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Abstract

In the canonical persuasion model, comparative statics has been an
open question. We answer it, delineating which shifts of the senderŠs
interim payoff lead her optimally to choose a more informative signal.
Our Ąrst theorem identiĄes a coarse notion of Śincreased convexityŠ that
we show characterises those shifts of the senderŠs interim payoff that
lead her optimally to choose no less informative signals. To strengthen
this conclusion to Śmore informativeŠ requires further assumptions:
our second theorem identiĄes the necessary and sufficient condition
on the senderŠs interim payoff, which strictly generalises the ŚSŠ shape
commonly imposed in the literature. We identify conditions under which
increased alignment of interests between sender and receiver lead to
comparative statics, and study a number of applications.

1 Introduction

The persuasion model of Kamenica and Gentzkow (2011) is by now canonical,
yet has proved intractable. Little is known about the qualitative properties of

∗We are grateful for comments from Dağhan Carlos Akkar, Itai Arieli, Yunus Aybas,
Gabe Carroll, Tommaso Denti, Piotr Dworczak, Michael Eldar, Pia Ennuschat, Matteo
Escudé, Alkis Georgiadis-Harris, Ben Golub, Duarte Gonçalves, Olivier Gossner, Ian
Jewitt, Paul Klemperer, Peter Klibanoff, Anton Kolotilin, Annie Liang, Elliot Lipnowski,
Thomas Mariotti, Laurent Mathevet, Meg Meyer, Wojciech Olszewski, Paula Onuchic,
Marco Ottaviani, Alessandro Pavan, Antonio Penta, Jacopo Perego, Philipp Strack, Bruno
Strulovici, Alex Wolitzky, Kun Zhang and audiences at Arizona State, Berlin, Bonn, Caltech,
Cambridge, Cergy, City, CREST, EUI, Glasgow, LSE, Mannheim, Michigan, Nottingham,
Oxford, Pompeu Fabra, Surrey, Tilburg, UCL, VSET, the 2022 Warwick Theory Workshop,
the 2022 & 2023 Transatlantic Theory Workshops, the Saarland Workshop in Economic
Theory, the 2023 Workshop on the Design of Strategic Interactions, SAET 2022 & 2023,
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optimal signals beyond very special cases, such as when the senderŠs interim
payoff is ŚSŠ-shaped or the state is binary.

In this paper, we advance our understanding of optimal signals in the
canonical persuasion model by changing the question: rather than ask what
optimal signals look like, we ask how they vary with economic primitives.
Concretely, we pose and answer the comparative-statics question: what shifts
of model primitives, speciĄcally of the senderŠs interim payoff, lead her
optimally to choose a more informative signal?

Recall that the persuasion model features an uncertain state of the world,
whose distribution is called the prior, and a character called the sender. The
sender Ćexibly designs what will and wonŠt be revealed about the state, by
choosing a signal. The modelŠs primitives are the prior and the senderŠs
interim payoff function, which maps each posterior belief into an expected
payoff. (This interim payoff is a reduced-form description of a downstream
interaction, typically involving other players called ŚreceiversŠ.)

Motivated by applications, we focus on the case in which the senderŠs
interim payoff depends on only one moment of the posterior beliefŮwithout
loss, the mean. This Śsingle-momentŠ assumption is maintained in much of
the recent literature.

Our Ąrst theorem shows that a coarse notion of Śless convex thanŠ char-
acterises Śnon-decreasingŠ comparative statics: coarsely more convex interim
payoffs are exactly those that lead no less informative signals to be chosen
by the sender, whatever the prior.

Our main theorem characterises what more is needed to obtain increasing
comparative statics: it identiĄes a property of interim payoffs that is necessary
and sufficient for coarse-convexity shifts to cause more informative signals
to be chosen, whatever the prior. This property, the crater property, is a
simple geometric condition that strictly generalises the ŚSŠ shape commonly
assumed in the literature.

