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Abstract

Most comparisons of preferences are instances of single-crossing dom-
inance. We examine the lattice structure of single-crossing dominance,
proving characterisation, existence and uniqueness results for minimum
upper bounds of arbitrary sets of preferences. We apply these theorems
to derive new comparative statics theorems for collective choice and
under analyst uncertainty, to characterise a general ŚmaxminŠ class
of uncertainty-averse preferences over Savage acts, and to revisit the
tension between liberalism and Pareto efficiency in social choice.

1 Introduction

Comparisons of preferences are ubiquitous in economics: examples include
Śmore risk-averse/uncertainty-averse thanŠ (in decision theory),1 Śtakes larger
actions thanŠ (in monotone comparative statics),2 Śmore impatient thanŠ (in
dynamic problems),3 and Śmore self-controlled thanŠ (in models of tempta-
tion).4 All of these preference comparisons, and many others besides, are
special cases of single-crossing dominance, a general uniĄed way of comparing
preferences.

∗We are grateful to Eddie Dekel, Péter Eső, Alessandro Pavan, John Quah and Bruno
Strulovici for guidance and comments, and to Paweş Dziewulski, Matteo Escudé, Peter
Klibanoff, Massimo Marinacci, Meg Meyer, Efe Ok, Daniel Rappoport, Kevin Reffett,
Todd Sarver, Eddie Schlee, Eran Shmaya, Marciano Siniscalchi, Lorenzo Stanca, Tomasz
Strzalecki, and three audiences at Northwestern for helpful comments and suggestions.

1Yaari (1969), Epstein (1999) and Ghirardato and Marinacci (2002).
2Topkis (1978), Milgrom and Shannon (1994) and Quah and Strulovici (2009).
3Horowitz (1992) and Benoît and Ok (2007).
4Gül and Pesendorfer (2001) and Dekel and Lipman (2008).
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In this paper, we investigate the lattice structure of single-crossing dom-
inance. Our results characterise the minimum upper bounds of arbitrary
sets of preferences, and furnish necessary and sufficient conditions for their
existence and uniqueness.

We use these theorems to derive new insights in a variety of economic
settings that feature some of the aforementioned preference comparisons.
First, we derive comparative-statics theorems for collective choice and for
problems in which the analyst has only partial knowledge of a decision-
makerŠs preference. Secondly, we characterise a general class of maxmin
preferences over Savage acts as minimum upper bounds with respect to
Śmore uncertainty-averse thanŠ. Finally, we delineate when Pareto efficient
aggregation of individual preferences is compatible with liberalism.

1.1 Overview of the theory

The abstract environment consists of a non-empty set X of alternatives
equipped with a partial order ⊵.5 A preference is a complete and transitive
binary relation on X . We write P for the set of all preferences. Single-crossing
dominance captures a greater appetite for ⊵-larger alternatives:

DeĄnition 1. For two preferences ⪰, ⪰′ ∈ P, we write ⪰′ S ⪰ iff for any
pair x ⊵ y in X , x ⪰(≻) y implies x ⪰′(≻′) y. We say that ⪰′ single-crossing
dominates ⪰.6

Given a set P ⊆ P of preferences, a preference ⪰′ ∈ P is an upper bound
of P iff ⪰′ S ⪰ for every ⪰ ∈ P , and a minimum upper bound iff in addition
⪰′′ S ⪰′ for every (other) upper bound ⪰′′ of P . Intuitively, a minimum
upper bound of P is a preference that likes large alternatives more than
does any preference in P , but only just. Maximum lower bounds are deĄned
analogously.

In ğ2, we study the lattice structure of (P, S) by developing character-
isation, existence and uniqueness results for minimum upper bounds. Our
characterisation theorem (ğ2.1) describes the minimum upper bounds of
arbitrary sets P ⊆ P of preferences. Our existence theorem (ğ2.2) identiĄes
the condition on ⊵, called crown- and diamond-freeness, that is necessary and
sufficient for every set P ⊆ P to possess a minimum upper bound. Finally,

5DeĄnitions of standard terms like Śpartial orderŠ are collected in appendix A.
6This deĄnition is from Milgrom and Shannon (1994), in the context of monotone

comparative statics. This type of preference comparison has been used at least since YaariŠs
(1969) deĄnition of Śmore risk-averse thanŠ (see ğ4.4). It also plays a role in the social
choice literature following Grandmont (1978).
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our uniqueness proposition (ğ2.3) asserts that every set P ⊆ P has a unique
minimum upper bound precisely if ⊵ is complete. We extend our results to
maximum lower bounds in appendix F.

1.2 Overview of the applications

We employ our theorems to answer a broad range of economic questions.

Application to monotone comparative statics (ğ3). In monotone com-
parative statics, an agent chooses an alternative from a set X ⊆ R. The
canonical result states that if the agentŠs preference ⪰ ∈ P increases in
the sense of single-crossing dominance S, then her optimal choices X(⪰) =
¶x ∈ X : x ⪰ y for every y ∈ X ♢ increase in the the strong set order.

We Ąrst study collective choice: there is a group of agents, with preferences
P ⊆ P. We prove that when the set P increases in the strong set order, so
does the consensus: the set C(P ) =

⋂

⪰∈P X(⪰) of alternatives that every
agent considers optimal. Generalising, we characterise comparative statics for
the set Ck(P ) of alternatives that every individual considers at least kth-best:
it increases in the strong set order whenever P does also if k = 2 or (trivially)
if k = ♣X ♣, but can strictly decrease if 2 < k < ♣X ♣. The proofs of these
results make extensive use of the existence and characterisation theorems.7

Secondly, we consider comparative-statics predictions by an analyst who
knows only that the agentŠs preference belongs to a set P ⊆ P. The possibly-
optimal choices from a menu M ⊆ X are XM (P ) :=

⋃

⪰∈P XM (⪰), where
XM (⪰) are the optimal choices for ⪰ ∈ P. Under a richness assumption
on P , possible choices are sharply bounded by the choices of the minimum
upper bound ⪰⋆ of P : max XM (P ) = max XM (⪰⋆) for any menu M ⊆ X .
The proof turns on the characterisation theorem, and the existence of ⪰⋆

is ensured by the existence theorem. Comparative statics follow: for a shift
of the uncertainty P to increase min XM (P ) and max XM (P ) whatever the
menu M ⊆ X , it is necessary and sufficient that P Šs minimum upper bound
and maximum lower bound both increase.

Application to uncertainty- and risk-aversion (ğ4). In the Savage
framework, there are payoff-relevant consequences and possible states of the
world, and a decision-maker has preferences over acts, meaning maps from
states to consequences. Let X be all acts, and P all preferences over acts.

7Furthermore, the very possibility of comparing sets P, P ′ ⊆ P by the strong set order
relies on the uniqueness proposition, since the strong set order is deĄned in terms of
minimum upper bounds and maximum lower bounds.

3



One preference is called more uncertainty-averse than another iff whenever
the latter (strictly) prefers an unambiguous act to some other act, so does
the former. ŚUnambiguous actŠ can mean a constant act, or more generally
one that is measurable with respect to an (exogenously-given) collection of
events deemed unambiguous. For this summary, assume that only constant
acts are unambiguous, and that consequences are monetary prizes.

We consider preferences that are monotone (more money for sure is better
than less money for sure) and solvable (every act has a certainty equivalent).
For a monotone and solvable preference ⪰ ∈ P, write e(⪰, x) for the (by
monotonicity, unique) certainty equivalent of an act x ∈ X .

A maxmin preference is one that is represented by x 7→ min⪰∈P e(⪰, x)
for some set P ⊆ P of monotone and solvable preferences. Intuitively, such a
preference cautiously values each act x ∈ X according to its worst certainty
equivalent among the preferences in P . Maxmin expected utility (Gilboa &
Schmeidler, 1989) is the special case in which P comprises only expected-
utility preferences with common risk attitude (but different beliefs).

We characterise maxmin preferences by proving that P is a maxmin
representation of ⪰⋆ iff ⪰⋆ is a minimum upper bound of P with respect to
Śmore uncertainty-averse thanŠ. A comparative-statics result follows: when P
increases in an appropriate sense, ⪰⋆ becomes more uncertainty-averse.

This result carries over to risk-aversion: cautious preferences over lotteries
are precisely minimum upper bounds with respect to Śmore risk-averse thanŠ.

Application to social choice (ğ5). A group of individuals, each with
preferences over a set X of social alternatives, must aggregate their preferences
into a social preference. Two attractive normative principles are (Pareto)
efficiency and liberalism. Efficiency requires that whenever every individual
(strictly) prefers one alternative to another, so does the social preference.

Liberalism means that individuals have rights: certain social decisions can
be made only with the assent of every individual. (For example, increasing
state surveillance may be permissible only with unanimous consent.) We
formalise liberalism by supposing that for certain pairs x, y ∈ X of altern-
atives, a liberal society may rank y above x only with the consent of every
individual. Write x ⊵ y when this is the case, and call ⊵ a liberal constraint.

We study the compatibility of efficiency and liberalism. Our basic in-
sight, established using the characterisation theorem, is that efficiency and
liberalism together demand that the social preference over alternatives be a
minimum upper bound of the set of individual preferences. It follows that
efficiency and liberalism conĆict unless the liberal constraint ⊵ is crown- and
diamond-free, since otherwise, by the existence theorem, minimum upper

4



bounds fail to exist for some constellations of individual preferences. This is
an Śimpossibility of a Paretian liberalŠ result in the vein of Sen (1970).

But we also Ąnd good news. We prove an (im)possibility theorem that
characterises all liberal constraints ⊵ that admit an efficient and liberal
social welfare function. The theoremŠs necessary and sufficient condition is
stringent (implying crown- and diamond-freeness), but not hopelessly so.

1.3 Related literature

Our work relates to the combinatorics literature on permutation lattices (e.g.
Bennett & Birkhoff, 1994; Markowsky, 1994; Duquenne & Cherfouh, 1994).
Here the alternatives are X = ¶1, . . . , n♢ for some n ∈ N, and the partial
order ⊵ is the ordinary inequality. Thus ⊵ is complete and X is Ąnite.

In this context, anti-symmetric (i.e. never-indifferent) preferences may
be thought of as permutations, and single-crossing dominance is known as
the weak order (or permutohedron order). It has been known since Guilbaud
and Rosenstiehl (1963) and Yanagimoto and Okamoto (1969) that the set of
all permutations equipped with the weak order is a (complete) lattice. Our
uniqueness proposition is a result along these lines.

Since this literature assumes that ⊵ is complete, it certainly contains no
analogue of our existence theorem. We are not aware of any analogue of our
characterisation theorem, either. Besides avoiding the restrictive assumption
that ⊵ is complete, we differ from this literature by allowing for preferences
with indifferences and by permitting X to be of unrestricted cardinality.

Crown- and diamond-freeness are standard concepts in combinatorics
(e.g. Baker, Fishburn & Roberts, 1972; Griggs, Li & Lu, 2012; Lu, 2014). Ball,
Pultr and Sichler (2006) show that crown- and diamond-freeness together are
nearly equivalent to the absence of weak cycles from the Hasse diagram. This
latter property appears in the probability literature, where it characterises
those posets (X ,⊵) on which every Ąrst-order stochastically increasing family
of probability measures may be realised by an a.s. increasing process on X
(Fill & Machida, 2001). Brooks, Frankel and Kamenica (2021) prove the
analogous result for second-order stochastic dominance, and apply this to
beliefs and information structures.

2 Theory

In this section, we develop our general results about the lattice structure of
single-crossing: our characterisation theorem (ğ2.1), our existence theorem
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(ğ2.2) and our uniqueness proposition (ğ2.3). Recall from ğ1.1 the abstract
environment and basic deĄnitions.

2.1 Characterisation of minimum upper bounds

Our characterisation will be in terms of P -chains, deĄned as follows.

DeĄnition 2. For a set P ⊆ P of preferences and two alternatives x ⊵ y in
X , a P -chain from x to y is a Ąnite sequence (wk)K

k=1
in X such that

(i) w1 = x and wK = y,

(ii) for every k < K, wk ⊵ wk+1, and

(iii) for every k < K, wk ⪰ wk+1 for some ⪰ ∈ P .

A strict P -chain is a P -chain with wk ≻ wk+1 for some k < K and ⪰ ∈ P .

In a word, P -chain is a ⊵-decreasing sequence of alternatives along which,
at each juncture (each k < K), some preference in P prefers the previous
(⊵-larger) alternative to the subsequent (⊵-smaller) one. Clearly a P -chain
of length K ≥ 3 is simply the concatenation of K − 1 P -chains of length 2.

Example 1. Consider X = ¶x, y, z, w♢, with ⊵ such that x ▷ w and
x ▷ y ▷ z (so x ▷ z), and w, y and w, z are incomparable. The partial order
⊵ may be depicted graphically as

x

y

z

w

In this (ŚHasseŠ) diagram, there is path from a down to b iff a ⊵ b. We will
use diagrams of this sort throughout.

Consider P = ¶⪰1, ⪰2♢, z ≻1 w ≻1 x ≻1 y and y ≻2 z ≻2 w ≻2 x. By
inspection, (x, y) and (y, z) are strict P -chains. Thus there is a strict P -chain
from x to z, namely (x, y, z). Note, however, that (x, z) is not a P -chain.

Although x ⊵ w, there is no P -chain from x to w: the only candidate is
(x, w), and it fails to be a P -chain since neither preference favours x over w.

The following asserts that an upper bound of P ⊆ P is precisely a
preference that (strictly) prefers a larger alternative to a smaller one whenever
there is a (strict) P -chain between them:

6



UB characterisation lemma. For a preference ⪰′ ∈ P and a set P ⊆ P
of preferences, the following are equivalent:

(1) ⪰′ is an upper bound of P .

(2) ⪰′ satisĄes: for any ⊵-comparable x, y ∈ X , wlog x ⊵ y,

(i) x ⪰′ y if there is a P -chain from x to y, and

(ii) y ⪰′ x only if there is no strict P -chain from x to y.

Example 1 (continued). The P -chains, all of them strict, are (x, y), (y, z)
and (x, y, z). Thus by the UB characterisation lemma, a preference ⪰′ ∈ P
is an upper bound of P iff x ≻′ y ≻′ z (and x ≻′ z). Thus x ≻′

a y ≻′
a z ≻′

a w
and w ≻′

b x ≻′
b y ≻′

b z are both upper bounds.

