parental background, the pace of instruc-

tion in school, and the skills of classroom peers. The pace of instruction and the skills of

classroom peers are, in turn, shaped by whether and when there is school tracking. We find
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that the theoretical implications of the model align with the empirical findings of the effect

of tracking on educational achievements, as well as arguments in the public debate about

tracking.

We tailor the model to fit the German Education System, where the track decision occurs

when children are ten years old, and calibrate it using a variety of micro and macro data

on child achievements, schools, and labor market outcomes. Our calibrated model predicts

that the timing of school tracking involves a macroeconomic trade-off between efficiency and

social mobility. Concretely, a policy reform that postpones school tracking by four years,

which implies that children are in comprehensive school until age fourteen, decreases long-

run GDP by 0.1% and lowers the inter-generational income elasticity by around 2.2%. Key

in the evaluation of this trade-off is the consideration of general equilibrium effects in the

labor market that affect the incentives governing the school track choice. The GDP loss

mostly stems from lower learning efficiency due to more heterogeneous classrooms during

the (prolonged) time in comprehensive school. The gain in social mobility is the result of

comprehensive school reducing heterogeneity in skills, which implies that the school track

depends less on parental background, and skill differences across tracks become smaller once

the track decision is made.

Consistent with previous findings in the literature, our calibrated model also yields that

parental background matters for the school track decision even when child skills are accounted

for. We find that reducing this direct influence of parental background on the school track

leads to improvements in both social mobility and economic output. Mentoring programs

reducing the direct role of parental background (e.g. Raposa et al., 2019; Resnjanskij et al.,

2021), can therefore simultaneously improve macroeconomic efficiency and social mobility.
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A Model Appendix

A.1 Proof of Propositions

Proposition 1

For the proof of this proposition, we denote by θ3 the child skills at the beginning of secondary

school and by θ4 the skills at the end of secondary school. Moreover, we have assumed κ = 1,

ζ = 0, and χ = 0 and that skills at the beginning of secondary school are normally distributed

with mean zero and variance σ2
θ3
. First, we show that maximizing the aggregate end-of-school

skills in a tracking system implies a threshold skill level θ̃3, such that all θ3 < θ̃3 go to one

track, call it S = V and all θ1 > θ̃3 go to the other track, S = A (and those with θ3 = θ̃3 are

indifferent). That is, the existence of a skill threshold is a necessary condition for optimal

end-of-school skills. We restrict ourselves to the case with different instruction paces across

school tracks.

To that end, it is useful to rewrite θ4 in (2) of a child in a given school track S with

instruction pace P S using Lemma 1 as:

θ4 = θ3 + αθ̄S3 +
β2

2δ
+
βγθ3
δ

+
γ2θ3θ̄

S
3

δ
−
γ2(θ̄S3 )

2

2δ
+ η4. (A.1)

After adding and subtracting γ2

2δ
θ23, this can be expressed as

θ4 = θ3 + αθ̄S3 +
β2

2δ
+
βγθ3
δ

+
γ2θ23
2δ

+ η4 −
γ2

2δ

(
θ23 − 2θ3θ̄

S
3 + (θ̄S3 )

2
)

= θ4(P
∗
θ3
)−

γ2

2δ
(θ3 − θ̄S3 )

2,

(A.2)

where θ4(P
∗
θ3
) denotes end-of-school skills if the child with skills θ3 is taught at her individu-

ally optimal teaching pace P ∗
θ3

(we suppress the j-index of P as we consider only one period

in this case). Thus, in a given track, end-of-school skills are a strictly decreasing function of

the distance to the average skill level θ̄S3 in that track. This is intuitive given Lemma 1, as

it is solely the average skill level to which the instruction pace is optimally targeted.

Next, assume for contradiction that the expected value of end-of-school skills across

tracks E[θ4] is maximized under a track allocation mechanism that does not feature a skill

threshold. Suppose that P V < PA without loss of generality. By Lemma 1, these are

the optimal instruction paces for the average skill level in track V and A, respectively.

Therefore, E(θ3|S = V ) < E(θ3|S = A). Then, because there is no strict threshold, this
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means that for any initial skill level θ3, there must be at least two children with initial

skill levels smaller or equal to θ3 that go to different tracks or at least two children with

initial skill levels larger or equal than θ3 that go to different tracks. This implies that

there exists a child with θ′3 ≤ E(θ3|S = V ) that goes to track S = A, and/or a child with

θ′3 ≥ E(θ3|S = A) that goes to track S = V , and/or two children with skills θ′3 < θ′′3 , with

θ′3, θ
′′
3 ∈ [E(θ3|S = V ),E(θ3|S = A)], where the child with the smaller skill level goes to track

A and the child with the larger skill level to track V .

However, given the condition in (A.2), this child with θ′3 would always benefit from being

in the other track as the distance between her skill level and the average skill level in that

track is smaller than in the track she is in. Note that moving just one child to another

track does not change the average skills in both tracks. Thus, the policymaker can improve

aggregate end-of-school skills by moving this child. The same line of argument holds in the

implied game that parents play when they endogenously sort their children into two tracks.

If no skill threshold level exists, there is always a child that would unilaterally gain if sent

to a different track.

Thus, we have established that the existence of a skill threshold is necessary for optimal

end-of-school skills both if a policymaker makes the track allocation directly and when par-

ents play a sorting game. Next, we characterize the thresholds for both cases. Let θ̃3 be the

skill threshold and let S again indicate to which track a child is allocated, now with S = V

for all θ3 ≤ θ̃3 and S = A for all θ3 > θ̃3.

A policymaker solves

max
θ̃3

E(θ4)

⇐⇒ max
θ̃3

E(E(θ4|S))

subject to

P S chosen optimally given Lemma 1.

(A.3)

Using (A.1) and the law of iterated expectations, this maximization problem boils down

to

max
θ̃3

β2

2δ
+
γ2

2δ
E
(
E(θ3|S)

2
)

⇐⇒ max
θ̃3

β2

2δ
+
γ2

2δ

(
F (θ̃3)E(θ3|θ3 ≤ θ̃3)

2 + (1− F (θ̃3))E(θ3|θ3 > θ̃3)
2
)
,

(A.4)
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where F (.) denotes the cumulative distribution function of the normal distribution. Note

that the right term is just the expected value (across tracks) of the conditional expected

values of initial skills squared, conditional on the school track. This corresponds to the

variance of the conditional expected values, which depend on the skill threshold θ̃3. Using

the law of total variance, the maximization problem can thus be rewritten as (dropping the

constant term)

max
θ̃3

E(θ4)

⇐⇒ max
θ̃3

γ2

2δ

(
σ2
θ3
− E(V ar[θ3|S])

)
.

(A.5)

Thus, the policymaker chooses optimally a threshold such that the expected variance of skills

in each track is minimized. The unique solution is then to set θ̃∗3 = E θ3 = 0, that is, to split

the distribution exactly in half. This makes the peer groups in each track as homogeneous

as possible, which maximizes average and aggregate learning.