A string of further results shows that our main theorem is robust. We fur-
ther show that shifts of the prior cannot produce robust comparative statics,
and that relaxing the Śsingle-momentŠ assumption also yields impossibility.

The crater property is demanding. Nevertheless, we show that it is
satisĄed in a number of applications, permitting new comparative-statics con-
clusions to be drawn about the problems of persuading a privately informed
receiver (Kolotilin, Mylovanov, Zapechelnyuk & Li, 2017), persuading voters
(à la Alonso & Câmara, 2016), designing (health) risk warnings (Mariotti,
Schweizer, Szech & von Wangenheim, 2023), costly information acquisition
(e.g. Ravid, Roesler & Szentes, 2022), discretionary delegation (e.g. Xu, 2024),
and persuasion with choice.
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Finally, we ask whether and when increased alignment of interests between
the sender and a receiver (who takes an action) yields a coarse-convexity
shift, and thus potentially greater information-provision. We identify a simple
condition that is sufficient and almost necessary.

1.1 Related literature

The persuasion model was introduced by Kamenica and Gentzkow (2011),
with precedents in Aumann and Maschler (1968/1995), Brocas and Carrillo
(2007) and Rayo and Segal (2010). A great deal of effort has been devoted
to characterising optimal signals, yielding sharp descriptions of information-
provision in a few special cases as well as some high-level general insights.1

Comparative statics has been an open question. It has been answered only
in a handful of special cases, each of which concerns a particular sort of shift
of interim payoffs and restricts attention either to ŚSŠ-shaped interim payoffs
(Kolotilin, Mylovanov & Zapechelnyuk, 2022), to binary priors (Yoder, 2022),
or both (Gitmez & Molavi, 2023). Our theorems nest all of these cases, as
we detail in §4.6 below.

We are informed and inspired by the general theory of monotone compar-
ative statics (e.g. Topkis, 1978; Milgrom & Shannon, 1994; Quah & Strulovici,
2009). The results of that literature turn out to be of limited use for obtain-
ing our main theorem, howeverŮour proofs instead exploit the particular
structure of the persuasion model. A detailed discussion of how our analysis
relates to the comparative-statics literature is given in appendix J.

At a high level, our work bears a kinship with Anderson and Smith
(2024). Like us, these authors consider a canonical model (BeckerŠs (1973)
marriage model) in which optimal/equilibrium outcomes have proved difficult
to characterise outside of very special cases, and make progress by instead
posing and answering a comparative-statics question.

1.2 Roadmap

We describe the persuasion model in the next section. In §3, we characterise
Śnon-decreasingŠ comparative statics in terms of a coarse notion of Śless convex
thanŠ (Theorem 1). We then (§4) give necessary and sufficient conditions
for ŚincreasingŠ comparative statics (Theorem 2 and several propositions).

1See e.g. Kolotilin (2014, 2018), Dworczak and Martini (2019), Kleiner, Moldovanu
and Strack (2021), Arieli, Babichenko, Smorodinsky and Yamashita (2023), Dworczak and
Kolotilin (2022) and Kolotilin, Corrao and Wolitzky (2024).
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In §5 we consider shifts of the prior, and in §6 we drop the Śsingle-momentŠ
assumption. We conclude in §7 by studying alignment and applications.

2 The persuasion model

There is an uncertain state of the world, formally a random variable taking
values in a bounded interval [x, x̄]. We assume without loss of generality
that x = 0 and x̄ = 1. We shall use the term distribution to refer to CDFs
[0, 1] → [0, 1]. We write F0 for the distribution of the state, and refer to it as
Śthe prior (distribution)Š. For two distributions F and G, recall that F is a
mean-preserving contraction of G exactly if

∫ x

0
F ≤

∫ x

0
G for every x ∈ [0, 1], with equality at x = 1,

or equivalently iff
∫
ψdF ≤

∫
ψdG for every convex ψ : [0, 1] → R.2

A sender chooses a signal, i.e. a random variable jointly distributed with
the state.3 Given a signal, each signal realisation induces a posterior belief via
BayesŠs rule, whose expectation we call the posterior mean. Each signal thus
induces a random posterior mean, with some distribution. Call a distribution
feasible (given F0) iff it is the posterior-mean distribution induced by some
signal. Kolotilin (2014, Proposition 1) showed that the feasible distributions
are precisely the mean-preserving contractions of the prior F0.4