Proof. (2) implies (1): Let ⪰′ ∈ P satisfy condition (2); we wish to show
that ⪰′ S ⪰ for any ⪰ ∈ P . To that end, Ąx a ⊵-comparable pair x, y ∈ X ,
wlog x ⊵ y, and suppose that x ⪰(≻) y for some ⪰ ∈ P ; we must show that
x ⪰′(≻′) y. This is immediate since (x, y) is a (strict) P -chain.

(1) implies (2): Let ⪰′ be an upper bound of P . Fix a ⊵-comparable pair
x, y ∈ X , wlog x ⊵ y; we must show that if there is a (strict) P -chain from
x to y, then x ⪰′(≻′) y.

Suppose that there exists a P -chain (wk)K
k=1

from x to y. For each k < K,
we have wk ⊵ wk+1 as well as wk ⪰k wk+1 for some ⪰k ∈ P . Because ⪰′ is
an upper bound of P , it must be that wk ⪰′ wk+1 for each k < K. Since ⪰′

is transitive (because it lives in P), it follows that x ⪰′ y.
Suppose there is a strict P -chain (wk)K

k=1
from x to y. As in the weak

case, we must have wk ⪰′ wk+1 for each k < K. Moreover, since the P -chain
is strict, we have wk ≻ wk+1 for some k < K and ⪰ ∈ P ; hence wk ≻′ wk+1

since ⪰′ is an upper bound of P . Thus x ≻′ y by the transitivity of ⪰′. ■

The UB characterisation lemma says that an upper bound must have
a (strict) ŚupwardŠ preference whenever there is a (strict) P -chain. Our
characterisation theorem says that the minimum upper bounds are those
which have a (strict) ŚupwardŠ preference only when there is a (strict) P -chain:

Characterisation theorem. For a preference ⪰⋆ ∈ P and a set P ⊆ P of
preferences, the following are equivalent:

(1) ⪰⋆ is a minimum upper bound of P .

(2) ⪰⋆ satisĄes: for any ⊵-comparable x, y ∈ X , wlog x ⊵ y,

7



(⋆) x ⪰⋆ y iff there is a P -chain from x to y, and

(⋆⋆) y ⪰⋆ x iff there is no strict P -chain from x to y.

The analogous result for maximum lower bounds is given in appendix F.

Example 1 (continued). A minimum upper bound ⪰⋆ ∈ P must satisfy
x ≻⋆ y ≻⋆ z (and x ≻⋆ z) since it is an upper bound. Since x ⊵ w but
there is no P -chain from x to w, minimumhood requires that w ≻⋆ x by the
characterisation theorem. In sum, ⪰⋆ ∈ P is a minimum upper bound iff
w ≻⋆ x ≻⋆ y ≻⋆ z.

One direction of the proof is straightforward:

Proof that (2) implies (1). Fix a subset P of P and a ⪰⋆ ∈ P that satisĄes
(⋆)Ű(⋆⋆). It is immediate from the UB characterisation lemma that ⪰⋆ is an
upper bound of P . To see that ⪰⋆ is a minimum of the upper bounds of P ,
let ⪰′ be any upper bound of P . Fix a ⊵-comparable pair x, y ∈ X , wlog
x ⊵ y, and suppose that x ⪰⋆(≻⋆) y. By property (⋆) (property (⋆⋆)), there
must be a (strict) P -chain from x to y. Since ⪰′ is an upper bound of P , it
follows by the UB characterisation lemma that x ⪰′(≻′) y. Since x, y ∈ X
were arbitrary, this establishes that ⪰′ S ⪰⋆. ■

The other direction relies the following lemma, whose proof is given in
appendix C.

Lemma 1. Let P be a set of preferences, and let x, y ∈ X be ⊵-comparable,
wlog x ⊵ y. If there is no (strict) P -chain from x to y, then there exists an
upper bound ⪰′′ of P with x ⪰̸′′(⊁′′) y.

Proof that (1) implies (2). Fix a set P ⊆ P of preferences and a preference
⪰′ ∈ P. We will prove the contra-positive: if ⪰′ violates (⋆)Ű(⋆⋆), then it
cannot be a minimum upper bound of P . If a preference ⪰′ violates the ŚifŠ
part of (⋆) or the Śonly ifŠ part of (⋆⋆), then it fails to be an upper bound of
P by the UB characterisation lemma.

Suppose that a preference ⪰′ violates the Śonly ifŠ part of (⋆) (the ŚifŠ
part of (⋆⋆)): there are ⊵-comparable x, y ∈ X , wlog x ⊵ y, such that there
is no (strict) P -chain from x to y, and yet x ⪰′(≻′) y. By Lemma 1, there is
an upper bound ⪰′′ of P such that x ⪰̸′′(⊁′′) y. Then ⪰′′ ̸S ⪰′, so ⪰′ fails to
be a minimum of the upper bounds of P . ■

8



2.2 Existence of minimum upper bounds

In this section, we provide a necessary and sufficient condition on ⊵ for
minimum upper bounds to exist for every set of preferences. This condition
rules out two special subposets: crowns and diamonds.

In ğ2.2.1, we deĄne crowns and show that ⊵ must be free of them if every
set of preferences is to possess a minimum upper bound. In ğ2.2.2, we do the
same for diamonds. In ğ2.2.3, we give the existence theorem, which asserts
in addition that crown- and diamond-freeness of ⊵ is sufficient for existence.

2.2.1 Crowns

The following example shows how existence can fail.

Crown example. Consider X = ¶x, y, z, w♢ with the following order ⊵:

x

y

z

w

(That is, each of x and z ⊵-dominates each of y and w, but x, z and are ⊵-
incomparable, as are y, w.) Let P = ¶⪰1, ⪰2♢ ⊆ P, where w ≻1 x ≻1 y ≻1 z
and y ≻2 z ≻2 w ≻2 x. We have x ⊵ y and z ⊵ w, and there is a strict
P -chain from x to y and from z to w. On the other hand, x ⊵ w and
z ⊵ y, but there is no P -chain from x to w or from z to y. So by the
characterisation theorem, a minimum upper bound ⪰⋆ of P must have
x ≻⋆ y ≻⋆ z ≻⋆ w ≻⋆ x. Such a ⪰⋆ cannot be transitive, so cannot live in
P. It follows that no minimum upper bound exists. (To illustrate, consider
the preferences ⪰′, ⪰′′ ∈ P given by x ≻′ y ≻′ z ≻′ w and z ≻′′ w ≻′′ x ≻′′ y.
Both are upper bounds, but neither is minimum since ⪰′ ̸S ⪰′′ ̸S ⪰′.)

The problem is that ⊵ features a crown, deĄned as follows.

DeĄnition 3. Let ⊒ be a binary relation on a set A. For K ≥ 4 even,
a K-crown is a sequence (ak)K

k=1
in A such that non-adjacent ak, ak′ are

⊒-incomparable, and ak−1 ⊐ ak ⊏ ak+1 for each 1 < k ≤ K even (where
aK+1 := a1 by convention). A crown is a K-crown for some K ≥ 4 even. The
relation ⊒ is crown-free iff it features no crowns.

Some crowns are drawn in Figure 1.
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a1

a2

a3

a4

(a) A 4-crown.

a1

a2

a3

a4

a5

a6

(b) A 6-crown.

a1

a2

a3

a4

a5

a6

a7

a8

(c) An 8-crown.

Figure 1: Crowns.

Crown-freeness rules out a speciĄc form of incompleteness. A strong
sufficient condition is completeness. A weaker sufficient condition is that the
comparability relation ⊑⊒ be transitive.8 Neither is necessary:

Diamond example. Consider X with the partial order ⊵ given by

x

y z

w

(I.e. x ⊵ y ⊵ w and x ⊵ z ⊵ w, but y, z are ⊵-incomparable.) ⊵ is not
complete since y, z are ⊵-incomparable. Nor is comparability ⊴⊵ transitive,
since y ⊴⊵ x ⊴⊵ z but y, z are ⊵-incomparable. But ⊵ is manifestly crown-free.

Lemma 2 (necessity of crown-freeness). If every pair of preferences possesses
a minimum upper bound, then ⊵ is crown-free.

Proof. We prove the contra-positive. Suppose that ⊵ features a crown
(x1, . . . , xK). Consider P = ¶⪰a, ⪰b♢ ⊆ P, where

xK ≻a x1 ≻a x2 ≻a · · · ≻a xK−2 ≻a xK−1

x2 ≻b x3 ≻b · · · ≻b xK−1 ≻b xK ≻b x1.

For 1 < k ≤ K even, xk−1 ▷ xk and xk−1 ≻ xk for some ⪰ ∈ P (in particular,
⪰a for k < K even, ⪰b for k > 1 even). Hence (xk−1, xk) is a strict P -chain,
so by the characterisation theorem, xk−1 ≻⋆ xk for any minimum upper
bound ⪰⋆ of P .

Moreover, for 1 < k ≤ K even, xk+1 ▷ xk, and xk+1 ⪰̸ xk for all ⪰ ∈ P .
(This is apparent, separately, for k < K even and for k = K.) Hence there is
no P -chain from xk+1 to xk, so by the characterisation theorem, xk ≻⋆ xk+1

for any minimum upper bound of ⪰⋆ of P .

8For a binary relation ⊒, comparability ⊑⊒ is deĄned by a ⊑⊒ b iff either a ⊒ b or b ⊒ a.
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It follows that any minimum upper bound ⪰⋆ of P must satisfy x1 ≻⋆

x2 ≻⋆ · · · ≻⋆ xK−1 ≻⋆ xK ≻⋆ x1. Such a ⪰⋆ cannot be transitive, so cannot
live in P; hence P admits no minimum upper bound. ■

2.2.2 Diamonds

Existence can fail even in the absence of crowns:

Diamond example (continued). Let P = ¶⪰1, ⪰2♢ ⊆ P, where y ≻1 w ≻1

z ≻1 x and w ≻2 z ≻2 x ≻2 y. Evidently (x, y) and (y, w) are strict P -chains.
We have z ⊵ w but no P -chain from z to w, and x ⊵ z but no P -chain from
x to z. So by the characterisation theorem, a minimum upper bound ⪰⋆ of
P must satisfy x ≻⋆ y ≻⋆ w ≻⋆ z ≻⋆ x. Since such a relation ⪰⋆ cannot be
transitive, it follows that P admits no minimum upper bound.

The trouble is that ⊵ features a diamond:

DeĄnition 4. Let ⊒ be a partial order on a set A. A diamond is four
elements (a, b, c, d) of A such that a ⊒ b ⊒ d and a ⊒ c ⊒ d, but b, c are
⊒-incomparable. The order ⊒ is diamond-free iff it features no diamonds.

Diamond-freeness is strong, e.g. the only diamond-free lattices are chains.9

Like crown-freeness, diamond-freeness rules out a speciĄc form of incom-
pleteness, and is implied by strong forms of Ślimited incompletenessŠ such as
completeness of ⊒ or transitivity of the comparability relation ⊑⊒. Neither of
these conditions is necessary for diamond-freeness, nor is crown-freeness:

Crown example (continued). By inspection, there are no diamonds. But
there is a crown, and ⊵ is not complete, nor is ⊴⊵ is transitive.

Lemma 3 (necessity of diamond-freeness). If every pair of preferences
possesses a minimum upper bound, then ⊵ is diamond-free.

The proof is almost exactly the diamond example, so we omit it.

2.2.3 The existence theorem

Our existence theorem asserts that crown- and diamond-freeness are not only
necessary, but also sufficient, for the existence of minimum upper bounds.

Existence theorem. The following are equivalent:

9If (X ,⊵) is a lattice but not a chain, then there are ⊵-incomparable x, y ∈ X , in which
case (x ∧ y, x, y, x ∨ y) is a diamond.
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(1) Every set of preferences has a minimum upper bound.

(2) Every pair of preferences has a minimum upper bound.

(3) ⊵ is crown- and diamond-free.

By way of illustration, crown- and diamond-freeness fails in the crown
and diamond examples, but is satisĄed in Example 1. More generally, it holds
whenever there are three or fewer alternatives, and fails for any lattice (X ,⊵)
that is not a chain (see footnote 9). Crown- and diamond-freeness is arguably
a strong property, but it does hold in several applications (see ğ3Ű5).

In appendix F, we show further that these properties are equivalent to
every set (or two-element set) of preferences possessing a maximum lower
bound. By analogy with complete lattices, call (P, S) a pre-lattice iff every
two-element set P ⊆ P possesses a minimum upper bound and maximum
lower bound, and a complete pre-lattice if this holds for every set P ⊆ P.10

The elaborated existence theorem in appendix F implies that (P, S) is a
complete pre-lattice iff it is a pre-lattice iff ⊵ features no crowns or diamonds.

As for the proof, it is immediate that (1) implies (2), and we have
already established in Lemmata 2 and 3 that (2) implies (3). Proving that
(3) implies (1) is more difficult; we do this in appendix D. The idea is as
follows. Let ⪰◦ be the minimal binary relation (in general incomplete) that
satisĄes properties (⋆)Ű(⋆⋆) in the characterisation theorem. We show Ąrst
that absent diamonds in ⊵, ⪰◦ must be Śweakly transitiveŠ. We then show
that when there are no crowns in ⊵, weak transitivity of ⪰◦ implies that it
satisĄes a stronger transitivity-type property called Suzumura consistency.
This permits us to invoke an extension theorem due to Richter (1966) and
Suzumura (1976) to conclude that ⪰◦ may be extended to a complete and
transitive relation (i.e. a preference). This preference is a minimum upper
bound by the characterisation theorem.

2.3 Uniqueness of minimum upper bounds

When minimum upper bounds exist, they need not be unique:

Example 2. Consider X = ¶x, y♢ with the empty partial order ⊵, so that
x, y are ⊵-incomparable. Let P = ¶⪰1, ⪰2♢ ⊆ P, where x ≻1 y and y ≻2 x.

Since all alternatives are ⊵-incomparable, there are no P -chains. Con-
ditions (⋆)Ű(⋆⋆) in the characterisation theorem are therefore (vacuously)

10(P, S) is not a complete lattice because S is a mere pre-order, i.e. it need not be
anti-symmetric. The failure of anti-symmetry means that minimum upper bounds and
maximum lower bounds need not be unique; we study this issue in ğ2.3.
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satisĄed by any preference. So by the characterisation theorem, every prefer-
ence is a minimum upper bound of P .

The message of Example 2 is that preferences that disagree only on
⊵-incomparable pairs of alternatives S-dominate each other, leading to a
multiplicity of minimum upper bounds. This is a general lesson:

Uniqueness proposition. The following are equivalent:

(1) Every set of preferences has at most one minimum upper bound.

(2) Every set of preferences has exactly one minimum upper bound.