Next, we characterize the threshold that arises endogenously from the sorting game played

by the parents. The equilibrium condition maintains that at this threshold, a parent is just

indifferent between tracks as her child’s skills would be equivalent in both tracks. A parent

of a child with skill θ̂3 is indifferent between tracks V and A iff

(
α + θ̂3

γ2

δ

)
E(θ3|θ3 ≤ θ̂3)−

γ2

2δ
E(θ3|θ3 ≤ θ̂3)

2

=

(
α + θ̂3

γ2

δ

)
E(θ3|θ3 > θ̂3)−

γ2

2δ
E(θ3|θ3 > θ̂3)

2

⇐⇒

(
−α− θ̂3

γ2

δ

)
σθ3

f(θ̂3/σ)

F (θ̂3/σ)
−
γ2

2δ
σ2
θ3

f(θ̂3/σ)
2

F (θ̂3/σ)2

=

(
α + θ̂3

γ2

δ

)
σθ3

f(θ̂3/σ)

1− F (θ̂3/σ)
−
γ2

2δ
σ2
θ3

f(θ̂3/σ)
2

(1− F (θ̂3/σ))2

(A.6)

where F (·) denotes the CDF of a standard normally distributed random variable, and f(·) is

its density function. We solve for the root θ̂3 that solves (A.6) numerically. In all cases with

reasonable parameter values, (A.6) is a monotone function, such that the root is unique if it

exists. In the special case without direct peer externality, i.e., α = 0, the solution is θ̂3 = 0,

as can be directly seen from (A.6). When α > 0, the root is smaller than 0, i.e. θ̂3 < 0.
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Proposition 2

The proof of this Proposition follows directly from (A.5). In a comprehensive system, the

variance of initial skills across tracks is just equal to the overall variance since there is only

one track. In a tracking system, the expected value of the conditional variances of skills

across tracks is smaller than the overall variance, by the law of total variance and provided

that the instruction paces are different across tracks. This holds for every skill threshold,

not just for the optimal one. Thus average learning is higher.

Next, we show that a full tracking system leads to a “fatter” right tail of the end-of-school

skill distribution compared to a comprehensive system. To see this, consider the child who,

in expectation, has the highest end-of-school skill in a comprehensive system. Since θ4 is

monotonically increasing in θ3 in a given track (see (A.1)), this is the child with the highest

initial skill, say θ3,max. Moreover, from the properties of a truncated normal distribution,

we know that, for any skill threshold θ̃3, average skills in the A track, θ̄3,A are larger than

the unconditional average, θ̄3,C = 0. Thus, the squared distance between θ3,max and θ̄3,A in

a tracking system is smaller. Taken together, (A.2) implies that the child with initial skill

θ3,max ends up with larger end-of-school skills compared to a comprehensive system, which

skews the distribution positively.

Finally we derive the range of winners and loser from a tracking system relative to a

comprehensive system. Given that θ4 are monotonically increasing in θ3 in every track, the

range is characterized by the intersection of the linear function θ4,C(θ3, θ̄3,C) with θ4,V (θ3, θ̄3,V )

and θ4,A(θ3, θ̄3,A), which are just (A.1) if everyone was taught at the comprehensive, academic,

or vocational pace. For any skill threshold, the lower intersection θ3,L hence solves

θ3,L + αθ̄3,C +
β2

2δ
+
βγ

δ
θ3,L +

γ2

δ
θ̄3,Cθ3,L −

γ2

2δ
θ̄23,C + η4

= θ3,L + αθ̄3,V +
β2

2δ
+
βγ

δ
θ3,V +

γ2

δ
θ̄3,V θ3,L −

γ2

2δ
θ̄23,V + η4

⇐⇒ θ3,L =
1

2
θ̄3,V −

αδ

γ2
.

(A.7)

Similarly, the upper intersection is given at

θ3,U =
1

2
θ̄3,A −

αδ

γ2
. (A.8)

For any skill threshold θ̃3, the interval [θ3,L, θ̄3,U ] is non-empty. Hence, there are always

children with initial skill levels inside this interval who lose in terms of end-of-school skills
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in a full tracking system relative to a comprehensive system. Every child outside of this

interval gains relative to the comprehensive system.

With α = 0, the tracking skill threshold is at θ̃3 = 0 even if parents endogenously

sort their children. Hence, children with initial skills inside a symmetric interval around

0, [1
2
θ̄3,V ,

1
2
θ̄3,A], lose relative to a comprehensive track, since θ̄3,V = −θ̄3,A if θ̃1 = 0. The

average loss of a child in this interval is equal to γ2

2δ
θ̄23,V = γ2

2δ
θ̄23,A.

If α > 0, and the policymaker enforces the tracking skill threshold θ̃3 = 0, the losses from

tracking are concentrated among children in the V track. To see this, note that every child

with initial skill in the interval [θ3,L, 0] is allocated into the V track but loses relative to a

comprehensive system. Similarly, every child with an initial skill inside [0, θ3,U ] is allocated

to track A but loses relative to a comprehensive system. With α > 0, |θ3,U | < |θ3,L| and

hence, the range of children in the A track that lose is smaller. The interval [0, θ3,U ] may

even be empty in which case only children in the V track lose from tracking.

Proposition 3

For the proof of this proposition, we denote by θ3 the child skills at the beginning of secondary

school, by θ4 the skills at the intermediary stage of secondary school and by θ5 the skills at

the end of secondary school. All other assumptions are maintained. First, we characterize

the variance of θ4. We start by collecting expressions for conditional and unconditional first

and second moments.

The unconditional expected value of θ4 in track V , if everyone went to V is

E(θ4,V ) =
β2

2δ
+ αθ̄3,V −

γ2

2δ
θ̄23,V

=
β2

2δ
− ασθ1

f(θ̃3/σθ3)

F (θ̃3/σθ3)
−
γ2

2δ
σ2
θ3

f(θ̃3/σθ3)
2

F (θ̃3/σθ3)
2
.

(A.9)

The unconditional expected value of θ4 in track A, if everyone went to A is

E(θ4,A) =
β2

2δ
+ αθ̄3,A −

γ2

2δ
θ̄23,A

=
β2

2δ
+ ασθ3

f(θ̃3/σθ3)

1− F (θ̃3/σθ3)
−
γ2

2δ
σ2
θ3

f(θ̃3/σθ3)
2

(1− F (θ̃3/σθ3))
2
.

(A.10)
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The variance of θ4 in a comprehensive system is

V ar(θ4,C) = E(
(
θ4 − E(θ4))

2
)

= (1 + β)2σ2
θ3
+ σ2

η4

σ2
θ4,C

+ σ2
η4
,

(A.11)

where we define σ2
θ4,C

to be the variance of θ4 net of the additive skill shock variance.

Second, we can derive the expected value of end-of-school skills in the 2-period model in

a late tracking system as

E(θ5,LT ) = E(E(θ5,LT |SLT ))

= E(θ4,LT ) +
β2

2γ
+ (α + β)E(E(θ4,LT |SLT )) +

γ

2
E(E(θ4,LT |SLT )

2)

= (2 + α + β)
β2

2γ
+
γ

2
[σθ4,LT − E(V ar(θ4,LT |SLT ))],

(A.12)

where E(θ4,LT ) and σ2
θ4,LT

are just equal to the mean and variance of the comprehensive

system in the one-period model (see equation (A.11)). The variable SLT indicates the track

selection in period 2, which follows the cut-off rule SLT = V if θ4,LT ≤ θ̃4,LT and SLT = A

otherwise. The cut-off that maximizes (A.12) is θ̃∗4,LT = E(θ4,LT ) =
β2

2γ
. This follows as (A.12)

mirrors that of average end-of-school skills in the full tracking system of the one-period model

in that average and aggregate θ5,LT decrease in the expected variance of skills in period 2

across tracks.

Similarly, we find the expected value of end-of-school skills in the 2-period model in an

early tracking system as
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E(θ5,ET ) = E(E(θ5,ET |SET ))

=
β2

2γ
+ (1 + α + β)E(E(θ4,ET |SET )) + β

γ

2
E(E(θ4,ET |SET )

2)

=
β2

2γ
+ (1 + α + β)

(
β2

2γ
+ β

γ

2
[σ2

θ3
− E(V ar(θ3,ET |SET ))]

)
+ β

γ

2
E(E(θ4,ET |SET )

2

=
β2

2γ
+ (1 + α + β)

(
β2

2γ
+ β

γ

2
[σ2

θ3
− E(V ar(θ3,ET |SET ))]

)

+ β
γ

2
[σ2

θ4,ET − E(V ar(θ4,ET |SET ))].