The senderŠs (interim) payoff at a given realised posterior belief is assumed
to depend only on its mean: her payoff at posterior mean m ∈ [0, 1] is u(m),
where u : [0, 1] → R is upper semi-continuous. Her problem is to choose
among the feasible distributions F to maximise her expected payoff

∫
udF .

Remark 1. Our assumption that only the mean matters is motivated by
applications, where it is common for payoffs to depend on a single moment
of the posterior distributionŮwithout loss, the mean.5 This Śsingle-momentŠ
assumption is maintained in much of the recent persuasion literature. We
relax it in §6 below.

2See e.g. Shaked and Shanthikumar (2007, §3.A).
3Formally, a signal is (M,π), where M is a compact metric space and π is a Borel

measurable map [0, 1] → ∆(M), where ∆(M) is set of all the Borel probabilities on M ,
with the topology of weak convergence. The interpretation is that M is a set of messages,
and that π(x) ∈ ∆(M) is the distribution of messages sent if the state is x ∈ [0, 1].

4This result may be traced to Hardy, Littlewood and Pólya (1929) and Blackwell (1951).
5This is without loss because if payoffs depend on the interim expectation of f(X),

where X is the state of the world and f : [0, 1] → R is continuous, then we may re-deĄne
the state of the world to be Y := f(X).
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2.1 Informativeness

DeĄnition 1. For distributions F and G, we call F less informative than G
exactly if F is a mean-preserving contraction of G.

This captures informativeness in the spirit of Blackwell: a less informative
distribution is precisely one that is preferred ex-ante by every expected-utility
decision-maker who cares about the state only through its mean.6

Since there need not be a unique optimal posterior-mean distribution,
comparative statics requires comparing sets of distributions. We handle this
in standard fashion by using the weak set order: for two sets S, S′ of feasible
distributions, we call S lower than S′ exactly if for any F ∈ S and G ∈ S′,
there is a distribution in S′ that is more informative than F , and there is a
distribution in S that is less informative than G. We say that S is strictly
lower than S′ exactly if S is lower than S′ and S′ is not lower than S. Finally,
we call S′ (strictly) higher than S exactly if S is (strictly) lower than S′.

2.2 Interpretation

The interim payoff u : [0, 1] → R is a reduced-form object, capturing
the (expected) payoff consequences for the sender of whatever downstream
interaction takes place after her chosen signal realises.

In the simplest case, the downstream interaction involves a (single)
receiver taking an action. Formally, there is a non-empty set A of actions,
and the senderŠs and receiverŠs interim payoffs US(a,m) and UR(a,m) depend
on the chosen action a ∈ A and on the mean m ∈ [0, 1] of their (posterior)
belief about the state.7 When the posterior mean is m ∈ [0, 1], the receiver
chooses action A(m) ∈ arg maxa∈A UR(a,m), so the senderŠs interim payoff is
u(m) := US(A(m),m). The assumption that u is upper semi-continuous can
be micro-founded by assuming that (A is such that) the receiver breaks ties
in the senderŠs favour. This simple senderŰreceiver model of a downstream
interaction nests some but not all of our applications in §7.

Our analysis will be robust to the details of the downstream interaction,
giving conditions directly on the interim payoff u that are necessary and
sufficient for comparative statics. These conditions may then be checked in
particular applications; we give several examples in §7 below.