(3) ⊵ is complete.

The analogue for maximum lower bounds is given in appendix F. Together,
these two results imply that (P, S) is a complete lattice iff ⊵ is complete.

Proof that (3) implies (2). Suppose that ⊵ is complete, and Ąx a set P ⊆ P.
Since completeness implies crown- and diamond-freeness, P has at least one
minimum upper bound by the existence theorem.

To show uniqueness, let ⪰′, ⪰′′ ∈ P be minimum upper bounds of P ⊆ P.
Then by the characterisation theorem, ⪰′ and ⪰′′ must agree on all ⊵-
comparable pairs of alternatives. Since ⊵ is complete, it follows that ⪰′ and
⪰′′ agree on all pairs of alternatives, i.e. that they are identical. ■

It is immediate that (2) implies (1). Our proof that (1) implies (3) relies
on the following lemma, proved in appendix E.

Lemma 4. Let x, y ∈ X be ⊵-incomparable. Then any set P ⊆ P has upper
bounds ⪰′, ⪰′′ ∈ P such that x ≻′ y and y ≻′′ x.

Proof that (1) implies (3). We prove the contra-positive. Suppose that ⊵ is
incomplete. Then the grand set P has multiple upper bounds by Lemma 4,
and clearly each of these is a minimum upper bound. ■

3 Application to monotone comparative statics

In this section, we use our theorems to extend the theory of monotone
comparative statics11 in two directions.

11See e.g. Topkis (1978), Milgrom and Shannon (1994) and Quah and Strulovici (2009),
and the textbook treatment by Topkis (1998).

13



In ğ3.2, we study the comparative statics of collective choice. We focus on
the consensus: the set of alternatives that every individual in a group P ⊆ P
considers optimal. We show that when P increases in the strong set order,
so does the consensus. We go on fully to characterise the comparative-statics
properties of the set of of alternatives that each individual considers at least
kth-best: this set increases in the strong set order as P does also if k = 2 or
(trivially) if k = ♣X ♣, but can strictly decrease if 2 < k < ♣X ♣.

In ğ3.3, we consider the problem of an analyst who wishes to predict how
an agent will choose from any given menu M ⊆ X of alternatives, but is
uncertain about the agentŠs preference: all she knows is that it belongs to a
set P ⊆ P. We show that the minimum upper bound and maximum lower
bound of P provide tight bounds on possible choice, and sharply characterise
how possible choices vary with the analystŠs uncertainty P .

3.1 The canonical theory

We begin with a brief recap of the canonical theory of monotone comparative
statics. An agent chooses an alternative x from a set X ⊆ R ordered by
the usual inequality ≥. The agent chooses optimally with respect to her
preference ⪰ ∈ P. Denote by X(⪰) the (possibly empty) set of optimal
alternatives for preference ⪰ ∈ P:

X(⪰) := ¶x ∈ X : x ⪰ y for every y ∈ X ♢.

DeĄnition 5. Consider a lattice (A, ⊒) and two subsets A, B ⊆ A. A
dominates B in the (⊒-induced) strong set order iff for any a ∈ A and b ∈ B,
we have a ∨ b ∈ A and a ∧ b ∈ B.

Note that A dominates B in the strong set order if either set is empty.

MCS theorem.12 Let ⪰, ⪰′ ∈ P be preferences. If ⪰′ S ⪰, then X(⪰′)
dominates X(⪰) in the (≥-induced) strong set order.

That is, when the agentŠs preference increases in the sense of S, the set
of optimal alternatives increases in the sense of the strong set order.

Remark 1. The most general MCS theorem allows the set of actions to
be any lattice (X ,⊵). This added generality is not useful for our purposes
because in order to apply the existence theorem, we shall require that ⊵ be
crown- and diamond-free, and chains are the only diamond-free lattices.

12Due to Milgrom and Shannon (1994) and LiCalzi and Veinott (1992).
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3.2 Comparative statics for collective choice

There is a group of agents, each with a preference ⪰ ∈ P. Write P ⊆ P for the
set of preferences in the group. The consensus C(P ) is the set of alternatives
that every individual in the group Ąnds optimal: C(P ) :=

⋂

⪰∈P X(⪰).
Since ≥ is complete, (P, S) is a lattice by the uniqueness proposition.

We may therefore use the (S-induced) strong set order to compare sets of
preferences.

Proposition 1 (consensus comparative statics). Let X be a subset of R

ordered by inequality ≥, and let P, P ′ ⊆ P be sets of preferences. If P ′

dominates P in the (S-induced) strong set order, then C(P ′) dominates
C(P ) in the (≥-induced) strong set order.

In other words, when agentsŠ preferences shift up in the sense of the
strong set order, so does the consensus. Note that it may be that either C(P )
or C(P ′) is empty, in which case the conclusion holds automatically.

Proof. Fix P, P ′ ⊆ P such that P ′ dominates P in the S-induced strong
set order. The conclusion is immediate if either C(P ) or C(P ′) is empty, so
suppose not. Take x ∈ C(P ) and x′ ∈ C(P ′); we must show that x ∧ x′ lies
in C(P ) and that x ∨ x′ lies in C(P ′). We will prove the former; the proof of
the latter is similar.

Take any ⪰ ∈ P and ⪰′ ∈ P ′. Since the order ≥ on X is complete, the
set ¶⪰, ⪰′♢ possesses a minimum upper bound ⪰⋆ by the existence theorem.
Since P ′ dominates P in the S-induced strong set order, the minimum upper
bound ⪰⋆ lies in P ′. Because ⪰⋆ S ⪰, the MCS theorem implies that X(⪰⋆)
dominates X(⪰) in the ≥-induced strong set order. Since x ∈ C(P ) ⊆ X(⪰)
and x′ ∈ C(P ′) ⊆ X(⪰⋆), it follows that x ∧ x′ ∈ X(⪰). Since ⪰ ∈ P was
arbitrary, this shows that x ∧ x′ ∈ C(P ). ■

Proposition 1 can be used to study comparative statics for social choice.
A preference proĄle is an element π = (⪰1, . . . , ⪰k) of

⋃

n∈N
Pn, and its

support is the set supp π := ¶⪰1, . . . , ⪰k♢ of all preferences represented in
it. A social choice function (SCF) is a map ϕ :

⋃

n∈N
Pn → X that picks

an alternative for each preference proĄle. It is monotone iff ϕ(π′) ≥ ϕ(π)
whenever supp π′ dominates supp π in the (S-induced) strong set order, and
respects unanimity iff ϕ(π) ∈ C(supp π) whenever the latter is non-empty.
The following corollary of Proposition 1 is proved in appendix G:

Corollary 1. Let X ⊆ R be compact. Then there exists a monotone SCF
that respects unanimity.
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When the consensus is empty, it is natural to consider individualsŠ second-
favourite alternatives. Let the second consensus be C2(P ) :=

⋂

⪰∈P X2(⪰),
where X2(⪰) are the alternatives that ⪰ ∈ P considers at least second-best:

X2(⪰) = ¶x ∈ X : y ≻ x for at most one y ∈ X ♢.

Proposition 2 (second consensus comparative statics). Let X be a subset
of R ordered by inequality ≥, and let P, P ′ ⊆ P be sets of preferences. If P ′

dominates P in the (S-induced) strong set order and C(P ) = C(P ′), then
C2(P ′) \ C(P ′) dominates C2(P ) \ C(P ) in the (≥-induced) strong set order.

In particular, the second consensus increases (C2(P ′) dominates C2(P ) in
the strong set order) whenever the consensus is empty (C(P ) = ∅ = C(P ′)).
Outside of that case, however, the second consensus need not increase.13

The proof is in appendix H. The argument is rather intricate, and makes
extensive use of minimum upper bounds and maximum lower bounds.

Surprisingly, for 2 < k < ♣X ♣, there is no analogous comparative-statics
result for the set Ck(P ) of alternatives that are at least kth-best according
to every ⪰ ∈ P . The following counter-example is for k = 3 and ♣X ♣ = 4, but
extends easily to any k and ♣X ♣ such that 2 < k < ♣X ♣.

Example 3. Let X = ¶1, 2, 3, 4♢. For any labelling ¶x, y, z, w♢ = X , write
ŚxyzwŠ for the preference ⪰ ∈ P satisfying x ≻ y ≻ z ≻ w. Let

P := ¶1234, 1324, 1342, 2134, 2314, 2341, 3214, 3241, 3421♢ and

P ′ := ¶4321, 4231, 4213, 3421, 3241, 2341, 3214, 2314, 2134♢.

Then P ′ dominates P in the (S-induced) strong set order,14 and C(P ) =
C(P ′) = C2(P ) = C2(P ′) = ∅, but C3(P ) = ¶3♢ and C3(P ′) = ¶2♢.

Remark 2. The results of this section remain true if agents are constrained
to choose from a (possibly small) menu M ⊆ X , provided the menu is
order-convex in the sense that x, z ∈ M , y ∈ X and x ≤ y ≤ z imply
y ∈ M . For example, Proposition 1 generalises as follows: under the same
hypothesis, for any non-empty and order-convex M ⊆ X , CM (P ′) dominates
CM (P ) in the (≥-induced) strong set order, where CM (P ) :=

⋂

⪰∈P XM (⪰)
and XM (⪰) := ¶x ∈ M : x ⪰ y for every y ∈ M♢. To see why, write ⪰M

for the restriction of a preference ⪰ ∈ P to M ,15 and for any P ⊆ P

13If X = ¶1, 2, 3♢, P = ¶⪰♢ where 1 ≻ 2 ≻ 3 and P ′ = ¶⪰, ⪰′♢ where 1 ≻′ 3 ≻′ 2, then
C(P ) = ¶1♢ = C(P ′), C2(P ) = ¶1, 2♢ and C2(P ′) = ¶1♢.

14Moreover, P is a sublattice (it dominates itself in the strong set order), and so is P ′.
15That is, ⪰M is the binary relation on M such that for any x, y ∈ M , x ⪰M y iff x ⪰ y.
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let PM := ¶⊒ : ⊒ = ⪰M for some ⪰ ∈ P♢. Since M is order-convex, the
hypothesis of Proposition 1 implies that P ′

M dominates PM in the strong set
order. Thus applying Proposition 1 (with M in place of X ) yields that

¶x ∈ M : x ⊒ y for all y ∈ M and ⊒ ∈ P ′
M ♢ dominates

¶x ∈ M : x ⊒ y for all y ∈ M and ⊒ ∈ PM ♢ in the strong set order.

By inspection, the former set equals CM (P ′), and the latter is CM (P ).

3.3 Robust comparative statics

Consider an analyst who knows only that the agentŠs preference belongs
to a set P ⊆ P, and wishes to predict choice across menus M ⊆ X . For a
non-empty menu M ⊆ X of alternatives, the agentŠs possible choices are
XM (P ) :=

⋃

⪰∈P XM (⪰), where

XM (⪰) := ¶x ∈ M : x ⪰ y for every y ∈ M♢

are the ⪰-best alternatives in the menu M . The analyst seeks to bound the
agentŠs choices across menus M , and to predict how these choices vary with
the uncertainty P . We focus on rich uncertainty, formalised as follows.

DeĄnition 6. A set P ⊆ P is rich iff for any x0, x1, . . . , xK ∈ X , if there are
preferences ⪰1, . . . , ⪰K ∈ P such that x0 ⪰1 x1 ⪰2 x2 ⪰3 · · · ⪰K xK , then
there is a preference ⪰ ∈ P such that x0 ⪰ xk for every k ∈ ¶1, . . . , K♢.

Since ≥ is complete, the existence theorem guarantees that the (arbitrary)
set P ⊆ P of preferences has a minimum upper bound and a maximum lower
bound. By the uniqueness proposition, they are unique.

Proposition 3. Let X be a Ąnite subset of R ordered by inequality ≥, and
let P ⊆ P be non-empty and rich. Then max XM (P ) = max XM (⪰⋆) and
min XM (P ) = min XM (⪰⋆) for every non-empty menu M ⊆ X , where ⪰⋆ is
the minimum upper bound of P and ⪰⋆ is the maximum lower bound.

In other words, the choices made by ⪰⋆ and ⪰⋆ are tight bounds on the
set of possible choices XM (P ), across all non-empty menus M ⊆ X .

Proof. We prove the claim about maxima, omitting the symmetric argument
for minima. Fix a non-empty menu M ⊆ X . We Ąrst show that max XM (P ) ≤
max XM (⪰⋆). For every ⪰ ∈ P , we have ⪰⋆ S ⪰ since ⪰⋆ is an upper bound
of P , so that XM (⪰⋆) dominates XM (⪰) in the ≥-induced strong set order
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by the MCS theorem, implying that max XM (⪰⋆) ≥ max XM (⪰). Hence
max XM (⪰⋆) ≥ max

⋃

⪰∈P XM (⪰) = max XM (P ).
For the reverse inequality, it suffices to exhibit a preference ⪰ ∈ P such

that max XM (⪰⋆) ∈ XM (⪰). To that end, enumerate the elements of the
menu as M = ¶x0, . . . , xN ♢ where for each n < N , we have either xn ≻⋆ xn+1

or xn ⪰⋆ xn+1 ⪰⋆ xn and xn > xn+1. Evidently x0 = max XM (⪰⋆).

Claim. For each n < N , P contains a preference ⪰n such that xn ⪰n xn+1.

Proof of the claim. Fix an n < N . Suppose Ąrst that xn+1 > xn. Then by
the characterisation theorem, there is no strict P -chain from xn+1 to xn; in
particular, (xn+1, xn) is not a strict P -chain. Thus we may choose ⪰n to be
any preference in P , since all of them prefer xn+1 to xn.

Suppose instead that xn > xn+1. Then by the characterisation theorem,
there must be a P -chain (yk)K

k=1
from xn to xn+1, so xn = y0 ⪰1 y1 ⪰2

· · · ⪰K yK = xn+1 for some preferences ⪰1, . . . , ⪰K ∈ P . Since P is rich, it
follows that there is a ⪰n ∈ P such that xn ⪰n xn+1. □

Since n < N was arbitrary, we have shown that there are preferences
⪰1, . . . , ⪰N ∈ P such that x0 ⪰1 x1 ⪰2 x2 ⪰3 · · · ⪰N xN . Thus since P is
rich, it contains a preference ⪰ such that x0 ⪰ xn for every n ∈ ¶1, . . . , N♢,
which is to say that x0 ∈ XM (⪰). ■

Proposition 3 delivers a characterisation of comparative statics:

Corollary 2 (robust comparative statics). Let X be a Ąnite subset of R

ordered by inequality ≥, and let P, P ′ ⊆ P be non-empty and rich. Write
⪰⋆ (⪰⋆′) for the minimum upper bound of P (of P ′), and ⪰⋆ (⪰′

⋆) for the
maximum lower bound. The following are equivalent:

(1) ⪰⋆′ S ⪰⋆ and ⪰′
⋆ S ⪰⋆.