(A.13)

Comparing (A.12) and (A.13), the condition that governs if average end-of-school skills

in a late tracking system are larger than in an early tracking system reads

E(θ5,LT )− E(θ5,ET )

= β
γ

2

(
E(E(θ4,LT |SLT )

2)− E(E(θ4,ET |SET )
2)
)

− (1 + α + β)β
γ

2
E(E(θ3|SET )

2) > 0.

(A.14)

The last term of (A.14) represents the advantage of early tracking in the first stage of the

schooling years. It stems from the smaller expected conditional variances of initial skills

among children that are tracked relative to the overall variance. The conditional expected

value of θ2 in a late tracking system is given by

E(θ4,LT |SLT = V ) =
β2

2γ
− σθ4,LT

f(θ̃4,LT/σθ4,LT )

F (θ̃2,LT/σθ4,LT )
(A.15)

and

E(θ4,LT |SLT = A) =
β2

2γ
+ σθ4,LT

f(θ̃4,LT/σθ4,LT )

1− F (θ̃4,LT/σθ4,LT )
, (A.16)

where the unconditional variance of θ4 in a late tracking system is given by σ2
θ4,LT

= σ2
θ4,C

+

σ2
η4
, i.e. by the one computed in equation (A.11). Since late tracking occurs after the

realization of skill shocks in period 4, this variance additively includes the variance of these

shocks.

Condition (A.14) is generally ambiguous and hard to interpret for arbitrary skill thresh-

olds. We focus again on the optimal tracking case, that is, the case with skill threshold

θ̃3 = E(θ3) = 0 and θ̃4 = E(θ4,LT ) =
β2

2γ
. In that case, we can write the expressions for the
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various expected square conditional expected values as follows:

E(E(θ3|SET )
2) = 2χσ2

θ3

E(E(θ4,LT |SLT )
2) =

β4

4γ2
+ 2χ(σ2

θ4,LT
+ σ2

η4
)

E(E(θ4,ET |SET )
2) =

β4

4γ2
+ 2χσ2

θ3

(
α2 + γ2f(0)2σ2

θ3
−
β2

2

)

+2f(0)σ2
θ3

(
β2 + 2α(1 + β)− (2γf(0)σθ3)

2
)
+ 2χ(σ2

θ4,LT
+ 2χγ2σ2

θ3
).

Condition (A.14) then becomes

E(θ5,LT )− E(θ5,ET )

= β
γ

2

(
2χσ2

η4
− 2χσ2

θ3

(
α2 + γ2f(0)2σ2

θ3
−
β2

2

+ β2 + 2α(1 + β)− 4γ2f(0)2σ2
θ3
+ 2χγ2σ2

θ3
+ 1 + α + β

))

=
γ

π

(
σ2
η4
− σ2

θ3

(
1 + α + α2 + β +

β2

2
+ 2α(1 + β) +

γ2

2π
σ2
θ3

))
> 0.

(A.17)

From this, Proposition 3 follows.

A.2 Equilibrium Definition

We introduce some notation to define the equilibrium more easily. Let xj ∈ Xj be the age-

specific state vector of an individual of age j, as defined by the recursive representation of

the individual’s problems in Section 2. Let its stationary distribution be Θ(X) . Then, a

stationary recursive competitive equilibrium for this economy is a collection of: (i) decision

rules for college graduation {dE(x5)}, for school track {dS(x11)}, consumption, labor supply,

and assets holdings {cj(xj), nj(xj), aj(xj)}, and parental transfers {a5 (xj)}; value functions

{Vj (xj)} ; (iii) aggregate capital and labor inputs {K,H0, H1}; (iv) prices {r, w0, w1} ; and

(v) average skill levels among children in school track S {θ̄j,S} for j = 2, 3, 4 such that:

1. Given prices and average skill levels among children in each school track, decision

rules solve the respective household problems and {Vj (xj)} are the associated value

functions.
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2. Given prices, aggregate capital and labor inputs solve the representative firm’s problem,

i.e. it equates marginal products to prices.

3. Given average skill levels among children in each school track, allocation of children in

school track solves the parent’s problem, i.e. actual average skill levels are consistent

with parents’ prior.

4. Labor market for each education level clears.

For high-school level:

H0 =
Jr∑

j=5

∫

Xj

nj(xj) hj (xj) dΘ(X | E = 0) +
5∑

j=5

∫

Xj

nj(xj) hj (xj) dΘ(X | E = 1)

where the first summation is the supply of high-school graduates while the second is

that labor supply of college students while studying in j = 5.

For college level:

H1 =
Jr∑

j=6

∫

Xj

nj(xj) hj (xj) dΘ(X | E = 1).

5. Asset market clears

K =

Jd∑

j=Je

∫

Xj

aj(xj)dΘ(X),

which implies that the goods market clears;

6. The distribution of X is stationary: Θ(X) =
∫
Γ(X)dΘ(X).

A.3 Welfare Measure

Our analysis centers on evaluating aggregate welfare under different policy scenarios. Welfare

is defined by the consumption equivalence under the veil of ignorance in the baseline economy

relative to the economy with the counterfactual policy in place. Formally, let C ∈ {0, 1, 2, ...}

denote the set of counterfactuals, with C = 0 being the baseline economy (early tracking)

in a steady state. We refer to the consumption equivalence as the percentage change in

consumption ∆ in the baseline economy that makes individuals indifferent between being

born in the baseline economy (C = 0) and the one in which the counterfactual policy C ̸= 0

is in place. Denote by VC
5 (θ5, a5, ϕ, S, E

p,∆) the welfare of agents in the initial state of the

economy (j = 5) if their consumption (and that of their descendants) were multiplied by

(1 + ∆):
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VC(θ5, a5, ϕ, S, E
p,∆) = E

C

j=20∑

j=5

βj−5vj
(
c∗Cj (1 + ∆), n∗C

j , E∗C , θ5, S, E
p
)
+β13−5δVC

j5

(
θ′5, a

′
5, ϕ

′, S ′, E∗C ,∆
)
,

where Ep is the education of the parent, and for j = 6, ..., 10, 12, ..., 20

vj(cj, nj, E, θ5, S, E
p) =

(cj/q)
1−σ

1− σ
− b

n
1+ 1

γ

j

1 + 1
γ

, (A.18)

for j = 5

vj(cj, nj, E, θ5, S, E
p) =

(cj/q)
1−σ

1− σ
− b

n
1+ 1

γ

j

1 + 1
γ

− 1{E = 1} ψ(S, θ5, ν(E
p)), (A.19)

and for j = 11

vj(cj, nj, E, θ5, S, E
p) =

(cj/q)
1−σ

1− σ
− b

n
1+ 1

γ

j

1 + 1
γ

− 1{S = A} χ(E). (A.20)

Note that the policy functions are assumed to be unchanged when ∆ is introduced. The

average welfare is:

V̄C(∆) =
∑

S,Ep

∫

θ5,a5,ϕ

VC(θ5, a5, ϕ, S, E
p,∆)µC(θ5, a5, ϕ, S, E

p)

where µC is the distribution of initial states {θ5, a5, ϕ, S, E
p} in the economy C.

We define ∆C as the consumption equivalence that makes individuals indifferent between

being born in the baseline economy C = 0 and one in which policy C ̸= 0 is in place, such

that:

V̄0(∆C) = V̄C(0).
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B Empirical and Calibration Appendix

B.1 German Education System

In this section, we provide an overview of the most important features of the German Ed-

ucation and School System. A more extensive description can be found, for example, in

Henninges et al. (2019) or OECD (2020a). Figure B.1 illustrates a simplified structure of

the system, starting in Grade 4 and ending with tertiary education.

Generally, schooling is compulsory in Germany for every child starting at age six and

lasting until age 18. However, the obligation to go to school typically lasts until grade 9 or

10, after which it shifts to a vocational training obligation if no upper secondary school is

attended. At age six, all children visit a comprehensive primary school that lasts the first

four grades.56 After that, children are allocated into traditionally three different secondary

school tracks: A lower vocational track, a medium vocational track, and an academic track.