6Explicitly, F is less informative than G exactly if for any non-empty (action) set
A and any (payoff) U : A × [0, 1] → R such that U(a, ·) is affine for each a ∈ A,
we have

∫
supa∈A U(a,m)F (dm) ≤

∫
supa∈A U(a,m)G(dm). This is because a function

ψ : [0, 1] → R is convex iff it equals m 7→ supa∈A U(a,m) for some such A and U .
7Equivalently, ex-post payoffs uS(a, x) and uR(a, x) depend on the action a ∈ A and

the state x ∈ [0, 1], and uS(a, ·) and uR(a, ·) are affine for each a ∈ A.
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3 ŚNon-decreasingŠ comparative statics

In this section, we ask a preliminary Śnon-decreasingŠ comparative-statics
question: what shifts of the senderŠs interim payoff u ensure that she does not
choose a strictly less informative distribution? Intuition suggests that (local)
convexity should be decisive, since a Śmore convexŠ u embodies a greater
liking for informative distributions. We validate this intuition, by deĄning a
new coarse notion of relative convexity and proving that it is the necessary
and sufficient condition for Śnon-decreasingŠ comparative statics.

The deĄnition is as follows:

DeĄnition 2. For functions u, v : [0, 1] → R, we say that u is coarsely less
convex than v exactly if for any x < y in [0, 1] such that

u(αx+ (1 − α)y) ≤ αu(x) + (1 − α)u(y) (u : α)

holds for every α ∈ (0, 1), we also have

v(αx+ (1 − α)y) ≤ αv(x) + (1 − α)v(y) (v : α)

for every α ∈ (0, 1), and furthermore any α ∈ (0, 1) at which the inequality
(u : α) is strict is also one at which (v : α) is strict.

We call v coarsely more convex than u exactly if u is coarsely less convex
than v. By inspection, the relation Ścoarsely less convex thanŠ is transitive
and reĆexive, but not anti-symmetric.

There is a simple sufficient condition:

Lemma 1. For functions u, v : [0, 1] → R, if v(x) = Φ(u(x), x) for every
x ∈ [0, 1], where Φ : R × [0, 1] → R ∪ ¶∞♢ is convex with Φ(·, x) strictly
increasing for every x ∈ (0, 1), then u is coarsely less convex than v.

Proof. Fix x < y in [0, 1] and α ∈ (0, 1) such that u(αx + (1 − α)y) ≤(<)
αu(x) + (1 − α)u(y). Since αx + (1 − α)y ∈ (0, 1), Φ(·, αx + (1 − α)y) is
strictly increasing, so

v(αx+ (1 − α)y) ≤(<) Φ

αu(x) + (1 − α)u(y), αx+ (1 − α)y



≤ αv(x) + (1 − α)v(y),

where the latter inequality follows from the convexity of Φ. ■
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Thus u is coarsely less convex than v whenever u is less convex than v
in the conventional sense: v = ϕ ◦ u for some convex and strictly increasing
function ϕ : R → R ∪ ¶∞♢ (to see this, take Φ(k, x) := ϕ(k) in Lemma 1). A
different sufficient condition for u to be coarsely less convex than v, which
features in the literature on costly information acquisition (see §7.5 below),
is that v = u+ψ for some convex ψ : [0, 1] → R (take Φ(k, x) := k+ψ(x) in
Lemma 1). In case u and v are twice continuously differentiable, the former
sufficient condition is equivalent to u′′ · ♣v′♣ ≤ v′′ · ♣u′♣, and the latter to
u′′ ≤ v′′. For later reference, we summarise these Ąndings in a corollary:

Corollary 1. For u, v : [0, 1] → R, u is coarsely less convex than v whenever
either (i) v = ϕ ◦u for some convex and strictly increasing ϕ : R → R ∪ ¶∞♢
or (ii) v = u+ ψ for some convex ψ : [0, 1] → R.

We show in appendix K that Lemma 1 is nearly tight, by giving a partial
converse, as well as an exact characterisation of coarse-convexity-increasing
transformations Φ : R × [0, 1] → R.

The following result characterises Śnon-decreasingŠ comparative statics.

Theorem 1. Let u, v : [0, 1] → R be upper semi-continuous. If u is coarsely
less convex than v, then for any distribution F0,

arg max
F feasible given F0

∫
udF

is not strictly
higher than

arg max
F feasible given F0

∫
vdF. (⋆)

Conversely, if (⋆) holds for every distribution F0, then u must be coarsely
less convex than v.