(2) max XM (P ′) ≥ max XM (P ) and min XM (P ′) ≥ min XM (P ) for every
non-empty menu M ⊆ X .

In other words, the shifts of the analystŠs uncertainty P which lead her
to predict higher choices from every menu are exactly those that increase
the minimum upper bound and maximum lower bound.

Proof. If ⪰⋆′ S ⪰⋆ and ⪰′
⋆ S ⪰⋆, then for any non-empty M ⊆ X , XM (⪰⋆′)

dominates XM (⪰⋆) and XM (⪰′
⋆) dominates XM (⪰⋆) in the ≥-induced strong

set order by the MCS theorem, whence

max XM (P ′) = max XM (⪰⋆′) ≥ max XM (⪰⋆) = max XM (P )
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by Proposition 3, and similarly min XM (P ′) ≥ min XM (P ).
For the converse, suppose that ⪰⋆′ ̸S ⪰⋆ or ⪰′

⋆ ̸S ⪰⋆; without loss of
generality, the former. Then by deĄnition of S, there is a binary menu
M = ¶x, y♢ ⊆ X with x > y such that either XM (⪰⋆′) ̸∋ x ∈ XM (⪰⋆) or
XM (⪰⋆′) ∋ y ̸∈ XM (⪰⋆). So by Proposition 3, we have either

max XM (P ′) = max XM (⪰⋆′) = y < x = max XM (⪰⋆) = max XM (P )

or (similarly) min XM (P ′) < min XM (P ). ■

Our analysis has focussed on rich preference uncertainty P ⊆ P. The
following reĄnement of Proposition 3 shows that richness is indispensable:
without it, choice cannot be bounded across menus, whether by ⪰⋆ and ⪰⋆

or by any other pair of preferences.

Proposition 3⋆. For a Ąnite set X of alternatives and a non-empty set
P ⊆ P of preferences over X , the following are equivalent:

(1) P is rich.

(2) For any total order ⊵ on X , there is a preference ⪰ ∈ P such that
max XM (P ) = max XM (⪰) for every non-empty M ⊆ X .

(3) For any total order ⊵ on X , max XM (P ) = max XM (⪰⋆) for every
non-empty M ⊆ X , where ⪰⋆ is the minimum upper bound of P .

The proof is in appendix I. (1)Ű(3) are also equivalent to the analogues
of (2) and (3) for min XM (·) and the maximum lower bound ⪰⋆ of P .

4 Application to uncertainty- and risk-aversion

In this section, we apply our results to uncertainty-aversion.16 We identify
a natural compactness condition under which ŚmaxminŠ preferences are
precisely minimum upper bounds with respect to Śmore uncertainty-averse
thanŠ, and without which the equivalence generally fails.

In ğ4.2, we introduce general maxmin preferences, which nest maxmin
expected utility (Gilboa & Schmeidler, 1989). We then (ğ4.3) use our theorems
to characterise maxmin preferences as minimum upper bounds, and deduce
uncertainty-aversion comparative statics for maxmin preferences. Finally, in
ğ4.4, we translate these insights to risk-aversion in choice among lotteries.

16See e.g. Ellsberg (1961), Schmeidler (1989), Gilboa and Schmeidler (1989), Klibanoff,
Marinacci and Mukerji (2005) and Maccheroni, Marinacci and Rustichini (2006).
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4.1 Environment

There is a state space (S, E) comprising a non-empty set S of states of the
world and a σ-algebra E of subsets of S, whose members are called events.
There is also a non-empty set C of payoff-relevant consequences. A (Savage)
act is a Ąnite-ranged E-measurable map S → C.

Following Epstein (1999), we suppose that there is an exogenously-given
collection E◦ ⊆ E of unambiguous events. The unambiguous events are those
to which a decision-maker is able to assign probabilities; they are ŚunderstoodŠ.
The collection E◦ is assumed to contain the universal event S and to be closed
under complementation and countable disjoint union.17 An unambiguous act
is one that is E◦-measurable; all other acts are called ambiguous.

Let X be the set of all acts, with typical elements x, y ∈ X . Write X ◦ ⊆ X
for those that are unambiguous. Let P be all preferences over X .

DeĄnition 7. For two preferences ⪰, ⪰′ ∈ P, we say that ⪰′ is more
uncertainty-averse than ⪰ iff for any unambiguous act x◦ ∈ X ◦ and any act
x ∈ X , x◦ ⪰(≻) x implies x◦ ⪰′(≻′) x.

This deĄnition is from Epstein (1999). Ghirardato and Marinacci (2002)
studied the case in which only trivial events are unambiguous (E◦ = ¶S,∅♢),
so that the unambiguous acts are precisely the constant ones.

Given the interpretation of the ŚunambiguousŠ events E◦ as those to which
a decision-maker is able to assign probabilities, it only makes sense to consider
preferences that are consistent with a probabilistic belief about E◦. That
is, we must restrict attention to the set P◦ of preferences ⪰ ∈ P that are
probabilistically sophisticated on X ◦, meaning that their restriction ⪰♣X ◦ to
the unambiguous acts X ◦ is ordinally represented by x 7→ U

(

µ ◦ x−1
)

for some
map U : ∆(C) → R and some probability measure µ : E◦ → [0, 1],18 where
∆(C) denotes the set of Ąnite-support lotteries over C and µ ◦ x−1 ∈ ∆(C)
is the pushforward lottery:

(

µ ◦ x−1
)

(C) := µ(¶s ∈ S : x(s) ∈ C♢) for each
Ąnite C ⊆ C. The interpretation is that the decision-maker has a probabilistic
belief µ about the state and cares only about the distribution of consequences,
so evaluates each act x purely on the basis of its induced (subjective) lottery
µ ◦ x−1 over consequences. The shape of U captures risk attitude; subjective
expected utility is the special case in which U is linear.

An unambiguous equivalent for ⪰ ∈ P◦ of an act x ∈ X is an unambiguous
act x◦ ∈ X ◦ such that x ⪰ x◦ ⪰ x. A preference is called solvable iff it has an

17S \ E ∈ E◦ for any E ∈ E◦, and
⋃∞

n=1
En ⊆ E◦ for any pairwise disjoint (En)∞

n=1 ⊆ E◦.
18A relation ⊒ on a set A is ordinally represented by f : A → R iff for any a, b ∈ A,

a ⪰ b iff f(a) ≥ f(b).

20



unambiguous equivalent for every act. When considering solvable preferences,
it is natural (though not necessary) to assume that either the space C of
consequences or the collection E◦ of unambiguous events is ŚrichŠ, since
otherwise solvability is stringent. Arbitrarily Ąx a map e : P◦ × X → X ◦

such that e(⪰, x) is an unambiguous equivalent for ⪰ of x for each solvable
preference ⪰ ∈ P◦ and each act x ∈ X , with e(⪰, x) = x in case x ∈ X ◦.

Let Pµ,U be the set of all solvable preferences ⪰ ∈ P◦ such that ⪰♣X ◦ has
belief µ and risk attitude U . Each preference ⪰ ∈ Pµ,U may be viewed as a
map X → R, viz. the canonical utility representation x 7→ U

(

µ ◦ e(⪰, x)−1
)

,
and so we may speak of pointwise compact sets P ⊆ Pµ,U of preferences.19

4.2 Maxmin preferences

DeĄnition 8. Given a belief µ : E◦ → [0, 1] and a risk attitude U : ∆(C) → R,
a pointwise compact set P ⊆ Pµ,U is a maxmin representation of a preference
⪰⋆ ∈ P iff x 7→ min⪰∈P U

(

µ ◦ e(⪰, x)−1
)

ordinally represents ⪰⋆.

Intuitively, such a decision-maker is unsure which preference ⪰ ∈ P to
evaluate acts according to, so cautiously values acts at their worst unambigu-
ous equivalent among ⪰ ∈ P . An alternative interpretation is that there is a
group of agents with preferences P , and that collective decisions are made
according to the ŚRawlsianŠ maxmin criterion.

In case no non-trivial event is unambiguous (E◦ = ¶S,∅♢), unambiguous
acts are precisely constants acts, and thus unambiguous equivalents are
certainty equivalents; then after we identify each consequence c ∈ C with the
act xc ∈ X ◦ constant at c and with the lottery δc ∈ ∆(C) degenerate at c,
a maxmin representation becomes x 7→ min⪰∈P U(e(⪰, x)). If in addition
consequences are monetary prizes (C ⊆ R), then provided U is strictly
increasing, we may assume without loss that it is the identity c 7→ c, so that
a maxmin representation is simply x 7→ min⪰∈P e(⪰, x).

A special case of a maxmin representation is maxmin expected utility
(Gilboa & Schmeidler, 1989), where P consists entirely of preferences that are
probabilistically sophisticated (across all acts X , not just the unambiguous
ones) with a common, linear risk attitude. Precisely: each ⪰ ∈ P is ordinally
represented by x 7→

∫

C ud
(

µ⪰ ◦ x−1
)

=
∫

S(u ◦ x)dµ⪰ for some belief µ⪰ :
E → [0, 1], where u : C → R is bounded and ¶µ⪰ : ⪰ ∈ P♢ is closed in the
product topology.20

19Recall that a set F of maps A → R is called pointwise compact exactly if ¶f(a) : f ∈ F♢
is a compact subset of R for every a ∈ A.

20Then P is pointwise compact: for any act x ∈ X , the set ¶∫S(u ◦ x)dµ⪰ : ⪰ ∈ P ♢ is
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4.3 Characterisation of maxmin preferences

Proposition 4 (maxmin characterisation). Fix a belief µ : E◦ → [0, 1] and
a risk attitude U : ∆(C) → R. For a pointwise compact set P ⊆ Pµ,U and a
preference ⪰⋆ ∈ P, the following are equivalent:

(1) P is a maxmin representation of ⪰⋆.

(2) ⪰⋆ is a minimum upper bound of P with respect to Śmore uncertainty-
averse thanŠ.

Proposition 4 furnishes an intuitive interpretation of maxmin preferences:
a preference with maxmin representation P is precisely one that is more
uncertainty-averse than any preference in P , but no more uncertainty-averse
than that. It also implies comparative statics for uncertainty-aversion:

Corollary 3 (maxmin comparative statics). Fix a belief µ : E◦ → [0, 1] and a
risk attitude U : ∆(C) → R, and let ⪰, ⪰′ ∈ P admit maxmin representations
P, P ′ ⊆ Pµ,U . If P ′ contains P , or if P ′ dominates P in the strong set order,21

then ⪰′ is more uncertainty-averse than ⪰.

Another consequence of Proposition 4 is that every pointwise compact set
P ⊆ Pµ,U possesses exactly one minimum upper bound with respect to Śmore
uncertainty-averse thanŠ. Existence can actually be proved directly using the
existence theorem, without assuming solvability or pointwise compactness.
Let ⪰◦ be the preference on X ◦ represented by x 7→ U

(

µ ◦ x−1
)

, and deĄne
a binary relation ⊵ on X by x ⊵ y iff either (i) x = y, (ii) x ∈ X ◦ ̸∋ y or
(iii) x, y ∈ X ◦ and x ⪰◦ y. Minimum upper bounds with respect to Śmore
uncertainty-averse thanŠ are precisely minimum upper bounds with respect
to the single-crossing dominance relation S induced by ⊵.22 And clearly ⊵

is crown- and diamond-free; thus we may invoke the existence theorem.23

Proof of Proposition 4. Let ⪰◦ and ⊵ be as the previous paragraph. Fix a
pointwise compact set P ⊆ Pµ,U and a preference ⪰⋆ ∈ P.

Suppose that P is a maxmin representation of ⪰⋆. By the characterisation
theorem, it suffices to show that for all x ▷ y in X , x ⪰⋆(≻⋆) y iff there is

bounded since u is, and is closed because ∫S(u ◦ x)dµn → ∫S(u ◦ x)dµ whenever µn → µ in
the product topology, since u ◦ x is bounded.

21The strong set order was deĄned in ğ3.1.
22If ⪰′♣X ◦ = ⪰◦, then ⪰′ is more uncertainty-averse than ⪰ iff ⪰′ S ⪰. And clearly

⪰′♣X ◦ = ⪰◦ for any upper bound ⪰′ of P with respect to Śmore uncertainty-averse thanŠ.
23A detail: ⊵ need not be a partial order, as it may fail to be anti-symmetric on X ◦. But

our theorems apply to the modiĄed set of alternatives in which each ⪰◦-equivalence class
of unambiguous acts is treated as a single alternative.
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a (strict) P -chain from x to y. This holds when x /∈ X ◦ since then x, y are
⊵-incomparable, and holds for x, y ∈ X ◦ since ⊵♣X ◦ = ⪰⋆♣X ◦ = ⪰♣X ◦ = ⪰◦

for every ⪰ ∈ P . For x ∈ X ◦ ̸∋ y, there is a (strict) P -chain from x to
y iff x ⪰(≻) y for some ⪰ ∈ P iff x ⪰◦(≻◦) e(⪰, y) for some ⪰ ∈ P iff
U

(

µ ◦ x−1
)

≥(>) min⪰∈P U
(

µ ◦ e(⪰, y)−1
)

iff x ⪰⋆(≻⋆) y.
For the converse, suppose that ⪰⋆ is a minimum upper bound of P .

Claim. ⪰⋆ is solvable. (And hence belongs to Pµ,U .)

Proof of the claim. Fix an ambiguous act x ∈ X \ X ◦; we seek an unambigu-
ous equivalent y ∈ X ◦. Since P is pointwise compact, there is a ⪰′ ∈ P such
that y := e(⪰′, x) satisĄes U

(

µ ◦ y−1
)

= min⪰∈P U
(

µ ◦ e(⪰, x)−1
)

. Clearly
y ⊵ x. We have y ⪰⋆ x since y ⪰′ x and ⪰⋆ is an upper bound of P ∋ ⪰′.