However, triggered by the so-called PISA shock in the early 2000s, federal states in Germany

have started reforming their secondary school system. In particular, the two vocational tracks

have often been combined into one, resulting in a two-track system in the majority of federal

states (Bellenberg and Forell, 2012). For that reason, and because even if still two vocational

tracks exist, they are much more similar in comparison to the academic track schools, we

opt to restrict our analysis in this paper to two school tracks.

Generally, the school tracks differ in the curricula taught, the length of study, and the

end-of-school qualifications that come with graduation. In particular, only the academic

track schools end with a university entrance qualification that directly allows children to go

to college. This requires the completion of the second stage of secondary school, typically

grades 10/11 to 12/13. Graduating from a vocational track occurs after Grades 9 and 10 and

allows children to take up vocational training in blue-collar jobs or proceed to a professional

school that prepares for entry into white-collar, business, or skilled trade occupations. At

this stage, there is considerable scope for mobility between tracks. Firstly, professional

degrees often allow access to university studies in selected fields. Secondly, children can

directly switch to an academic track school if their school marks and achievements admit

that. Finally, after having worked for a number of years in vocational jobs, access to some

college degrees can be possible. At the same time, it is, of course, possible to switch from

an academic track school to a vocational training or job after the mandatory education has

been completed.

56In two federal states, Berlin and Brandenburg, comprehensive primary school lasts the first 6 grades.
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Figure B.1: Simplified Structure of the German Education System

The public expenditure per student does not differ significantly across school tracks.

Table B.1 lists average per-student expenditures across the various school types in the years

2010 to 2020. Across these years, public expenditures by student were highest in pure

lower vocational track schools. Expenditures in academic track schools were roughly equal

compared to expenditures in joint vocational track schools. The bulk of these expenditures

is attributable to teacher pay (around 80%) and the rest for investments into buildings,

equipment etc. This suggests that resource differences across school tracks should not be a

main driver behind achievement differences, on average.

A remaining driver behind achievement differences across school tracks could be the

teaching quality. In particular, higher-quality teachers could select into academic track

schools. However, regardless of the secondary school track, becoming a teacher requires

university studies in the range of 7 to 10 semesters and a similar university degree. On

top of that, the differences in wages across school tracks are no longer significant in many

federal states. For example, both tenured teachers at vocational track schools and teachers

at academic track schools are eligible for the same public pay grade in most northern and

eastern federal states already.
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Table B.1: Per-Student Public Expenditures across School Types and Years

Year Primary Lower Voc. Upper Voc. Joint Voc. Acad. Compr.

2010 5,200 7,100 5,300 8,000 6,600 6,600
2011 5,500 7,300 5,600 8,000 7,100 7,100
2012 5,400 7,900 5,700 7,700 7,200 7,200
2013 5,600 8,200 5,900 7,700 7,500 7,500
2014 5,900 8,700 6,200 8,000 7,800 7,800
2015 6,000 8,900 6,400 8,000 7,900 8,000
2016 6,200 9,300 6,700 8,100 8,100 8,200
2017 6,400 9,800 7,000 8,300 8,500 8,600
2018 6,700 10,400 7,400 8,700 8,800 9,100
2019 7,100 11,200 7,900 9,200 9,300 9,500
2020 7,400 12,200 8,200 9,500 9,600 10,000

Source: Statistisches Bundesamt (Bildungsfinanzbericht, Bildungsausgaben - Ausgaben je Schüler, Sonderauswertung)

All amounts in euros.

B.2 Empirical Evidence on School Track Selection

In this section, we present reduced-form evidence on the effect of parental background on

the school track choice for their children.

Table B.2 shows that parents frequently deviate from teacher recommendations toward

their own education. Research on school tracking has found that parents with higher socioe-

conomic status are more likely to send their child to an academic track school than parents

with a lower socioeconomic status, even conditional on school performance or achievement

test scores before the track decision. Consistently, we find that 54% of children from college-

graduated parents receive a teacher recommendation for the academic track versus 39%

of children from non-college-graduated parents.57 In addition, Table B.2 shows that while

around 23% of parents who themselves have a college education overrule a vocational rec-

ommendation, only 4% of them overrule an academic recommendation. At the same time,

while 16% of non-college graduated parents overrule an academic recommendation, only

12% of them overrule a vocational recommendation. As argued before, one reason for these

deviations may be that parents may have more information about their child’s skills than

teachers. However, the deviations are not symmetric across tracks, and parents are more

likely to deviate from teachers’ recommendations for their own education.

Parents may have several reasons for frequently overruling teachers’ recommendations

when they differ from their own education. For instance, they may be better equipped

to support their child in a track with which they are more familiar. However, the last

columns of Table B.2 show that children of college-educated parents who deviate from the

57We define children from college parents if they have at least one of the parents with a college education.
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Table B.2: School Track Choice

% in the top 25% by
track in G9

Recommendation Shares % deviate if followed if deviated

College Parents
Academic 56% 4% 34% 68%
Vocational 44% 23% 34% 6%

Non-college Parents
Academic 38% 16% 21% 44%
Vocational 62% 12% 22% 14%

Notes: This table provides information on school track choice by parental education
and teacher recommendation. Source: NEPS, Cohort 3.

recommended vocational track do relatively poorly compared to those who received the

academic recommendation. In fact, only 6% of children of college-educated parents who

deviated from the vocational track recommendation belong to the top quartile of skills in the

academic track four years later in Grade 9. In contrast, the same number reaches 34% among

those who received an academic track recommendation and followed that recommendation.

This suggests that the support provided by college-educated parents who deviate from a

vocational track recommendation and send their child to an academic track school does

not fully compensate for relatively low skill levels. Conversely, children from non-college-

educated parents who deviate toward the vocational track do remarkably well in Grade 9,

with almost half of them belonging to the top quartile of skills in the vocational track. As

a comparison, 22% of those with a vocational recommendation reached the top quartile in

Grade 9. Those numbers indicate that these students might have succeeded in the academic

track as well. Thus, we argue that the relatively high number of deviations towards parents’

education is partly driven by a parental bias towards their own education, which is not only

motivated by parents’ ability to support the child or their intrinsic knowledge of their skills.

Moreover, Figure B.2 plots the relationship between skills at the beginning of grade 5, that

is right after the track decision and skills in grade 9, when children are typically 15 years old.

The red and green lines are fitted values of grade 9 skills among the children who went to an

academic or vocational track school, following the track recommendation they received from

their primary school teacher. The triangles are the (grouped) learning outcomes of children

who received a vocational track recommendation but go to an academic track school, the

dots are the outcomes of children who received an academic track school recommendation

but deviated to a vocational track school, instead. Visually, the learning outcomes of the
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deviators in academic track schools are on average below the predication of outcomes of

children with similar skill levels in grade 5. The learning outcomes of children who deviated

to vocational track schools are visually in line with or slightly above the prediction of what

one would have expected a child with that skill level to learn in a vocational track school.

This is confirmed more formally by the regression results of grade 9 skills on grade 5

skills of children in academic or vocational track schools, when including a dummy variable

that equals one whenever a child goes to that track against the recommendation of the

primary school teacher, as shown in Table B.3. When deviating to an academic track school,

children incur statistically significant learning penalty. When deviating to a vocational track

school despite an academic track school recommendation, children learn on average more,

even though the effect is smaller an statistically insignificant. These results suggest that

going against the track recommendation of the primary school teachers does not seem to

benefit children’s skill formation, underpinning our argument that it is likely not the fact

that parents on average know better about the skills of their children than teachers and

that there are other reasons, perhaps preferences, that drive the decision to deviate from the

recommended track.