The proof is in appendix B. The second half (necessity) is straightforward.
For sufficiency, we prove that if u is coarsely less convex than v, then
F 7→

∫
udF is interval-dominated by F 7→

∫
vdF ; this requires a substantial

argument, the key ingredients of which are KarrŠs (1983) theorem on extreme
points and (a general version of) BlackwellŠs theorem (see e.g. Phelps, 2001,
p. 94). Given this, a standard comparative-statics theorem due to Quah and
Strulovici (2007) yields that (⋆) must hold for every distribution F0.

4 ŚIncreasingŠ comparative statics

In this section, we ask what is required for a shift of the senderŠs interim
payoff to lead her optimally to choose a more informative distribution. By
Theorem 1, it is necessary that the payoff become coarsely more convex.

7



This condition is not sufficient if all upper semi-continuous interim payoffs
u, v : [0, 1] → R and all prior distributions F0 are considered. (We will see
this explicitly §4.2 below, in a sketch proof.) Our question is thus: on
what restricted domains of interim payoffs u, v and/or priors F0 are coarse-
convexity shifts sufficient for ŚincreasingŠ comparative statics?

Our main result (Theorem 2) describes the maximal domain of interim
payoffs on which ŚincreasingŠ comparative statics holds. Concretely, it iden-
tiĄes the condition on the interim payoff u that is necessary and sufficient
for ŚincreasingŠ comparative statics to hold under any prior F0 between u
and any coarsely more convex v. This condition is called the crater property.
(The result features some mild regularity conditions on payoffs and priors.)

We also exhibit a suitable domain of priors. A binary prior is one with a
two-point support; under such a prior, the state is effectively binary. We show
(Proposition 1) that for ŚincreasingŠ comparative statics between payoffs u
and v to hold across all binary priors F0, it is both necessary and sufficient
that u be coarsely less convex than v.

We then show that Theorem 2 is robust (so Proposition 1 is tight): the
crater property is indispensable for ŚincreasingŠ comparative statics even
when only a restricted domain of priors is considered, so long as that domain
contains at least one non-binary prior (Proposition 2). In other words, binary
priors are special: they are the only ones for which ŚincreasingŠ comparative
statics can be obtained without the crater property. The crater property
remains indispensable when only more speciĄc shifts of u are considered, and
when the sender is subject to constraints (see appendices L and M).

The crater property is demanding. A key message of this section is
therefore that comparative statics are often highly prior-sensitive. On the
other hand, the crater property does often hold in applications, allowing
comparative-statics conclusions to be drawn; we show this in §7 below.

We next ask the mirror image of the question answered by Theorem 2:
what condition on an interim payoff v is necessary and sufficient for Śde-
creasingŠ comparative statics to hold under any prior F0 between v and any
coarsely less convex u? The answer (Proposition 3) is that v must be trivial:
either concave or strictly convex. This Ąnding reinforces the key message
that comparative statics are prior-sensitive in the persuasion model.

Finally, we consider the special case of S-shaped interim payoffs, showing
how our results generalise three known comparative-statics results (Kolotilin,
Mylovanov & Zapechelnyuk, 2022; Yoder, 2022; Gitmez & Molavi, 2023).
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4.1 Regularity

We shall mostly restrict attention to moderately well-behaved payoffs:

DeĄnition 3. Call a function u : [0, 1] → R regular iff (i) u is continuous
and possesses a continuous and bounded derivative u′ : (0, 1) → R, and
(ii) [0, 1] may be partitioned into Ąnitely many intervals, on each of which u
is either affine, strictly convex, or strictly concave.

Part (ii) of regularity merely rules out pathological functions whose
curvature changes sign inĄnitely often; the same condition is imposed by
Dworczak and Martini (2019).

For a regular function u : [0, 1] → R, we extend the derivative u′ :
(0, 1) → R to a continuous map [0, 1] → R by letting u′(0) be the right-hand
derivative of u at 0 and u′(1) the left-hand derivative at 1.