Choose ⪰′′ ∈ P such that P is a maxmin representation of ⪰′′. Then
x ⪰′′ y (and y ⪰′′ x) by deĄnition of ⪰′. As shown above, ⪰′′ must be an
upper bound of P ; thus ⪰′′ S ⪰⋆. It follows that x ⪰⋆ y. □

Now, since ⪰⋆ is solvable and a minimum upper bound, e(⪰, ·) ⪰◦ e(⪰⋆, ·)
for every ⪰ ∈ P, and e(⪰⋆, ·) ⪰◦ e(⪰′, ·) for every ⪰′ ∈ P such that e(⪰, ·) ⪰◦

e(⪰′, ·) for every ⪰ ∈ P. Equivalently, x 7→ U
(

µ ◦ e(⪰⋆, x)−1
)

is the pointwise
greatest map X → R that is pointwise smaller than x 7→ U

(

µ ◦ e(⪰, x)−1
)

for every ⪰ ∈ P ; in other words, it is x 7→ min⪰∈P U
(

µ ◦ e(⪰, x)−1
)

. ■

There is one subtlety in the (perhaps) intuitive equivalence asserted by
Proposition 4: the role of pointwise compactness. The equivalence generally
fails when P is not pointwise compact. Firstly, P can be a maxmin repres-
entation of a solvable preference, and yet admit no solvable minimum upper
bound; then (1) =⇒ (2) fails, and (2) =⇒ (1) fails since P has a minimum
upper bound by the existence theorem (as argued above).24 Secondly, P can
admit several minimum upper bounds; then (2) =⇒ (1) fails.25

4.4 Risk-aversion and caution

In this section, we translate to lotteries, characterising cautious preferences
as minimum upper bounds with respect to Śmore risk-averse thanŠ.

There is a set C of consequences. X := ∆(C) denotes all lotteries over
consequences, and P is the set of all preferences over X . We identify each
degenerate lottery with the consequence that it delivers.

24Example: E◦ = ¶S,∅♢, C = [0, 1], U(x) = x for each x ∈ C, and for some Ąxed y ∈ X \C,
P := ¶⪰ε : ε ∈ (0, 1]♢, where ε ≻ε y ≻ε 0 for each ε ∈ (0, 1]. Here P is not pointwise closed.

25Example: E◦ = ¶S,∅♢, C = N, U(x) = −x for each x ∈ C, and P := ¶⪰n : n ∈ N♢,
where each ⪰n satisĄes e(⪰n, x) = n for all x ∈ X \ C. Here P is not pointwise bounded.
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DeĄnition 9 (Yaari, 1969). For two preferences ⪰, ⪰′ ∈ P, we say that ⪰′

is more risk-averse than ⪰ iff for any consequence c ∈ C and any lottery
x ∈ X , c ⪰(≻) x implies c ⪰′(≻′) x.

Fix a function e : P × X → C such that e(⪰, x) is a certainty equivalent
for ⪰ of x for each solvable ⪰ ∈ P and each x ∈ X , with e(⪰, x) = x if
x ∈ X ◦. Given any u : C → R, let Pu be all solvable preferences ⪰ ∈ P whose
restriction ⪰♣C to consequences is ordinally represented by u. Since each
⪰ ∈ Pu may be viewed as a map X → R, namely its canonical representation
x 7→ u(e(⪰, x)), we may speak of pointwise compact sets P ⊆ Pu.

DeĄnition 10. Given a utility function u : C → R over consequences, a
pointwise compact set P ⊆ Pu is a cautious representation of a preference
⪰⋆ ∈ P iff x 7→ min⪰∈P u(e(⪰, x)) ordinally represents ⪰⋆.

If consequences are monetary prizes (C ⊆ R), then provided u is strictly
increasing, we may assume without loss that it is the identity c 7→ c, in which
case a cautious representation is simply x 7→ min⪰∈P e(⪰, x).

Cautious expected utility (Cerreia-Vioglio, Dillenberger & Ortoleva, 2015)
is the special case in which P ⊆ Pu contains only expected-utility preferences.

Corollary 4. Fix a utility function u : C → R. For a pointwise compact set
P ⊆ Pu and a preference ⪰⋆ ∈ P, P is a cautious representation of ⪰⋆ iff
⪰⋆ is a minimum upper bound of P with respect to Śmore risk-averse thanŠ.

Corollary 4 implies comparative statics along the lines of Corollary 3, as
well as the existence and uniqueness of minimum upper bounds of arbitrary
subsets of Pu. Existence does not require solvability or pointwise compactness.

5 Application to social choice

In this section, we apply our theorems to social choice. We consider a liberal
principle which requires unanimous consent in order for certain alternatives
to be ranked above others. Following Sen (1970), we ask whether such a
liberal constraint can be reconciled with a Pareto efficiency criterion.

We show (ğ5.2) that liberalism and efficiency jointly require that the social
preference be a minimum upper bound of the set of individual preferences.
We build on this result in ğ5.3 to prove an (im)possibility theorem that
characterises when efficiency and liberalism can be reconciled. Finally, we
discuss the relationship with SenŠs theorem in ğ5.4.
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5.1 Environment

There is a society composed of n individuals, each with a preference over a
set X of social alternatives. For certain pairs x, y ∈ X , the liberal principle
precludes ranking y (strictly) above x unless all members of society consent;
we write x ⊵ y when this is the case. We assume that the liberal constraint
⊵ is a partial order (in particular, transitive).

For example, it may be that x ⊵ y if alternative y involves more sur-
veillance or social control than does x. Alternatively, consider a community
deciding what amenities to provide at public expense. If alternative y is much
like x except for the addition of a luxury such as a swimming pool or gym,
then liberalism may allow the community to favour y over x only if every
individual consents, i.e. x ⊵ y. Or it could be that ⊵ reĆects the status quo:

Example 4. There are old alternatives Y and new alternatives Z, so that
X = Y ∪ Z. When only alternatives Y were available, x0 ∈ Y was chosen.
Departures from the status quo, in the form of some y ∈ Y being ranked
above x0, require unanimous consent: x0 ⊵ y for every other y ∈ Y. There
are no other constraints. The partial order ⊵ thus looks as follows:

z z′
x0

y y′ y′′

A social welfare function (SWF) is a map f : Pn → P that carries each
preference proĄle π ∈ Pn into a (social) preference f(π). This speciĄcation
encodes the assumptions of transitivity (social preference must be transitive)
and universal domain (all proĄles of individual preferences are considered).

DeĄnition 11. A SWF f is liberal iff for any proĄle π = (⪰1, . . . , ⪰n) and
any alternatives x ⊵ y, x f(π) y (and not y f(π) x) whenever x ⪰i(≻i) y for
some individual i.

Observe that a SWF f is liberal precisely if f(π) is an upper bound of π
for every proĄle π of preferences.26 By the UB characterisation lemma (p. 7),
this means precisely that for x ⊵ y, x f(π) y (and not y f(π) x) whenever
there is a (strict) π-chain from x to y.

A SWF is f (Pareto) efficient iff for any proĄle π = (⪰1, . . . , ⪰n),
whenever x ⪰i(≻i) y for every individual i, we have x f(π) y (and not
y f(π) x). Unsurprisingly, efficiency typically clashes with liberalism:

26We abuse notation throughout by identifying each proĄle π = (⪰1, . . . , ⪰n) with the
set P := ¶⪰1, . . . , ⪰n♢ of preferences in it.
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Example 5. Let X = ¶x, y, z♢ with x ▷ y ▷ z, and let π = (⪰1, ⪰2), where
z ≻1 x ≻1 y and y ≻2 z ≻2 x. If f is a liberal SWF, then f(π) must rank x
above y since x ⊵ y and x ≻1 y. f(π) must similarly rank y above z, and
thus rank x above z by transitivity. But then f is not efficient, since z is
unanimously strictly preferred to x.

We therefore consider a weaker efficiency property that requires unanimity
to be respected only when this does not obviously conĆict with liberalism:

DeĄnition 12. A SWF is f weakly efficient (w-efficient) iff for any proĄle
π = (⪰1, . . . , ⪰n), whenever x ⪰i(≻i) y for every individual i and there is no
strict π-chain (no π-chain) from y to x, we have x f(π) y (and not y f(π) x).

5.2 w-efficiency and liberalism may conĆict

Lemma 5 (only MUBs are w-efficient and liberal). If f is w-efficient and
liberal, then f(π) is a minimum upper bound of π for every proĄle π ∈ Pn.

It follows by the existence theorem that a necessary condition for the
existence of a w-efficient and liberal SWF is that ⊵ be crown- and diamond-
free. For instance, the preferences in the crown and diamond examples (pp. 9
and 11) cannot be aggregated in a w-efficient and liberal way.

Proof. Let f be w-efficient and liberal, Ąx a proĄle π = (⪰1, . . . , ⪰n) ∈ Pn,
and write ⪰ := f(π). Since f is liberal, ⪰ is an upper bound of π.

For minimumhood, let ⪰′ be a(nother) upper bound of π, and Ąx al-
ternatives x, y ∈ X such that x ⊵ y; we must show that x ⪰(≻) y implies
x ⪰′(≻′) y. We prove the contra-positive: we assume that y ≻′(⪰′) x, and
will show that y ≻(⪰) x. Since ⪰′ is an upper bound of π, and x ⊵ y and
y ≻′(⪰′) x, the UB characterisation lemma (p. 7) implies that there is no
(strict) π-chain from x to y. Thus in particular, (x, y) is not a (strict) π-chain,
which is to say that y ≻i(⪰i) x for every individual i. By the w-efficiency of
f , it follows that y ≻(⪰) x. ■

Crown- and diamond-freeness of ⊵ is not sufficient for w-efficient and
liberal preference aggregation, however:

Example 1 (continued from p. 6). Clearly ⊵ is crown- and diamond-free.
Let there be n = 2 individuals, and let f be a SWF; we will show that f
cannot be w-efficient and liberal. Consider π = (⪰1, ⪰2), where ⪰1 and ⪰2

are as given previously (p. 6). Write ⪰⋆ := f(π).
By Lemma 5, a necessary condition for f to be w-efficient and liberal is

that ⪰⋆ be a minimum upper bound of π. We saw (p. 8) that this requires
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(c) Down-fork.
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b1 b2 b3

(d) Shattered fork.

Figure 2: Forks and shattered forks.

precisely that w ≻⋆ x ≻⋆ y ≻⋆ z. But then f fails to be w-efficient: z is
unanimously strictly preferred to w, and there is no P -chain from w to z,
and yet f(π) = ⪰⋆ ranks w above z.

5.3 (Im)possibility theorem

Crown- and diamond-freeness is necessary but not sufficient for the existence
of a w-efficient and liberal SWF, and it can be shown that completeness
is sufficient but not necessary. Our (im)possibility theorem furnishes the
necessary and sufficient condition: (X ,⊵) must be either a fork or a shattered
fork. These are drawn in Figure 2, and formally deĄned as follows.

DeĄnition 13. Let ⊒ be a binary relation on a set A. Call an element a ∈ A
isolated iff it is ⊒-incomparable to every other element of A. A set A ⊆ A is
an upward (downward) fork head iff it has a minimum (maximum) element
a ∈ A and A \ ¶a♢ is an anti-chain, and simply a fork head iff it is either an
upward or a downward fork head.

The poset (A, ⊒) is an up-fork (down-fork) iff A can be partitioned as
A = A ∪ ¶a♢ ∪ B where A ∪ ¶a♢ is an upward (downward) fork head with
minimum (maximum) element a and ¶a♢ ∪ B is a chain with maximum
(minimum) element a, and simply a fork iff it is an up-fork or a down-fork.

The poset (A, ⊒) is a shattered fork iff A can be partitioned as A = A∪B,
where A is a fork head and each b ∈ B is isolated.

(Im)possibility theorem. The following are equivalent:

(1) There exists a w-efficient and liberal SWF.

(2) (X ,⊵) is either a fork or a shattered fork.

The proof is in appendix J. There, we also provide a Śforbidden subposetŠ
variant of the (im)possibility theorem according to which the existence of a
w-efficient and liberal SWF is equivalent to ⊵ being free of certain subposets.
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The (im)possibility theorem is in part a negative result: the necessary
and sufficient condition for w-efficient and liberal preference aggregation is
stringent. In the crown and diamond examples, ⊵ fails to be crown- and
diamond-free, so (X ,⊵) is certainly not a fork or shattered fork. Further:

Example 1 (continued). ⊵ is crown- and diamond-free, but (X ,⊵) is neither
a fork nor a shattered fork. We saw that no w-efficient and liberal SWF
exists.

But the (im)possibility theorem also has a positive side, because some
natural liberal constraints are either forks or shattered forks:

Example 4 (continued). By inspection, the liberal constraint ⊵ is a shattered
(down-)fork. Thus there is a w-efficient and liberal SWF.

5.4 Relation to SenŠs Śimpossibility of a Paretian liberalŠ

Our (im)possibility result is complementary to SenŠs (1970) Śimpossibility
of a Paretian liberalŠ, which asserts that when there are n ≥ 2 individuals
and ♣X ♣ ≥ 4 alternatives, there exists no efficient and minimally liberal SWF.
ŚMinimally liberalŠ here means that there exist two individuals i ≠ j and
four distinct alternatives xi, yi, xj , yj such that individual i (j) dictates the
social preference on xi, yi (xj , yj). The idea is that xi and yi differ solely in
respects relevant only to individual i (such as the colour of iŠs wallpaper),
and that liberalism demands that such decisions be left to individuals.

Our notion of liberalism is better-suited to settings such as surveillance,
where social alternatives do not specify individual matters such as wallpaper
colour. Our (im)possibility theorem provides a somewhat more encouraging
conclusion about the compatibility of efficiency with liberalism.

Appendices

A Standard deĄnitions

This appendix collects deĄnitions of standard order-theoretic concepts used
in this paper. Let A be a non-empty set, and ⊒ a binary relation on it.

For a, b ∈ A, we write a ̸⊒ b iff it is not the case that b ⊒ a, and a ⊐ b
iff a ⊒ b and a ̸⊒ b, and we say that a, b are ⊒-(in)comparable iff (n)either
a ⊒ b (n)or b ⊒ a.

⊒ is complete iff every pair a, b ∈ A is ⊒-comparable, transitive iff
a ⊒ b ⊒ c implies a ⊒ c for a, b, c ∈ A, reĆexive iff a ⊒ a for any a ∈ A, and
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anti-symmetric iff a ⊒ b ⊒ a implies a = b for a, b ∈ A. ⊒ is a partial order
iff it is transitive, reĆexive and anti-symmetric; (A, ⊒) is then called a poset
(partially ordered set). If ⊒ is both complete and a partial order, then it is
called a total order.

Fix a subset A ⊆ A. A is an (anti-)chain iff all pairs a, b ∈ A of distinct
elements are ⊒-(in)comparable. An element a ∈ A is a minimum (maximum)
of A iff b ⊒ a (a ⊒ b) for every b ∈ A.