Table B.3: Current Skills on Past Skills and Deviator Status

Dependent Variable: Grade 9 Skills

Panel A: Cohort 3 - Academic Track Recommendations
Grade 5 Skills 0.757***

(0.026)
Downward Deviators (n = 84) -0.062***

(0.023)
Obs. 1,101

Panel B: Cohort 3 - Vocational Track Recommendations
Grade 5 Skills 0.760***

(0.033)
Upward Deviators (n = 84) 0.031

(0.022)
Obs. 591

Notes: This table presents the coefficients of regressions of skills
in grade 9 on past skills in grade 5 and deviation status for chil-
dren with academic track teacher recommendations (Panel A)
and for children with vocational track teacher recommendations
(Panel B). Models control for parental education. Source: NEPS,
Cohort 3.
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Figure B.2: Past and Future Skills by School Track and Deviator Status
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Notes: This figure shows the skills of children in grade 9 by school track and deviation status from the
recommended track as a function of their skills in grade 5. Non-deviating children are grouped in 30 bins
by school track and represented in ’×’ and ’+’ symbols for those in the academic and vocational tracks,
respectively. The lines show the quadratic prediction of grade 9 skills using grade 5 skills and grade 5
skills squared for non-deviating students in each school track. Deviating children are grouped in 5 bins
by school track and represented in triangles and circle symbols for academics and vocational, respectively
—data source: NEPS, Cohort 3.
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B.3 Measuring Child Skills in the NEPS

In this section, we provide an overview of our measures of child skills. One of the main

goals of the NEPS project is to document the development of competencies of individuals

over their lifespan (Blossfeld et al., 2019). To that end, the NEPS carefully designs and

implements regular tests of the respondents’ competencies along several domains, including

reading comprehension, mathematical competence, and scientific literacy, which we use for

the estimation of the child skill technology, but also domains such as information and com-

munication technologies (ICT) literacy. In line with the guidelines set by the Program for

International Student Assessment (PISA), the tests are generally designed to assess the ex-

tent to which children have learned the content of school curricula but also to judge a child’s

ability to use domain-specific knowledge to constructively engage with real-life problems

(Neumann et al., 2013). The math test, for example, includes items related to “overarching”

mathematical content areas that are consistent across all ages, such as quantity, change &

relationships, space & shape, as well as several cognitive components, such as mathemat-

ical communication, argumentation, or modeling. The age-specific test items include for

the majority simple multiple-choice questions with four response options. In addition, the

sometimes include more complex multiple-choice questions, as well as short-constructed re-

sponses.58 Each domain is tested using between 20 and 25 items, which usually takes around

30 minutes (Pohl and Carstensen, 2013).

In order to use these questions for the analysis of latent competencies, they need to be

scaled. For reading comprehension, mathematical competence, and scientific literacy, the

NEPS (similar to the PISA) uses a scaling procedure that is based on item response theory

(IRT). IRT is a popular instrument in psychometrics to extract latent ability or other factors

from test data. To quote the NEPS: “IRT was chosen as scaling framework for the newly

developed tests because it allows for an estimation of item parameters independent of the

sample of persons and for an estimation of ability independent of the sample of items. With

IRT it is possible to scale the ability of persons in different waves on the same scale, even

when different tests were used at each measurement occasion” (Pohl and Carstensen, 2013).

The scaling model used by the NEPS for dichotomous items is the Rasch model (Rasch,

1960).59 This model assumes that the right answers given to a set of questions by a number

58A simple multiple choice question consists of one correct out of four answer categories, and complex
multiple choice questions consist of a number of subtasks with one correct answer out of two options. Short-
constructed responses typically ask for a number (Pohl and Carstensen, 2012).

59For polytomous items, the Partial Credit Model is used, which is a generalization of the Rasch model
(Masters, 1982).
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of respondents contain all information needed to measure a person’s latent ability as well as

the question’s difficulty. It does so by positing that the probability that person v gives the

right answer to question i is given by:

p(Xvi = 1) = 1− p(Xvi = 0) =
exp(θv − σi)

1 + exp(θv − σi)
, (B.1)

where θv denotes the latent ability of person v and σi is a measure of the question’s difficulty.

Thus, this model maps the total sum score of an individual into an ability parameter estimate.

The scale is arbitrary. However, the ability estimate is cardinal.60 This model is estimated via

(weighted) conditional maximum likelihood under a normality assumption on latent ability.

There are several challenges that arise when scaling the test items: These include dealing

with different response formats, the treatment of missing responses, adaptive testing, and

linking tests across cohorts. An overview about the approaches undertaken by the NEPS

to overcome these challenges is given in Pohl and Carstensen (2013). Table B.4 exemplary

describes our available NEPS samples of mathematics assessments by starting cohort and

grade level.

Table B.4: NEPS Mathematic Assessment Samples

Information on Par-
ents’ Education

Information on
School Track

Obs. Obs. % College
Parents

Obs. % Ac.
Track

Cohort 1 K1 2,014 1,709 51%
Cohort 2 G1 6,352 5,784 46% 2,731 63%

G2 5,888 5,425 47% 2,651 62%
G4 6,610 6,068 46% 3,229 63%
G7 2,479 2,410 51% 2,208 58%

Cohort 3 G5 5,193 3,856 38% 4,369 52%
G7 6,191 4,214 38% 5,525 49%
G9 4,888 3,387 38% 4,356 47%
G12* 3,785 2,830 41% 3,331 58%

Cohort 4 G9 14,523 8,474 35% 14,215 40%
G12* 5,733 3,767 24% 5,530 23%

Notes: This table describes NEPS mathematics assessments by cohort. Note that in Grade
12, the assessments are different by school track, which makes the comparison of test scores
by parental education or school track impossible. Source: NEPS.

60It is interval-scaled as Ballou (2009) puts it. That means an increase of 5 points from 15 to 20 represents
the same gain in achievement as from 25 to 30.
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B.4 Details on Child Skill Technology Estimation

Following the literature on child skill formation, we employ a linear measurement system for

the logarithm of latent skills in each period that is given by

Mi,k,j = µk,j + λk,jθi,j + ϵi,k,j, (B.2)

where Mi,k,j denotes the kth measure for latent log skills of child i in period j. In each

period, we have at least 3 different measures in our data, which typically constitute the

achievement (item response theory) test scores of each child in the domains of reading,

maths and scientific literacy. The parameters µk,j, and λk,j denote the location and factor

loading of latent log skills, respectively. By ϵi,k,j, we denote the measurement error. The

parameters and measures are defined conditional on child’s age and gender, which we keep

implicit.

Following Cunha et al. (2010), we normalize E(θj) = 0 and λ1,j = 1 for all j. That is, the

first-factor loading is normalized to 1 in all periods.61 We further normalize the measurement

errors, such that E(ϵk,j) = 0 for all j. Given that, the location parameters µk,j are identified

from the means of the measures. In order to identify the factor loadings, we further assume

that the measurement errors are independent of each other across measures and independent

from latent skills. Under these assumptions and given that we have at least three measures

of latent skills available in each period, we can identify the loadings on each measure in each

period by ratios of covariances of the measures (as in Agostinelli et al., 2019):

λk,j =
Cov(Mk,j,Mk′,j)

Cov(M1,j,Mk′,j)
(B.3)

for all k, k′ > 1 and k ̸= k′. Rescaling the measures by their identified location and scale

parameters then gives us error-contaminated measures of latent skills for each period as

θi,j =
Mi,k,j − µk,j

λk,j
−
ϵi,k,j
λk,j

= M̃i,k,j −
ϵi,k,j
λk,j

. (B.4)

Equipped with identified latent variables up to measurement error for all periods, we can

plug these into the empirical analogue of the child skill technology (27), which yields

61We are aware of the potential bias that can arise from this assumption (see Agostinelli and Wiswall
(2016)). However, contrary to their case, we measure three different stages of child development, where
each stage comes with a new cohort of children (see below). Thus we cannot follow children over multiple
periods. Moreover, even if we could, the data we use does not contain age-invariant measures according to
their definition.
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M̃i,k,j+1 = κ0,j + κ1,jM̃i,k,j + κ2,jM̃
2
i,k,j + κ3,jM̃−i,j,S

+ κ4,j(M̃i,k,j − M̃ j,S)
2 + κ5,jEi + ζi,k,j+1,

(B.5)

where M̃−i,j,S refers to the average value of the kth transformed measure across all children

other than i in a classroom in track S and M̃ j,S to that of the average value of the measures

across all children in a school that belongs to track S.