4.2 Maximal domain of interim payoffs

The following property will be the key to comparative statics.

DeĄnition 4. A regular function u : [0, 1] → R satisĄes the crater property
exactly if for any x < y < z < w in [0, 1] such that u is concave on [x, y] and
[z, w] and strictly convex on [y, z], the tangents to u at x and at w cross at
coordinates (X,Y ) ∈ R

2 satisfying y ≤ X ≤ z and Y ≤ u(X).

The property is illustrated in Figure 1. Loosely, it requires that any
ŚvalleyŠ of u be sufficiently steep-walled, wide and shallowŮlike a crater.

The crater property is demanding. It rules out multiple interior strict
local maxima, for example. More generally, the crater property demands
affine-closedness (as deĄned by Dworczak & Martini, 2019).

Nevertheless, there are important classes of interim payoffs which satisfy
the crater property. Call a function S-shaped iff it is continuous and either
strictly convex on [0, x] and concave on [x, 1] or concave on [0, x] and strictly
convex on [x, 1], for some x ∈ [0, 1]. Examples include the logit and probit
functions, and all unimodal CDFs. Much of the persuasion literature focusses
on S-shaped interim payoffs u, as this allows for a sharp characterisation of
optimal distributions.8 All S-shaped functions satisfy the crater property.

More generally, the crater property is satisĄed by all W-shaped functions,
meaning continuous functions that are strictly convex on [0, x] and on [y, 1]
and concave on [x, y], for some x ≤ y in [0, 1]. Examples of such functions
include the densities of the Beta, Normal, Laplace and Cauchy distributions.

8In particular, Śone-sided censorshipŠ distributions are optimal in this case (Kolotilin,
2014, p. 14). See also Kolotilin, Mylovanov and Zapechelnyuk (2022).
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x y z wX

Y
u

(a) A violation.

x y z wX

Y

u

(b) Not a violation.

Figure 1: Illustration of the crater property.

Theorem 2. Let u : [0, 1] → R be regular. If u satisĄes the crater property,
then for every regular v : [0, 1] → R that is coarsely more convex than u and
every atomless convex-support distribution F0,

arg max
F feasible given F0

∫
udF is lower than arg max

F feasible given F0

∫
vdF. (⋆⋆)

Conversely, if (⋆⋆) holds for every regular v that is coarsely more convex
than u and every atomless convex-support distribution F0, then u satisĄes
the crater property.

In short, the crater property is necessary and sufficient for coarse-convexity
shifts to yield ŚincreasingŠ comparative statics. Since the crater property is
demanding, this may be viewed as a negative result: comparative statics is
prior-sensitive, so that conclusions often cannot be drawn robustly across
all (atomless and convex-support) priors F0. But there is a bright side: the
crater property does hold in some applications, and in such cases Theorem 2
delivers comparative statics. We treat several such applications in §7 below.

We view the restriction to atomless and convex-support priors F0 as a
mild form of regularity.9 It important to note that although the theorem
focusses on prior distributions that have neither atoms nor support gaps, it

9A simple way of dropping this restriction is to replace it with the requirement that there
be a unique distribution optimal given F0 for u and for v. With this substitution, Theorem 2
remains true as stated. The Ąrst (sufficiency) half follows from Theorem 2 and the facts

10



x y z wx′ w′X

Y
u

p

v

Figure 2: Sketch proof of the
converse part of Theorem 2.

imposes no such restrictions on what distributions the sender may choose:
any distribution that is less informative than the prior F0 is permitted.

Theorem 2 is proved in appendix C. The proof of the Ąrst part (the
sufficiency of the crater property) works with the dual of the persuasion
problem (see Dworczak & Martini, 2019). To convey why the crater property
is necessary for comparative statics, we now give a sketch of the proof of the
converse part of Theorem 2.