An element b ∈ A is an upper bound of a set A ⊆ A iff b ⊒ a for each
a ∈ A, and a minimum upper bound iff in addition it is a minimum of the set
of upper bounds of A. Note that if ⊒ is anti-symmetric, then the minimum
upper bound of a set is unique if it exists. (Maximum) lower bounds are
deĄned analogously. Minimum upper bounds and maximum lower bounds
are also known as joins and meets, or suprema and inĄma.

A partially ordered set (A, ⊒) is a complete lattice iff every subset of A
has a minimum upper bound and a maximum lower bound, and simply a
lattice iff this is true for every two-element subset.

B Extension theorems

Extension theorems will be key to proving Lemma 1 (appendix C), the
existence theorem (appendix D), and Lemma 4 (appendix E).

DeĄnition 14. Let ⊒ and ⊒′ be binary relations on a set A. ⊒′ is an
extension of ⊒ iff for a, b ∈ A, b ⊒(⊐) a implies b ⊒′(⊐′) a.

DeĄnition 15. A binary relation ⊒ on a set A is Suzumura consistent iff
for a1, . . . , aK ∈ A, a1 ⊒ a2 ⊒ · · · ⊒ aK−1 ⊒ aK implies that either a1 ⊒ aK

or a1, aK are ⊒-incomparable.

RichterŰSuzumura extension theorem. A binary relation admits a
complete and transitive extension iff it is Suzumura consistent.

This result is due to Suzumura (1976), and is a consequence of RichterŠs
theorem (below). We use the RichterŰSuzumura extension theorem directly
in the proof of the existence theorem (appendix D). In proving Lemma 4
(appendix E), we rely on the following corollary.

Suzumura corollary. Let ⊒ be a transitive binary relation on a set A, and
let a, b ∈ A be such that b ̸⊒ a. Then ⊒ admits a complete and transitive
extension ⊒′ such that a ⊐′ b.

Proof. Let ⊒△ be the binary relation on A such that, for any c, d ∈ A,
c ⊒△ d iff either (i) c ⊒ d or (ii) c = a and d = b. It suffices to show that ⊒△
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admits a complete and transitive extension to A. So by the RichterŰSuzumura
extension theorem, what we must show is that ⊒△ is Suzumura consistent.

To this end, let a1 ⊒△ . . . ⊒△ aK in A; we must establish that aK ≯△ a1.
Let I = ¶k ≤ K : ak = a and ak+1 = b♢, where K + 1 is treated as 1 by
convention. If I is empty, then a1 ⊒△ aK by transitivity of ⊒. If I is a
singleton I = ¶k♢, suppose toward a contradiction that aK ⊐ a1; then
b = ak+1 ⊒ ak = a by transitivity of ⊒, contradicting the hypothesis that
b ̸⊒ a. Finally, suppose that ♣I♣ > 1. Then there exist k1 < k2 such that
ak1

= b, ak2
= a, and ak ⊒ ak+1 for all k1 ≤ k < k2. It follows by transitivity

of ⊒ that b ⊒ a, a contradiction with b ̸⊒ aŮthus ♣I♣ ≤ 1. ■

The proof of Lemma 1 (appendix C) uses a more general theorem.

DeĄnition 16. An order pair on a set A is a pair (⊒, ⊒′) where ⊒ and ⊒′

are binary relations on A and for any a, b ∈ A, a ⊒′ b implies a ⊒ b.

DeĄnition 17. Let (⊒1, ⊒′
1) and (⊒2, ⊒2) be order pairs on a set A. (⊒2, ⊒′

2)
is an order-pair extension of (⊒1, ⊒′

1) iff for any a, b ∈ A, a ⊒1 b implies
a ⊒2 b and a ⊒′

1 b implies a ⊒′
2 b.

DeĄnition 18. Let (⊒, ⊒′) be an order pair on a set A. A cycle is a sequence
(ak)K

k=1
in A such that a1 ⊒ a2 ⊒ · · · ⊒ aK−1 ⊒ aK ⊒′ a1.

RichterŠs theorem. An order pair (⊒, ⊒′) on a set A features no cycles iff
it admits an order-pair extension (⪰, ≻) where ⪰ is a preference on A.

This result is due to Richter (1966). See Chambers and Echenique (2016,
pp. 7Ű8) for a proof of the Śonly ifŠ direction (the ŚifŠ direction is trivial).

C Proof of Lemma 1 (ğ2.1, p. 8)

We prove the contra-positive, using RichterŠs theorem (appendix B).27 Sup-
pose that all upper bounds ⪰′′ of P satisfy x ⪰′′(≻′′) y; we shall exhibit a
(strict) P -chain from x to y. To that end, let ⊒ be the binary relation on X
such that for all z, w ∈ X , z ⊒ w iff either (i) z ▷ w and there is a P -chain
from z to w or (ii) z = y and w = x. Let ⊒′ be the binary relation on X
such that for all z, w ∈ X , z ⊒′ w iff either (i) z ▷ w and there is a strict
P -chain from z to w or (ii) z = y and w = x (z ⊒′ w iff z ▷ w and there is a
strict P -chain from z to w). Clearly (⊒, ⊒′) is an order pair.

Any ⪰′′ ∈ P such that (⪰′′, ≻′′) is an order-pair extension of (⊒, ⊒′)
must be an upper bound of P by the UB characterisation lemma (p. 7),

27We thank an anonymous referee for suggesting this short argument.
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and must satisfy y ≻′′(⪰′′) x by construction of ⊒′ (of ⊒). By hypothesis,
no ⪰′′ with these properties exists. Hence by RichterŠs theorem, the order
pair (⊒, ⊒′) features cycles. Let (zk)K

k=1
be a cycle of minimal length. Since

(zk)K
k=1

is a cycle, there must be a k′ ≤(<) K at which zk′ = y and zk′+1 = x
(where zK+1 := z1 by convention), since otherwise z1 ▷ · · · ▷ zK ▷ z1. Since
(zk)K

k=1
is of minimal length, the index k′ is unique, and thus by deĄnition

of ⊒ there is a P -chain from zk to zk+1 for every k ≠ k′ in ¶1, . . . , K − 1♢
(and by deĄnition of ⊒′ there is a strict P -chain from zK to z1). Hence
(wk)K

k=1
:= (zk+k′)K

k=1
, where the indices are interpreted modulo K, is a

(strict) P -chain from x to y. ■

D Proof that (3) implies (1) in the existence theorem (ğ2.2.3,
p. 11)

For a given P ⊆ P, let ⪰◦ be the (in general, incomplete) binary relation
that satisĄes conditions (⋆)Ű(⋆⋆) in the characterisation theorem for ⊵-
comparable pairs of alternatives, and that does not rank ⊵-incomparable
pairs of alternatives.28 For each P , ⪰◦ clearly exists and is unique.

In light of the characterisation theorem, property (1) in the existence
theorem requires precisely that ⪰◦ admit a complete and transitive extension
(i.e. an extension that lives in P) for any P ⊆ P.29 Our task is therefore to
show that whenever ⊵ is crown- and diamond-free, ⪰◦ admits a complete
and transitive extension for every P ⊆ P. We will use the RichterŰSuzumura
extension theorem (appendix B).

We Ąrst state two lemmata, then use them to show that (3) implies (1).
The remainder of this appendix is devoted to proving the lemmata.

DeĄnition 19. A binary relation ⊒ on a set A is weakly transitive iff for
a, b, c ∈ A, if a ⊒ b ⊒ c and a, c are ⊒-comparable, then a ⊒ c.

Lemma 6 (weak transitivity of ⪰◦). Suppose that ⊵ is diamond-free. Then
⪰◦ is weakly transitive for any P ⊆ P.

Weak transitivity is implied by Suzumura consistency (take K = 3). The
converse is false in general,30 but true for ⪰◦ when ⊵ has no crowns:

28Explicitly: for any x, y ∈ X , if x, y are ⊵-incomparable then x ⪰̸◦ y ⪰̸◦ x, and if x, y

are ⊵-comparable, wlog x ⊵ y, then x ⪰◦ y iff there is a P -chain from x to y, and y ⪰◦ x

iff there is no strict P -chain from x to y.
29The term ŚextensionŠ was deĄned in appendix B.
30Consider A = ¶a, b, c, d♢ and the binary relation ⊒ such that a ⊐ b ⊐ c ⊐ d ⊐ a and no

other pairs are ⊒-comparable. This relation satisĄes weak transitivity, but clearly violates
Suzumura consistency.
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Lemma 7 (Suzumura consistency of ⪰◦). Suppose that ⊵ is crown-free.
Then if ⪰◦ is weakly transitive, it is Suzumura consistent.

Proof that (3) implies (1). Suppose that ⊵ is crown- and diamond-free, and
Ąx any P ⊆ P. Since ⊵ is diamond-free, ⪰◦ is weakly transitive by Lemma 6.
Since ⊵ is crown-free, it follows by Lemma 7 that ⪰◦ is Suzumura consistent.
Invoking the RichterŰSuzumura extension theorem (appendix B), we conclude
that ⪰◦ admits a complete and transitive extension. ■

It remains to prove Lemmata 6 and 7. Begin with the former. The role of
diamond-freeness is to ensure a ŚcrossingŠ property of decreasing sequences:

Observation 1. Suppose that ⊵ is diamond-free, and consider x, y, z ∈ X
with x ▷ z ▷ y. Let (wk)K

k=1
be a Ąnite decreasing sequence with w1 = x and

wK = y, and let k′ be the last k < K such that wk′ ⊵ z. Then z ▷ wk′+1.

Proof. Since w1 = x ▷ z, there exist k < K such that wk ⊵ z, so k′ is
well-deĄned. It cannot be that wk′+1 ⊵ z, by deĄnition of k′. Nor can it
be that z, wk′+1 are ⊵-incomparable, for then (x, z, wk′+1, y) is a diamond:
x ⊵ z ⊵ y (by hypothesis), x ⊵ wk′+1 ⊵ y (since (wk)K

k=1
is decreasing from

x to y), and z, wk′+1 are ⊵-incomparable. Hence z ▷ wk′+1 by anti-symmetry
of ⊵. ■

We will use the following piece of notation: given a set A, a sequence
(an)N

n=1 in A and an element b ∈ A, we write (b) ∪ (an)N
n=1 for the sequence

(b, a1, . . . , aN ), and similarly (an)N
n=1 ∪ (b) for the sequence (a1, . . . , aN , b).

Proof of Lemma 6. Suppose that ⊵ features no diamonds, and Ąx a P ⊆ P
and x, y, z ∈ X such that x ⪰◦ y ⪰◦ z and x, z are ⪰◦-comparable. We must
show that x ⪰◦ z. This is immediate if x, y, z are not distinct, so suppose
that they are. Then by anti-symmetry of ⊵, there are six cases to check: one
for each strict ordering by ⊵ of x, y, z.

Case 1: x ▷ y ▷ z. Since x ⪰◦ y and x ▷ y, by (⋆) there is a P -chain
from x to y. Similarly there is a P -chain from y to z. The concatenation of
these two P -chains is a P -chain from x to z; hence x ⪰◦ z by (⋆).

Case 2: x ▷ z ▷ y. Since x ⊵ y and x ⪰◦ y, there is a P -chain (wk)K
k=1

from x to y by (⋆). Let k′ be the last k < K for which wk ⊵ z, so that
wk′ ⊵ z ▷ wk′+1 by Observation 1. By deĄnition of a P -chain, there is a
preference ⪰ in P such that wk′ ⪰ wk′+1. It must be that wk′+1 ⪰ z, for
otherwise (z) ∪ (wk)K

k=k′+1
would be a strict P -chain from z to y, in which

case y ⪰̸◦ z by (⋆⋆), a contradiction. So we have wk′ ⪰ wk′+1 ⪰ z, which by
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transitivity of ⪰ yields wk′ ⪰ z. It follows that (wk)k′

k=1
∪ (z) is a P -chain

from x to z, so that x ⪰◦ z by (⋆).
Case 3: y ▷ x ▷ z. This case is similar to the second. Since y ⊵ z and

y ⪰◦ z, there is a P -chain (wk)K
k=1

from y to z by (⋆). Let k′ be the last
k < K for which wk ⊵ x, so that wk′ ⊵ x ▷ wk′+1 by Observation 1. By
deĄnition of a P -chain, there is a preference ⪰ in P such that wk′ ⪰ wk′+1. It
must be that x ⪰ wk′ , for otherwise (wk)k′

k=1
∪ (x) would be a strict P -chain

from y to x, in which case x ⪰̸◦ y by (⋆⋆), a contradiction. So we have
x ⪰ wk′ ⪰ wk′+1, which by transitivity of ⪰ yields x ⪰ wk′+1. It follows that
(x) ∪ (wk)K

k=k′+1
is a P -chain from x to z, so that x ⪰◦ z by (⋆).

Case 4: y ▷ z ▷ x. Suppose toward a contradiction that x ⪰̸◦ z. Then
since z ⊵ x, by (⋆⋆) there exists a strict P -chain from z to x. Since y ⊵ z
and y ⪰◦ z, there is a P -chain from y to z by (⋆). Concatenating these
two P -chains yields a strict P -chain from y to x, so that x ⪰̸◦ y by (⋆⋆), a
contradiction.

Case 5: z ▷ x ▷ y. This case is similar to the fourth. Suppose toward a
contradiction that x ⪰̸◦ z. Then since z ⊵ x, by (⋆⋆) there exists a strict
P -chain from z to x. Since x ⊵ y and x ⪰◦ y, there is a P -chain from x to y
by (⋆). Concatenating these two P -chains yields a strict P -chain from z to
y, so that y ⪰̸◦ z by (⋆⋆), a contradiction.

Case 6: z ▷ y ▷ x. Suppose toward a contradiction that x ⪰̸◦ z. Then by
(⋆⋆), there is a strict P -chain (wk)K

k=1
from z to x. Let k′ be the last k < K

for which wk ⊵ y, so that wk′ ⊵ y ▷ wk′+1 by Observation 1. By deĄnition of
a P -chain, there is a preference ⪰ in P such that wk′ ⪰ wk′+1. Since (wk)K

k=1

is a strict P -chain, there are k′′ and ⪰′′ ∈ P be such that wk′′ ≻′′ wk′′+1,
with ≻′′ = ≻ if k′′ = k′.