Importantly, the residual ζi,k,j+1 now contains not only structural skill shocks, ηi,j+1, but

also the measurement errors, ϵi,k,j as well as interactions of the measurement error with the

rescaled measures and even the variance of the measurement errors. For that reason, even

if a standard assumption of mean independence of the structural shocks η conditional on all

independent variables holds, an OLS estimator of (B.5) will be biased. To account for that,

we follow the literature and use Bartlett factors scores to aggregate the different measures

into an unbiased score (Agostinelli et al., 2023). As indicated before, we use maths, reading,

and science test scores, which we have available across different cohorts and grades (years)

in school: We use Cohort 2 for grades 1 and 4, corresponding to the primary school stage

in our model (i.e. period j = 2); Cohort 3 for grades 5 to 9, which correspond to the first

stage of secondary school in the model (i.e. period j = 3); and Cohort 4 for grades 9 to 12,

corresponding to the second stage of secondary school in the model (i.e. period j = 4). Note

that in grade 7, children only take two tests, which is why we cannot construct the latent

skills. In addition, in grade 12, the maths test differs by track, and only children in the

academic track take the science test. Consequently, in grade 12, we can only create latent

skills for children in the academic school track. 62

Table B.5 summarizes the estimated coefficients of the child skill technology (27) using

the identified latent variables as describes above in columns (1) and (2), or using math test

scores directly in columns (3) and (4). The estimates differ slightly depending on whether

we use longitudinal weights or not, but overall are quite consistent. Table B.6 performs the

62In Germany, the vocational track schools typically end after grade 9 or grade 10 and so-called upper
secondary schooling only happens in academic track schools. However, the NEPS data keeps track of the
students even if they are no longer enrolled in a school and tests them at the same age. A remaining issue
is, of course, that even though we know the classroom compositions in grade 9, we do not know how long
learning in that classroom continues in a vocational track school. For that reason, we make the assumption
that children who went to a vocational track school that finished before they are 18 years old continue to
learn in an environment that is the same as if the vocational school had continued. In reality, students who
graduate from vocational schools often continue with an apprenticeship, where we think it reasonable to
assume that the peer composition is similar to the one in school.
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estimation where the squared distance to track average term in (27) is distributed, such that

we include directly the interaction between own skill and track average. The estimated coef-

ficient is positive, statistically significant in most specifications and not statistically different

from −2ω̂4, lending support to our modeling assumptions.

Table B.5: Robustness Checks: Child Skill Technology Parameters Estimates

Grade 9 on Grade 5 Skills Math scores

Dependent Variable: θi,j+1 (1) (2) (3) (4)

ω̂1,3 θi,j 0.664*** 0.647*** 0.519*** 0.517***
(0.022) (0.025) (0.025) (0.030)

ω̂2 θ̄−i,j,S 0.003 0.028 0.022 0.025
(0.020) (0.021) (0.024) (0.031)

ω̂3 θ2i,j 0.008* 0.006 0.010** 0.015**

(0.004) (0.005) (0.005) (0.006)
ω̂4 (θi,j − θ̄j,S)

2 -0.011* -0.013** -0.012* -0.020**
(0.006) (0.006) (0.007) (0.008)

ω̂5,3 E = 1 0.034*** 0.033*** 0.033*** 0.045***
(0.010) (0.012) (0.012) (0.014)

Obs. 1,847 1,676 2,084 1,708
Weights No Yes No Yes

Notes: This table presents the coefficients of regressions of skills in grade 9 on skills
in grade 5, skills squared, the average skill level of peers, distance to the average skill
in the track squared, and parent’s education dummy. In Columns (2) and (4), all
observations are weighted using longitudinal weights, while in Columns (1) and (3),
they are not. Standard errors are clustered at the school level. Columns (1) and (2)
present the results for latent skills corrected for measurement errors, while columns
(3) and (4) present the results for uncorrected latent skills of maths grades. Models
control for year of birth, gender, and school-fixed effects. Source: NEPS.

B.5 Details on the Data Moments used in the MSM Estimation

In this section, we present details of the data moments that we use as calibration targets in

the method of simulated moments estimation.

Table B.7 presents the distribution of students across school tracks and education levels.

We use two main sources to compute those shares. First, whenever available, we use official

statistics that are reported in the education report: 44% of students are in the academic

track, and children from college parents are 2.27 more likely to graduate from college than

students from non-college parents (p. 156 in Bildungsberichterstattung, 2018). Second, we

complement this data using Cohort 4 of the NEPS dataset: 35% of the parents graduated
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Table B.6: Robustness Checks: Alternative Child Skill Technology Parameters Estimates

Grade 9 on Grade 5 Skills Math scores

Dependent Variable: θi,j+1 (1) (2) (3) (4)

ω̂1,3 θi,j 0.657*** 0.626*** 0.515*** 0.505***
(0.021) (0.024) (0.023) (0.028)

ω̂2 θ̄−i,j,S 0.001 0.024 0.020 0.018
(0.020) (0.021) (0.024) (0.030)

−2 ∗ ω̂4 θi,j ∗ θ̄j,S 0.018** 0.014 0.022** 0.029**
(0.009) (0.010) (0.010) (0.012)

ω̂5,3 E = 1 0.034*** 0.034*** 0.033*** 0.048***
(0.010) (0.012) (0.012) (0.014)

Obs. 1,847 1,676 2,084 1,708
Control for θ̄2j,S Yes Yes Yes Yes

Weights No Yes No Yes

Notes: This table presents the coefficients of regressions of skills in grade 9 on skills
in grade 5, the average skill level of peers, the interaction between child skills and
the average skill in the track, the average skill in the track squared, and parent’s
education dummy. In Columns (2) and (4), all observations are weighted using
longitudinal weights, while in Columns (1) and (3), they are not. Standard errors
are clustered at the school level. Columns (1) and (2) present the results for latent
skills corrected for measurement errors, while columns (3) and (4) present the results
for uncorrected latent skills of maths grades. Models control for year of birth, gender,
and school-fixed effects. Source: NEPS.
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from college, children from college parents are 1.95 more likely to attend the academic school

track than children from non-college parents and students in the academic track are 5.23

more likely to attend college than students in the vocational track.63 In addition, 23%

of college parents deviate from the vocational recommendation, and 16% of non-college

parents deviate from the academic recommendation as argued above. Finally, the model

is in stationary equilibrium, which implies that 35% of students graduate from college, the

same share as the share of college parents. All the remaining shares are computed so that

the model distribution is internally consistent.

Table B.8 describes the evolution of child skills over time and across groups using the

identified latent variable (Columns (1) and (2)) or maths scores directly (Columns (3) and

(4)). As before, we use different cohorts of NEPS for the estimation: Cohort 2 for grades

1 to 4, Cohort 3 for grades 5 to 9, and Cohort 4 for grades 9 to 12. We also report the

results for grade 12 using Cohort 3, but we prefer the results from Cohort 4 as the number

of observations is greater (see Table B.4). For a given individual, the correlation across skills

increases over time, from 0.61 between grades 1 and 4 to 0.74 between grades 9 and 12 (Table

B.8 Column (1), using the latent skill and longitudinal weights). The differences in average

skills across groups are also increasing over time: from 0.541 SD in grade 1 to 0.677 SD in

grade 9 by parents’ education, and from 0.847 SD in grade 1 to 1.036 SD in grade 9 by school

track (Table B.8 Column (1), using the latent skill and longitudinal weights).64

Tables B.9 and B.10 report details on the estimation of academic school track attendance

on child skills at the beginning of secondary, or end of primary school, as well as the esti-

mation of college attendance on past skills and school track. We use the latter estimates to

calibrate the college costs in our model, while the former serve as untargeted tests.