Sketch proof of the converse part. Suppose that u is regular and violates the
crater property; we shall Ąnd a regular and coarsely more convex v : [0, 1] → R

and an atomless convex-support distribution F0 such that (⋆⋆) fails.
Since u violates the crater property (refer to Figure 2), there are x′ <

x < y < z < w < w′ in [0, 1] such that u is concave on [x′, y] and [z, w′] and
strictly convex on [y, z], and (assuming that u is affine on neither [x′, y] nor
[z, w′], which is the interesting case) there is a function p : [0, 1] → R and an
X ∈ (x,w) such that p is affine on [x′, X] and on [X,w′], weakly exceeds u
on [x′, w′], strictly exceeds u at X, and is tangent to u at x and at w. Let
F0 be a distribution that is atomless with support [x′, w′], and

1

F0(X)

∫ X

0
ξF0(dξ) = x and

1

1 − F0(X)

∫ 1

X
ξF0(dξ) = w.

Since u′ is bounded, we may choose a regular v : [0, 1] → R that coincides

that when the space of distributions has the topology of weak convergence, it is sequentially
compact (by ProkhorovŠs theorem, e.g. Theorem 5.1 in Billingsley (1999)), the atomless
convex-support distributions form a dense subset, F0 7→ arg maxF feasible given F0

∫
udF is

upper hemi-continuous, and the binary relation Śis less informative thanŠ is continuous.

11



with u on [X, 1] and that weakly exceeds u and is strictly convex on [0, X]
(refer to Figure 2). It is easily seen that v is coarsely more convex than u.

As v is S-shaped, an Śupper censorshipŠ distribution G is optimal by
KolotilinŠs (2014, p. 14) well-known result: for a ∈ (0, 1) satisfying

v(b) − v(a)

b− a
= v′(b), where b :=

1

1 − F0(a)

∫ 1

a
ξF0(dξ),

this distribution G fully reveals [0, a) and pools [a, 1].10 A simple graphical
argument shows that a must be strictly smaller than X.11 Thus the optimal
distribution G pools some states to the left of X with states to its right.

For the payoff u, however, it is strictly sub-optimal to pool states on
either side of X together. In particular, the distribution F that reveals (only)
whether the state exceeds X is strictly better than any distribution that
pools states on either side of X together, because p is kinked at X.12

Thus (⋆⋆) fails: no distribution optimal for u given F0 is less informative
than G, since the latter pools across X while the former do not. ■

Remark 2. The crater property is local in character: it can be checked by
separately inspecting each maximal interval [x,w] on which u is concaveŰ
strictly convexŰconcave. This is noteworthy since it contrasts with the global
character of the persuasion problem, in which a change of u on an interval
I ⊆ [0, 1] can impact optimal information-provision about states far from I.

4.3 The domain of binary priors

Call a distribution F binary iff its support comprises at most two values:
F = p1[x,1] +(1−p)1[y,1] for some p, x, y ∈ [0, 1]. When the prior distribution
F0 is binary, the persuasion model is equivalent to a simpler model in which

10Explicitly, G = F0 on [0, a), G = F0(a) on [a, b) and G = 1 on [b, 1]. G is optimal since
for any distribution H feasible given F0, letting q : [0, 1] → R match v on [0, a] and match
x 7→ v(a) + (x− a)v′(b) on [a, 1],

∫
vdG =

∫
qdG =

∫
qdF0 ≥

∫
qdH ≥

∫
vdH, where the

steps hold because, respectively, v = q G-a.e., q is affine on [a, 1], q is convex and H is
feasible given F0, and q ≥ v.

11We have b < w, since b ≥ w would imply both a < X (for tangency, as p > u = v at
X) and a ≥ X (as b is the mean conditional on the event [a, 1]). Then since b (w) equals
the mean conditional on the event [a, 1] ([X, 1]), we must have a < X.