Case 6, sub-case A: k′′ < k′. It must be that y ≻ wk′ , for otherwise
(wk)k′

k=1
∪ (y) would be a strict P -chain from z to y, in which case y ⪰̸◦ z by

(⋆⋆), a contradiction. So we have y ≻ wk′ ⪰ wk′+1, which by transitivity of
⪰ yields y ≻ wk′+1. It follows that (y) ∪ (wk)K

k=k′+1
is a strict P -chain from

y to x, so that x ⪰̸◦ y by (⋆⋆), a contradiction.
Case 6, sub-case B: k′′ ≥ k′. It must be that y ⪰ wk′ , for otherwise

(wk)k′

k=1
∪ (y) would be a strict P -chain from z to y, in which case y ⪰̸◦ z by

(⋆⋆), a contradiction. So we have y ⪰ wk′ ⪰ wk′+1, which by transitivity of ⪰
yields y ⪰ wk′+1, and y ≻ wk′+1 if k′′ = k′. It follows that (y) ∪ (wk)K

k=k′+1

is a strict P -chain from y to x, so that x ⪰̸◦ y by (⋆⋆), a contradiction. ■

It remains to prove Lemma 7.

DeĄnition 20. For a binary relation ⊒ on a set A, a weak cycle is a
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Ąnite sequence (ak)K
k=1

of distinct elements of A such that ak, ak+1 are
⊒-comparable for each 1 ≤ k ≤ K, where aK+1 is understood as a1.

Note that crowns and diamonds are both examples of weak cycles. The
role of crown-freeness is to deliver a ŚshortcutŠ property of weak cycles:

Observation 2. Let ⊒ be a transitive and crown-free binary relation on
a set A. Then for any weak cycle (a1, . . . , aK) in ⊒, (a1, ak, aK) is a weak
cycle in ⊒ for some 1 < k < K.

Proof. We prove the contra-positive. Suppose that ⊒ is transitive and that
there is a weak cycle (a1, . . . , aK) such that (a1, ak, aK) is not a weak cycle
for any 1 < k < K. In particular, choose (a1, . . . , aK) to be a weak cycle of
minimal length with this property. Clearly its length K is ≥ 4. We will show
that (a1, . . . , aK) is a crown.

There are two cases, a1 ⊐ a2 and a1 ⊏ a2. We consider the former case
only; the latter is analogous. It must be that a2 ⊏ a3, for if a2 ⊐ a3 then a1, a3

are ⊒-comparable by transitivity of ⊒, so (a1, a3, . . . , aK) is a weak cycle for
which (a1, ak, aK) is not a weak cycle for any 3 ≤ k < K, contradicting the
minimality of (a1, . . . , aK). Proceeding using the same argument, we conclude
that ak−1 ⊐ ak ⊏ ak+1 for every 1 < k < K even, where by convention
aK+1 := a1. (This is apparent, separately, for k < K even and for k = K.)

Furthermore, it must be that for non-adjacent k′ < k′′ (i.e. those with
2 ≤ k′′−k′ ≤ K−2), ak′ , ak′′ are ⊒-incomparable, for if they were comparable
then (a1, . . . , ak′ , ak′′ , . . . , aK) would be a weak cycle for which (a1, ak, aK)
is not a weak cycle for any k /∈ ¶1, K♢, contradicting the minimality of
(a1, . . . , aK). It follows that (a1, . . . , aK) is a crown. ■

Proof of Lemma 7. Suppose that ⊵ is crown-free and that ⪰◦ is weakly
transitive. We must show that for every K ≥ 3, the following claim holds:

for any x1, . . . , xK ∈ X , x1 ⪰◦ · · · ⪰◦ xK ⪰◦ x1 implies x1 ⪰◦ xK . C(K)

We proceed by strong induction on K. In the base case K = 3, C(3) is
immediate from weak transitivity of ⪰◦.

Now Ąx any K ≥ 4, and suppose that C(K ′) holds for all K ′ ≤ K − 1;
we will establish C(K). Take any x1, . . . , xK ∈ X with x1 ⪰◦ · · · ⪰◦ xK ⪰◦

x1, wlog distinct. Since ⪰◦ compares all and only ⊵-comparable pairs of
alternatives, (x1, . . . , xK) is a weak cycle in ⊵. Since ⊵ (transitive and)
crown-free, Observation 2 implies the existence of a 1 < k < K such that
(x1, xk, xK) is a weak cycle in ⊵. We consider three cases.
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Case 1: k = 2. Since x2 ⪰◦ . . . ⪰◦ xK ⪰◦ x2, the inductive hypothesis (in
particular, C(K − 1)) implies that x2 ⪰◦ xK . Since x1 ⪰◦ x2, and x1, xK are
⪰◦-comparable because they are ⊵-comparable, it follows by weak transitivity
that x1 ⪰◦ xK .

Case 2: k = K − 1. This case is analogous to the Ąrst.
Case 3: 2 < k < K − 1. Since x1 ⪰◦ · · · ⪰◦ xk and x1, xk are ⪰◦-

comparable (because they are ⊵-comparable), the inductive hypothesis (in
particular, C(k)) implies that x1 ⪰◦ xk. Similarly, xk ⪰◦ · · · ⪰◦ xK , the
⊵-comparability of xk, xK and the inductive hypothesis yield xk ⪰◦ xK .
Since x1, xK are ⪰◦-comparable (because they are ⊵-comparable), it follows
by weak transitivity that x1 ⪰◦ xK . ■

E Proof of Lemma 4 (ğ2.3, p. 13)

Since ⊵ is transitive, and x, y are ⊵-incomparable, the Suzumura corollary
(appendix B) implies that ⊵ admits complete and transitive extensions
⪰′, ⪰′′ ∈ P such that x ≻′ y and y ≻′′ x. ⪰′ is an upper bound of P (and
hence of any P ⊆ P) because whenever z ⊵(▷) w, we have z ⪰′(≻′) w since
⪰′ extends ⊵; thus the consequent in the deĄnition of Ś⪰′ S ⪰Š (p. 2) is
satisĄed for any z, w ∈ X and ⪰ ∈ P. Similarly for ⪰′′.

F Results for maximum lower bounds

The inverse of a binary relation ⊒ on a set A is the binary relation ⊑ such
that for a, b ∈ A, a ⊑ b iff b ⊒ a.

Observation 3. If S⊵ (S⊴) is the single-crossing-dominance relation induced
by (the inverse of) the primitive order ⊵ on X , then S⊴ is the inverse of S⊵.

Hence a maximum lower bound with respect to S⊵ is precisely a min-
imum upper bound with respect to S⊴. Since ⊴ is crown- and diamond-free
(complete) iff ⊵ is, the existence theorem (uniqueness proposition) delivers:

Corollary 5 (existence). The following are equivalent:

(1) Every set of preferences has a minimum upper bound.

(2) Every set of preferences has a maximum lower bound.

(3) ⊵ is crown- and diamond-free.

Corollary 6 (uniqueness). The following are equivalent:

(1) Every set of preferences has at most one minimum upper bound.

(2) Every set of preferences has exactly one minimum upper bound.
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(3) Every set of preferences has at most one maximum lower bound.

(4) Every set of preferences has exactly one maximum lower bound.

(5) ⊵ is complete.

Finally, the analogue of the characterisation theorem is as follows.

DeĄnition 21. For a set P ⊆ P of preferences and two alternatives y ⊵ x
in X , a reverse P -chain from y to x is a Ąnite sequence (wk)K

k=1
in X such

that (i) w1 = y and wK = x, (ii) for every k < K, wk ⊴ wk+1, and (iii) for
every k < K, wk ⪰ wk+1 for some ⪰ ∈ P . A reverse P -chain is strict iff
wk ≻ wk+1 for some k < K and ⪰ ∈ P .

Corollary 7 (characterisation). For a preference ⪰⋆ ∈ P and a set P ⊆ P
of preferences, the following are equivalent:

(1) ⪰⋆ is a maximum lower bound of P .

(2) ⪰⋆ satisĄes: for any ⊵-comparable x, y ∈ X , wlog y ⊵ x,

Ű x ⪰⋆ y iff there is a reverse P -chain from x to y, and

Ű y ⪰⋆ x iff there is no strict reverse P -chain from x to y.

G Proof of Corollary 1 (ğ3.2, p. 15)

Equip the space 2P \¶∅♢ of non-empty sets of preferences with the S-induced
strong set order ≳. It is easily veriĄed that ≳ is a partial order. The consensus
C is a correspondence 2P \ ¶∅♢ ⇒ X , and Proposition 1 says precisely that
it is increasing.

Let Q be the set of non-empty P ⊆ P at which C(P ) is non-empty. The
restriction of C to Q is a non-empty-valued increasing correspondence into
X ⊆ R. It follows by Theorem 2.7 in Kukushkin (2013) that it admits an
increasing selection c : Q → X .31

Let U(P ) := ¶P ′′ ∈ Q : P ′′ ≳ P♢ for each non-empty P ⊆ P, and deĄne
d : 2P \ ¶∅♢ → X by d(P ) := inf¶c(P ′′) : P ′′ ∈ U(P )♢ if U(P ) ̸= ∅ and
d(P ) := sup X otherwise. The map d is well-deĄned, and really does map into
X , because (X , ≥) is a complete lattice by the compactness of X and the FrinkŰ
Birkhoff theorem.32 DeĄne an SCF ϕ :

⋃

n∈N
Pn → X by ϕ(π) := d(supp π)

for every preference proĄle π ∈
⋃

n∈N
Pn.

Since d = c on Q (because c is increasing) and c is a selection from C,
we have that d(P ) ∈ C(P ) whenever the latter is non-empty, which is to say
that the SCF ϕ respects unanimity.

31This step is non-trivial because X and P need not be Ąnite, nor even countable.
32See e.g. Topkis (1998, Theorem 2.3.1).
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To see that ϕ is monotone, consider P, P ′ ∈ P with P ′ ≳ P ; we must
show that d(P ′) ≥ d(P ). Observe that U(P ′) ⊆ U(P ). If U(P ′) is empty then
d(P ′) = sup X ≥ d(P ) since d(P ) ∈ X . If U(P ) is empty then so is U(P ′),
putting us in the previous case. If neither is empty then

d(P ′) = inf
{

c(P ′′) : P ′′ ∈ U(P ′)
}

≥ inf
{

c(P ′′) : P ′′ ∈ U(P )
}

= d(P ). ■

H Proof of Proposition 2 (ğ3.2, p. 16)

Fix P, P ′ ⊆ P such that P ′ dominates P in the S-induced strong set order and
C(P ) = C(P ′). Suppose toward a contradiction that there are alternatives
x > x′ such that x belongs to C2(P )\C(P ) and x′ belongs to C2(P ′)\C(P ′),
but x′ /∈ C2(P ) \ C(P ). (The other case, in which x /∈ C2(P ′) \ C(P ′) rather
than x′ /∈ C2(P ) \ C(P ), is symmetric.)

We have x /∈ C2(P ′) because x /∈ C(P ) = C(P ′) and x /∈ C2(P ′) \ C(P ′).
Since x′ ∈ C2(P ′), it follows that there is an alternative y ≠ x′ and a
preference ⪰′ ∈ P ′ such that x′ ≻′ x and y ≻′ x.

First claim. x ⪰ z for every ⪰ ∈ P and each z ∈ X such that x′ ̸= z < x.

Proof of the Ąrst claim. Suppose toward a contradiction that z ≻ x and
x′ ̸= z < x for some ⪰ ∈ P . Since also x′ ≻′ x and x′ < x, the maximum
lower bound ⪰⋆ of ¶⪰, ⪰′♢ must satisfy both z ≻⋆ x and x′ ≻⋆ x, so that
x /∈ X2(⪰⋆). The preference ⪰⋆ belongs to P since P ′ dominates P in the
S-induced strong set order, so C2(P ) ⊆ X2(⪰⋆). But then x /∈ C2(P ), a
contradiction. □

Second claim. x′ ⪰ x for every ⪰ ∈ P .

Proof of the second claim. We Ąrst show that y > x. Suppose toward a
contradiction that y < x. On the one hand, the facts that y ≻′ x, that ⪰′

belongs to P ′, and that P ′ dominates P in the S-induced strong set order
together imply that there must be a ⪰ ∈ P such that y ≻ x. On the other
hand, since x′ ̸= y < x, the Ąrst claim requires that x ⪰ y. Contradiction!

Now, to prove the claim, suppose toward a contradiction that x ≻ x′

for some ⪰ ∈ P . Since y ≻′ x and y > x > x′, it follows that the minimum
upper bound ⪰⋆ of ¶⪰, ⪰′♢ satisĄes y ≻⋆ x ≻⋆ x′, so that x′ /∈ X2(⪰⋆). The
preference ⪰⋆ belongs to P ′ since P ′ dominates P in the S-induced strong
set order, so C2(P ′) ⊆ X2(⪰⋆). But then x′ /∈ C2(P ′), a contradiction. □

Since x′ /∈ C(P ′) = C(P ) by hypothesis, there is an alternative z ∈ X
and a preference ⪰ ∈ P such that z ≻ x′, whence z ≻ x by the second claim.
Then z > x by the Ąrst claim, and X(⪰) = ¶z♢ since x ∈ C2(P ) ⊆ X2(⪰).
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Third claim. There is a preference ⪰′′ ∈ P ′ such that x′ ≻′′ x and z ≻′′ w
for every alternative w ∈ X satisfying x′ ̸= w < z.

Proof of the third claim. Let Z denote the ⪰′-best alternatives in X \ ¶x′♢,
and let z′ be the ≥-smallest element of Z. If z′ = z, then since x′ ≻′ x, we
may take ⪰′′ := ⪰′. Assume for the remainder that z′ ̸= z.

Note that z′ ≻′ x since x′ ̸= y ≻′ x. This implies that z′ > x, since z′ < x
together with the fact that P ′ dominates P in the S-induced strong set order
would imply the existence of a preference ⪰† ∈ P such that z′ ≻† x, which is
impossible by the Ąrst claim.