C Comparison of Model-predicted Effects with Empir-

ical Estimates

Generally, empirical estimates of the effects of between-school tracking policies on the average

learning outcomes of children offer no clear consensus, as identification of causal effects is

made difficult by severe endogeneity issues (Hanushek and Wößmann, 2006). Using the same

dataset as we do, Matthewes (2021) compares the mathematics and reading achievement

63In the NEPS dataset, we only have college attendance and not graduation. We use the ratio of college
attendance by groups as a proxy for the ratio of college graduation.

64To compute the difference by school track in grade 1, we use the panel structure of NEPS, and allocate
students in grade 1 to school track according to their actual school track in grade 7.
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Table B.7: Distribution of Students, School Tracks and Parental Education

Statistics Value Source Comment

% of college parents 35% NEPS Cohort 4
Track choice

% in ac. track 44% Education report p.110 42% in NEPS Cohort 4
Ratio % ac. track if college
parents to % if non-college
parents

2.06 NEPS Cohort 4

% in ac. track if E = 1 66% Implied
% in ac. track if E = 0 32% Implied

Track recommendation
Deviation if recom. S = 0 and
E = 1

23% NEPS Cohort 4

Deviation if recom. S = 1 and
E = 0

16% NEPS Cohort 4

% ac. recom. 44% Implied
% ac. recom. if E = 1 56% Implied
% ac. recom. if E = 0 38% Implied

College graduation
% who graduate from college 35% Model assumption
Ratio % college if academics
to % if vocational

6.27 NEPS Cohort 4

% college if academics 66% Implied
% college if vocational 11% Implied
Ratio % college if college par-
ents to % if non-college par-
ents

3.20 Meyer-Guckel et al.
(2021)

Ratio computed from Fig-
ure 1, where 64% of chil-
dren from college parents
are bachelor graduates ver-
sus 20% of children from
non-college parents.

% college if college parents 63% Implied
% college if non-college par-
ents

20% Implied

Notes: This table provides information on the distribution of students by school track, college education,
and parental education with corresponding sources.
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Table B.8: Evolution of Skills

Skills Math grades

Statistics (1) (2) (3) (4) Source

Group Differences
Differences in average skills by parental education (in standard deviations)
Grade 1 0.530 0.541 0.459 0.462 NEPS Cohort 2
Grade 5 0.658 0.647 0.605 0.579 NEPS Cohort 3
Grade 9 0.672 0.774 0.598 0.697 NEPS Cohort 3
Grade 9 0.710 0.677 0.659 0.623 NEPS Cohort 4
Differences in average skills by school track (in standard deviation)
Grade 1 0.840 0.847 0.767 0.769 NEPS Cohort 2
Grade 5 1.104 1.022 1.067 0.986 NEPS Cohort 3
Grade 9 1.058 1.089 1.040 1.113 NEPS Cohort 3
Grade 9 1.110 1.036 1.062 0.998 NEPS Cohort 4
Rank-Rank correlations
Panel A: All students
Grades 1 to 4 0.72 0.72 0.59 0.58 NEPS Cohort 2
Grades 5 to 9 0.79 0.79 0.71 0.71 NEPS Cohort 3
Panel B: Academic students
Grades 1 to 4 0.62 0.61 0.46 0.45 NEPS Cohort 2
Grades 5 to 9 0.68 0.69 0.57 0.59 NEPS Cohort 3
Grades 9 to 12 0.74 0.72 0.65 0.66 NEPS Cohort 3
Grades 9 to 12 0.74 0.74 0.66 0.59 NEPS Cohort 4
Panel C: Vocational Students
Grades 1 to 4 0.64 0.64 0.53 0.50 NEPS Cohort 2
Grades 5 to 9 0.74 0.75 0.63 0.64 NEPS Cohort 3

Weights No Yes No Yes

Notes: This table provides information on average differences in skills in one standard
deviation unit by parental background and school track over time as well as skill rank-rank
correlations. In columns (2) and (4), all observations are weighted with longitudinal weights,
while in columns (1) and (3), they are not. Columns (1) and (2) present the results for
latent skills corrected for measurement errors, while columns (3) and (4) present the results
for uncorrected latent skills of maths grades. Sources are mentioned in the last column.
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Table B.9: School Track on Past Skills

Dependent Variable: Academic School Track

Panel A: Cohort 3 - Grade 5
θi,j−1 0.877***

(0.019)
Obs 3,888

Panel B: Cohort 2 - Grade 4
θi,j−1 0.745***

(0.027)
Obs 2,299

Notes: This table presents the coefficients of regres-
sions of the academic school track on past skills in
grade 4 (Panel A) or in grade 5 (Panel B). Mod-
els control for year of birth and gender fixed effects.
Source: NEPS.

Table B.10: College on Past Skills and School Track

Dependent Variable: College Attendance

Panel: Cohort 4 - Grade 9
θi,j 0.395***

(0.015)
S 0.407***

(0.011)
Obs 10,074
Variance of residuals 0.137

Notes : This table presents the coefficients of
regressions of college attendance on past skills
(grade 9) and school track. We control for year
of birth and gender fixed effects. Source: NEPS.
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outcomes of school children in non-academic school tracks in Germany who benefit from

two more years of comprehensive school in some federal states versus those that are already

tracked in these years in a difference-in-differences framework. He finds that later tracking

even improves average achievement outcomes. However, in contrast to our setup, his analysis

does not consider children in academic track school who are already separated but compares

children in two different non-academic tracks.65 The results in Matthewes (2021), therefore,

are not directly informative about the effects of a broad comprehensive school reform, which

places all school children in schools of the same track for a longer period of time. However,

they suggest that the effects of tracking may be heterogeneous in the sense that it could be

particularly children from lower socio-economic backgrounds that benefit from de-tracking

reforms.

This is corroborated by empirical evidence from Scandinavian countries, who have all

undergone comprehensive school reforms in the last 60 years and often find that longer

comprehensive schooling decreases the effect of family background on educational attainment

(see, for instance Meghir and Palme, 2005; Aakvik et al., 2010; Pekkala Kerr et al., 2013).66

Similarly to Meghir and Palme (2005), who study an increase of compulsory schooling to

nine years from seven or eight years in Sweden, we find a negative effect of our policy on

attainments for children from college parents (-3% in end-of-school skills) but a positive

effect for children from non-college parents (+5% in end-of-school skills). Our results are

also in line with evidence that attendance at academic track schools becomes less dependent

on the parental background when tracking occurs later. In particular, we find an increase

in academic shares for college and non-college parents’ children, but relatively more so for

non-college parents’ children.

In terms of the effects of school tracking policies on inequality in learning outcomes, most

existing evidence comes from comparisons of early and late tracking systems across countries

(Hanushek and Wößmann, 2006; Brunello and Checchi, 2007).67 They consistently find that

tracking raises educational inequality as measured by child achievement test scores. Our

65Traditionally, the school system in many federal states in Germany consisted of three tracks. One
academic track (Gymnasium) and two non-academic tracks that differ much less in terms of their curriculum
than between academic and non-academic tracks.

66Since the reforms in these countries came together with other education policy changes, in particular
with more mandatory schooling years, the estimated effects can often not be unequivocally attributed to
the tracking regime change. Studies about de-tracking reforms in Britain (e.g. Pischke and Manning, 2006)
also often arrive at mixed results. Piopiunik (2014), who study an increase in tracking in one of the federal
states in Germany, Bavaria, also led to learning losses for the lower-skilled children.

67As pointed out by Waldinger (2006) or Betts (2011), these studies often come with significant iden-
tification challenges given the unclear classification of countries in early and late tracking systems or the
possibility of unobserved differences driving the results.
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result of lower heterogeneity in child skills during secondary school is thus in line with these

findings.

Finally, while the reduced impact of the family background on educational attainment in

secondary school is often already interpreted as evidence for improvements in social mobility

following de-tracking reforms, it does not necessarily follow that such improvements lead to

a lower association between child and parental outcomes later in life.68 Similarly, smaller

inequality in test scores does not necessarily need to translate into lower cross-sectional

inequality in terms of labor market outcomes. As argued before, an assessment of the effects

of school tracking policies on these outcomes is challenging as it requires the consideration of

general equilibrium effects that a change in the skill composition of students may entail on the

labor market. Most existing empirical evidence, however, comes from relatively short-term

evaluations of tracking reforms that cannot consider such effects.

To the best of our knowledge, the only empirical estimates on the effect of a broad

comprehensive school reform on the intergenerational elasticity of income come again from

the Nordic countries (Holmlund, 2008; Pekkarinen et al., 2009). In particular, the reform

in Finland, undertaken subsequently across regions in the 1970s, is similar in scope to our

experiment as it postponed the track allocation from age 11 until age 16. Pekkarinen et al.

(2009) find that the elasticity between fathers’ and sons’ relative earnings declined by seven

percentage points due to the reform (from 0.3 to 0.23). Our model also predicts a decrease

in the intergenerational income elasticity, yet the effect is quantitatively smaller. Some of

this difference is likely due to the fact the reform in Finland simultaneously also changed

the average length of schooling, and the content of the curriculum in schools towards a more

academic orientation and went from a largely private to a public school system.

D Discussion on Child Skill Shocks

As for the adult human capital, we assume child skills are subject to idiosyncratic shocks.

These shocks represent unexpected heterogeneity in child development speeds (such as late-

bloomers) and any shock that can arise during childhood and affect the child’s learning, such

68For example, Malamud and Pop-Eleches (2011) analyses the effects of a school-tracking age postpone-
ment in Romania. While they find that children from disadvantaged backgrounds were significantly more
likely to attend and graduate from academic track schools following the reform, this did not lead to an
increased share in the college graduation probabilities of these disadvantaged children, which they attribute
to the same overall share of college slots available pre- and post-reform. The quantitative results of our
model similarly predict, that while postponing tracking increases mobility in school track choice, this does
not lead to higher mobility in college attainment. This effect is driven by parental-education-specific college
tastes.
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as health issues, a move, parents’ divorce, meeting an influential mentor, etc.

An alternative model would assume child skills are not subject to shocks but imperfectly

observed by parents. In this section, we elaborate on an alternative model based on our

baseline model that introduces this feature and compare it to our baseline model.

Specifically, in this alternative modeling, θ would be the true (log) skills that matter

for the child skill evolution and future earnings and evolve according to the stage-specific

function f , defined by:

θj+1 = f(θj, P
S
j , θ̄

S
j , E) (D.1)

= κθj + αθ̄Sj + + β P S
j + γ θj P

S
j −

δ

2
P S
j

2
+ ζE, (D.2)

where, similarly to the baseline model, P S is the instruction pace in track S, the average

peer skills is denoted by θ̄S and E stands for parental background. However, in this alter-

native version, parents would not directly observe their child’s skills θj. Instead, in every

period, they would receive an unbiased signal θ̂j about their child skills, with:

θ̂j = θj + ϵθ,j

ϵθ,j ∼ N (0, σ2
ϵθ
).

(D.3)

Given the parents’ initial prior θ̃j−1, that is unbiased and follows a normal distribu-

tion N (θj−1, σj−1), parents update their perception of their current child’s skills θ̃Pj =

f(θ̃j−1, P
S
j , θ̄

S
j , E) using Bayesian updating:69

θ̃j = k θ̂j + (1− k)θ̃Pj

σ2
j = σ2

j−1 − kσ2
j−1

k =
σ2
j−1

σ2
j−1 + σ2

ϵθ

,

(D.4)

where k is the Kalman gain and is increasing in the precision of the signal ( 1
σ2
ϵθ

).

Since the perception of child skills is unbiased, the perception of the peer skills is equal to

the truth in the limit. Consequently, θ̄Sj is assumed to be perfectly observed by the parents

69We could assume the first initial prior to be equal to the signal they receive in j = 1.
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and stable in equilibrium. Similarly, in the limit, the policymaker perfectly observed the

average child skills in every school track and set the pace of instruction P S
j according to

Lemma 1. Then, we can define the child skill production function as

θj+1 = f(θj, θ̄
S
j , E)

=
β2

2δ
+ (κ+

βγ

δ
)θj + (α)θ̄S −

γ2

2δ
θ̄S

2
+

γ2

δ
θj θ̄

S + ζ E

= ω0 + ω1 θj + ω2 θ̄
S + ω4 θ̄

S2
− 2ω4 θj θ̄

S + ω5 E.

Notice that the child skill evolution is identical to one in the baseline model but for

the idiosyncratic shock η that are here absent. As a result, the average skill threshold

that determines the school track allocation would be identically determined in both model

versions. Indeed, in the baseline model, the expected future child skills are independent of

the shocks η that are assumed to be normally distributed and centered to zero. To see this,

notice that in both models, the average skill threshold θ∗ for a given parental background E

and current (perceived) skills θ3, is determined by the following equation:

E(θ5, E
′|S = A,E) = E(θ5, E

′|S = V,E)

E(f(θ4, θ̄
A
4 , E), E

′|E) = E(f(θ4, θ̄
V
4 , E), E

′|E)

E(ω1 θ4 + ω2 θ̄
A
4 + ω4 θ̄

A
4

2
− 2ω4 θ4θ̄

A
4 , E

′|E) = E(ω1 θ4 + ω2 θ̄
V
4 + ω4 θ̄

V
4

2
− 2ω4 θ4θ̄

V
4 , E

′|E).

Assuming θ̄Aj and θ̄Vj for j = 3, 4 are known and fixed, by the linearity of the function,

we can replace θ4 in the expectation by its expected value E(θ4|S,E) = f(θ3, θ̄
S
3 , E). So θ∗

is independent of η in the baseline model and identically determined as in this alternative

model.

Conceptually, misallocation sources, however, differ between the two models. In the

alternative model, at the time of the school track choice j = 3, parents make their decision

based on their perception of their child’s skills θ̃3 ∼ N (θ3, σ
2
3). Part of the misallocation will

be driven by σ3, which governs how imprecise the parental perception of the skills is. In the

baseline model, parents perfectly observed their current child’s skills, but skills are subject to

shocks. Part of the misallocation is then governed by η4 ∼ N (0, σ2
η4
), and more precisely by

its variance ση4 . While allowing for re-tracking would solve the issue of misallocation driven

by skill uncertainty in the baseline model, it would not completely solve the issue driven
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by imperfectly observed skills in the alternative model. Indeed, skills are still imprecisely

observed in period 4—even though the precision is greater than in period three due to the

learning process.

Finally and crucially, earnings variance would be entirely determined at the earliest

age without child skills shocks. As a result, comparing early and late tracking in the two

model versions leads to different results. While in the baseline model, late tracking versus

early tracking makes the school track choice less dependent on early skill conditions, it is

the reverse in the alternative model. Postponing tracking allows parents to make a more

informed decision about the school track choice, strengthening the relationship between early

(true) skill conditions and the school track. Still, the effect on mobility is ambiguous as late

tracking shrinks the difference in skills across socioeconomic groups.

In reality, it is probably a mix of both modeling versions. However, the data does not

allow us to differentiate between the two mechanisms. We use latent skills for calibration

purposes and don’t have information on parents’ perceptions of their child’s skills. Since we

think skills are likely subject to shocks during childhood, as human capital is likely subject

to shocks during adulthood, we favor the modelization with child skill shocks. The noise in

the preference shifter can be regarded as a reduced form of capturing the imprecision in the

parents’ perception of their child’s skills.
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