Write ⪰⋆ for the minimum upper bound of ¶⪰, ⪰′♢; we will show that
we may take ⪰′′ := ⪰⋆. Since P ′ dominates P in the S-induced strong
set order, ⪰⋆ lies in P ′. It cannot be that z′ > z, because this together
with z′ ⪰′ z (by z ≠ x′), z > x and z ≻ x would imply z′ ⪰⋆ z ≻⋆ x′,
in which case x′ /∈ X2(⪰⋆) ⊇ C2(P ′), a contradiction. Hence z > z′ > x,
which since z ≻ z′ ≻′ x implies that z ≻⋆ z′ ≻⋆ x. Then x′ ≻⋆ x since
x′ ∈ C2(P ′) ⊆ X2(⪰⋆). Furthermore, z ≻⋆ w for any w < z since z ≻ w. □

Choose ⪰′′ ∈ P ′ as per the third claim. Let ⪰⋆ be the maximum lower
bound of ¶⪰, ⪰′′♢, and note that it belongs to P since P ′ dominates P in
the S-induced strong set order. We have x′ ≻⋆ x since x′ < x and x′ ≻′′ x.
We furthermore have z ≻⋆ x by the characterisation theorem (the version
for maximum lower bounds, given in appendix F), since X(⪰) = ¶z♢ and
z ≻′′ w for every alternative w ∈ X satisfying z > w ≥ x, so that there
is no reverse ¶⪰, ⪰′′♢-chain in from x to z. Thus x /∈ X2(⪰⋆) ⊇ C2(P ), a
contradiction. ■

I Proof of Proposition 3⋆ (ğ3.3, p. 19)

Let ⪰⋆ denote the minimum upper bound of P . We shall show that (1) is
equivalent to (3) and (separately) that (3) is equivalent to (2).

(1) implies (3) by Proposition 3. For the converse, suppose that P is not
rich; we will show that (3) fails. By hypothesis, there exists a non-empty
menu M = ¶x0, x1, . . . , xK♢ ⊆ X and preferences ⪰1, . . . , ⪰K ∈ P such that
x0 ⪰1 x1 ⪰2 x2 ⪰3 · · · ⪰K xK , and yet x0 /∈ XM (⪰) for every ⪰ ∈ P . Let ⊵

be a total order on X such that x0 ▷ · · · ▷ xK . Then (x0, x1, . . . , xK) is a
P -chain, so x0 ∈ XM (⪰⋆) by the characterisation theorem. It follows that
max XM (⪰⋆) = x0 > max XM (P ), so (3) fails.

(3) immediately implies (2). To prove the converse, we shall demonstrate
that for any given total order ⊵ on X , if there is a preference ⪰ ∈ P
such that max XM (P ) = max XM (⪰) for every non-empty menu M ⊆ X ,
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Figure 3: The posets in DeĄnition 22.

then ⪰⋆ is such a preference. So Ąx a total order ⊵ on X , and suppose
toward a contradiction that ⪰ ∈ P has the requisite property whereas
⪰⋆ does not. Then there is a non-empty menu M ⊆ X such that x :=
max XM (⪰) = max XM (P ) ̸= max XM (⪰⋆) =: y. It must be that x < y,
since (as argued in the proof of Proposition 3) we have x ≤ y by the
MCS theorem and the fact that ⪰⋆ is an upper bound of P . It follows
by the characterisation theorem that there is a P -chain (wk)K

k=1
from y to

x, so that max X¶wk,wk+1♢(P ) = ¶wk♢ for every k ∈ ¶1, . . . , K − 1♢. Then
because (by hypothesis) max XM ′(⪰) = max XM ′(P ) for every non-empty
menu M ′ ⊆ X , it must be that y = w1 ⪰ w2 ⪰ · · · ⪰ wK = x. Since
x ∈ XM (⪰) by hypothesis and y ∈ M , it follows that y ∈ XM (⪰). But then
max XM (⪰) ≥ y > x = max XM (⪰), which is absurd. ■

J Proof of the (im)possibility theorem (ğ5.3, p. 27)

In this appendix, we add a third Śforbidden subposetŠ equivalence to the
(im)possibility theorem (ğJ.1), then give the proof (ğJ.2).

J.1 Elaboration of the (im)possibility theorem

The Śforbidden subposetŠ version of the (im)possibility theorem features the
four-element posets drawn in Figure 3, which are explicitly deĄned as follows.

DeĄnition 22. Let ⊒ be a binary relation on a set A, and let a, b, c, d ∈ A
be distinct.

(1) (a, b, c, d) is a ball and chain iff a ⊐ b ⊐ c and a ⊐ c, and no other pair
of elements is ⊒-comparable.

(2) (a, b, c, d) is a hook iff either a ⊐ b ⊐ c ⊏ d and a ⊐ c or (dually)
a ⊏ b ⊏ c ⊐ d and a ⊏ c, and no other pair of elements is ⊒-comparable.

(3) (a, b, c, d) is a pair of dumbbells iff a ⊐ b and c ⊐ d, and no other pair
of elements is ⊒-comparable.
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(4) (a, b, c, d) is a saw iff a ⊐ b ⊏ c ⊐ d, and no other pair of elements is
⊒-comparable.

Elaborated (im)possibility theorem. The following are equivalent:

(1) There exists a w-efficient and liberal SWF.

(2) (X ,⊵) is either a fork or a shattered fork.

(3) ⊵ is free from 4-crowns, diamonds, balls-and-chains, hooks, dumbbells
and saws.

Note that by ruling out saws, we rule out K-crowns for K ≥ 6 even.

J.2 Proof of the elaborated (im)possibility theorem

Proof that (1) implies (3). We prove the contra-positive. 4-crowns and dia-
monds are ruled out by Lemma 5 (p. 26) and the existence theorem. For the
remainder, it suffices by Lemma 5 to provide, for each forbidden subposet,
a pair of preferences π = (⪰1, ⪰2) ∈ P2 which possess no minimum upper
bound ⪰⋆ such that x ⪰⋆(≻⋆) y whenever x ⪰i(≻i) y for i ∈ ¶1, 2♢.

Example 1 (pp. 6 and 26) does the job for a hook. For a ball and chain
(x, y, z, w), z ≻1 w ≻1 x ≻1 y and y ≻2 z ≻2 w ≻2 x is an example. For a
pair of dumbbells (x, y, z, w), x ≻1 y ≻1 z ≻1 w and z ≻2 w ≻2 x ≻2 y is an
example. For a saw (x, y, z, w), w ≻1 x ≻1 y ≻1 z and y ≻2 z ≻2 w ≻2 x is
an example. ■

Proof that (3) implies (2). Suppose that (3) holds; we will argue that (X ,⊵)
must be a fork or a shattered fork. By inspection, the only four-element
subposets permitted by (3) are (three-pronged) fork heads and the following:

w

z

y
x

w

z

x y x

y

z w

(A)

w

z

x y
w

x

y z
y

x

z w x y z w (B)

It is tedious but straightforward to verify that (3) does not allow subposets
of both types (A) and (B). It is clear that only upward (downward) fork

40



heads are compatible with the second (third) subposet in (A) and with the
Ąrst (second) subposet in (B).

That leaves two possibilities. The Ąrst is that every four-element subposet
is an upward (downward) three-pronged fork head, the Ąrst subposet in (A),
or the second (third) subposet in (A). In that case, (X ,⊵) is evidently an
up-fork (down-fork).

The second possibility is that every subposet is an upward (downward)
three-pronged fork head, the Ąrst (second) subposet in (B), or one of the
third and fourth subposets in (B). In that case, (X ,⊵) is a shattered up-fork
(down-fork). ■

Proof that (2) implies (1). Suppose that (X ,⊵) is a fork or shattered fork.
By Lemma 5 (p. 26), what we must show is that for any π = (⪰1, . . . , ⪰n) ∈
Pn, there is a minimum upper bound ⪰ ∈ P of π that satisĄes the following
conditional Pareto property: x ≻⋆(⪰⋆) y whenever x ≻i(⪰i) y for every
i ∈ ¶1, . . . , n♢ and there is no (strict) π-chain from y to x. To that end, Ąx
an arbitrary preference proĄle π ∈ Pn.

Fork: Suppose that (X ,⊵) is a fork, wlog an up-fork. Then X can be
partitioned as X = X ∪ ¶x♢ ∪ Y , where X ∪ ¶x♢ is an upward fork head with
minimum element x and ¶x♢ ∪ Y is a chain with maximum element x.

Since ⊵ is crown- and diamond-free, π has minimum upper bounds by the
existence theorem. Let ⪰⋆ be an arbitrary minimum upper bound. Partition
X into sets ¶Xk♢K

k=1
such that x′, x′′ ∈ X belong to the same Xk if and only

if, for any z in the ⊵-chain ¶x♢ ∪ Y , x′ ⪰⋆(≻⋆) z if and only if x′′ ⪰⋆(≻⋆) z.
Note that, since X ∪ ¶x♢ is an upward fork head with minimum element

x, for all 1 ≤ k ≤ K, the elements of Xk are mutually ⊵-incomparable.
Moreover, for any x′ ∈ X, since Y ∪ ¶x, x′♢ is a ⊵-chain, all minimum upper
bounds of π agree on Y ∪ ¶x, x′♢ by the uniqueness proposition. It follows
that, for any (⪰k)K

k=1
where ⪰k is a preference on Xk for all 1 ≤ k ≤ K,

there exists a minimum upper bound ⪰⋆⋆ of π that agrees with ⪰k on Xk

for each k ≤ K.
⪰k may clearly be chosen to satisfy the conditional Pareto property on

every pair in Xk for each 1 ≤ k ≤ K. It thus suffices to show that ⪰⋆⋆

satisĄes the conditional Pareto property on pairs x′, y′ that do not both lie
in a single Xk. So suppose that x′ ≻i(⪰i) y′ for every i and that there is no
(strict) π-chain from y′ to x′; we will deduce that x′ ≻⋆⋆(⪰⋆⋆) y′.

There are two cases. First, suppose that one of x′ and y′ belongs to the
⊵-chain ¶x♢∪Y . Then x′ and y′ are ⊵-comparable, so the result follows from
properties (⋆)Ű(⋆⋆) in the characterisation theorem. Second, suppose that
neither x′ nor y′ belongs to ¶x♢ ∪ Y . Since they do not belong to the same
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Xk by hypothesis, there is a z ∈ ¶x♢ ∪ Y such that either (i) x′ ⪰⋆(≻⋆) z
and y′ ⪰̸⋆(⊁⋆) z, or (ii) vice-versa. Since x′ ≻i(⪰i) y′ for every i, it must be
(i) that obtains. Therefore x′ ≻⋆⋆ y′, as desired.

Shattered fork: Suppose that (X ,⊵) is a shattered fork. Then X may be
partitioned as X = X ∪ Y , where X is a fork head, wlog an upward fork
head, and Y is a set of isolated elements. Write x0 ∈ X for the minimum
element of the upward fork head X.

Let ≥′ be the binary relation on X such that, for any ⊵-comparable
x, y ∈ X , wlog x ⊵ y, ≥′ satisĄes properties (⋆)Ű(⋆⋆) in the characterisation
theorem and, for any ⊵-unranked x, y, x ≥′ y if and only if x ⪰i y for every
i. Let ≥′′ be the transitive closure of ≥′. Since ≥′′ is transitive, it admits a
complete and transitive extension ≥⋆ by the RichterŰSuzumura extension
theorem (appendix B). We will show that ≥⋆ is a minimum upper bound of
π and that it satisĄes the conditional Pareto property.

For the conditional Pareto property, it suffices to show that, for any
x, y ∈ X such that there is no (strict) π-chain from y to x and further
x ≻i(⪰i) y for every i, we have x >′′(≥′′) y. Note that, if there is no (strict)
π-chain from y to x and x ≻i(⪰i) y for every i, then x ≥′ y. It remains only
to show that if there is no π-chain from y to x and x ≻i y for every i, then
x >′′ y.

So suppose toward a contradiction that there is no π-chain from y to x
and that x ≻i y for every i, and yet y ≥′′ x. Since ≥′′ is the transitive closure
of ≥′, there exists a ≥′-decreasing sequence (wk)K

k=1
with w1 = y and wK = x;

we will show that this is impossible. We proceed by strong induction on the
length K ≥ 2 of the sequence. The base case K = 2 follows by deĄnition
of ≥′. For the inductive step, take K ′ > 2, and suppose that there is no
≥-decreasing sequence of length K from y to x for any K < K ′. Toward
a contradiction, suppose that there is a ≥′-decreasing sequence (wk)K′

k=1
of

length K ′ from y to x. There are two cases.
Case 1.1: There is at most one k′ < K ′ such that there is a π-chain

from wk′ to wk′+1. Fix k′, and note that wk ⪰i wk+1 for every i and k ≠ k′.
By hypothesis, we have x ≻i y for every i. It follows by transitivity that
wk′+1 ≻i wk′ . Since all π-chains have length at most 2, there is no π-chain
from wk′ to wk′+1. But then, since wk′+1 ≻i wk′ for every i, it cannot be
that wk′ ≥′ wk′+1Ůa contradiction.

Case 1.2: There are k1 < k2 < K ′ such that there is a π-chain from wkn
to

wkn+1 for n = 1, 2. Then, since all π-chains end at x0, wk1+1 = wk2+1 = x0.
Then (w1, . . . , wk1

, wk2+1, . . . , wK) is a ≥′-chain and, since k1 < k2, it has
length < K ′. This contradicts the inductive hypothesis.

It remains to show that ≥⋆ is a minimum upper bound of π. Since ≥⋆ is
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an extension of ≥′′, it suffices by the characterisation theorem to show that
for any x ▷ y, ≥′′ satisĄes properties (⋆)Ű(⋆⋆). Since ≥′′ is the transitive
closure of ≥′ and ≥′ satisĄes (⋆)Ű(⋆⋆), we need only show that (a) y ̸≥′′ x
if there is a strict π-chain from x to y, and that (b) x ̸≥′′ y if there is no
π-chain from x to y.

Claim (b) is easy: suppose toward a contradiction that there is no π-chain
from x to y, and yet x ≥′′ y. Since x ▷ y by assumption, it follows that
y ≻i x for every i. Then the argument used to show that ≥⋆ satisĄes the
conditional Pareto property applies, yielding a contradiction.

To prove (a), suppose toward a contradiction that there is a strict π-chain
from x to y, yet y ≥′′ x. Then there exists a ≥′-decreasing sequence (wk)K

k=1

from w1 = y to wK = x. We show by strong induction on K ≥ 2 that
this is impossible. The base case K = 2 follows by deĄnition of ≥′. For the
inductive step, take any K ′ > 2, and suppose that for all K < K ′, there is
no ≥′-decreasing sequence of length K from y to x. Toward a contradiction,
suppose that (wk)K′

k=1
is a ≥′-decreasing sequence of length K ′. There are

two cases.
Case 2.1: For some k < K ′, there is a π-chain from wk to wk+1. Then,

since all π-chains end at x0, wk+1 = y = x0. Then, as above, the induction
hypothesis produces a contradiction.

Case 2.2: For every k < K ′, there is no π-chain from wk to wk+1. Then
since wk ≥′ wk+1, we have wk ⪰i wk+1 for every i. It follows by transitivity
that y ⪰i x for every i. Since all π-chains have length 2, this contradicts the
existence of a strict π-chain from x to y. ■
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