12Explicitly, F = 0 on [0, x), F = F0(X) on [x,w) and F = 1 on [w, 1]. F is (strictly)
better than any distribution H (with

∫
X

0
H <

∫
X

0
F0) that is feasible given F0 since∫

udF =
∫
pdF =

∫
pdF0 ≥(>)

∫
pdH ≥

∫
udH, where the steps hold because, respect-

ively, u = p F -a.e., p is affine on [0,X] and on [X, 1], p is convex and H is feasible given
F0 (and p is affine on no open interval I ∋ X and

∫
X

0
H <

∫
X

0
F0), and p ≥ u.
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there are just two states, and the senderŠs interim payoff at posterior belief
(q, 1 − q) is u(q), for some upper semi-continuous function u : [0, 1] → R.

Proposition 1. Let u, v : [0, 1] → R be upper semi-continuous. If u is
coarsely less convex than v, then for any binary distribution F0,

arg max
F feasible given F0

∫
udF is lower than arg max

F feasible given F0

∫
vdF. (⋆⋆)

Conversely, if (⋆⋆) holds for every binary distribution F0, then u must be
coarsely less convex than v.

Thus restricting attention to binary priors obviates the need for the crater
property, or indeed for any condition at all on u. The proof is in appendix D.

4.4 Robustness and tightness

While Theorem 2 asserts that u : [0, 1] → R must satisfy the crater property
if coarse-convexity shifts are to lead to greater information-provision under
any prior, Proposition 1 shows that no condition on u is required if attention
is restricted to binary priors. In this section, we show that Theorem 2 is
robust (so Proposition 1 is tight): binary priors are the only priors under
which the crater property can be dispensed with.

Call a function u : [0, 1] → R M-shaped iff it is continuous and is concave
on [0, x] and on [y, 1] and strictly convex on [x, y], for some x ≤ y in [0, 1].
Unlike S and W shapes, M-shaped functions can violate the crater property.

Proposition 2. For any distribution F0 that is not binary, there are regular
u, v : [0, 1] → R such that u is coarsely less convex than v, and yet (⋆⋆) fails.
These u and v may be chosen to be M- and S-shaped, respectively.

In other words, binary distributions F0 are the only ones for which (⋆⋆)
holds between any u and any coarsely more convex v, even if attention is
restricted to very well-behaved u, v : [0, 1] → R (in particular regular and,
respectively, M- and S-shaped). ŚIncreasingŠ comparative statics can thus
be guaranteed only by either restricting attention to interim payoffs u that
satisfy the crater property (as in Theorem 2) or by restricting attention to
binary prior distributions F0 (as in Proposition 1).

The proof of Proposition 2 is in appendix E. The logic is close to that of
the sketch proof of the necessity part of Theorem 2 (§4.2 above).
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4.5 ŚDecreasingŠ comparative statics

The question answered by Theorem 2 has a symmetric counterpart: what
is the necessary and sufficient condition on an interim payoff v for every
coarse-convexity decrease (to some u) to yield a decrease of informativeness,
regardless of the prior distribution F0? The answer is as follows.

Proposition 3. Let v : [0, 1] → R be regular. If v is either concave or
strictly convex, then for every regular u : [0, 1] → R that is coarsely less
convex than v and every atomless convex-support distribution F0,

arg max
F feasible given F0

∫
udF is lower than arg max

F feasible given F0

∫
vdF. (⋆⋆)

Conversely, if (⋆⋆) holds for every regular u that is coarsely less convex than
v and every atomless convex-support distribution F0, then v is either concave
or strictly convex.

In other words, ŚdecreasingŠ comparative statics are highly prior-sensitive:
a coarse-convexity decrease from v yields decreased informativeness whatever
the prior F0 only in the trivial cases of a concave v (when full pooling is
optimal) or a strictly convex v (when full revelation is uniquely optimal).

The proof is in appendix F. The Ąrst half is close to obvious. For (the
contra-positive of) the second half, the key observation is that if v is neither
concave nor strictly convex, then it must be S-shaped on some interval,
in which case we may Ąnd a regular, M-shaped and coarsely less convex
u : [0, 1] → R as in Figure 2 (p. 11), so that (⋆⋆) fails by the logic of the
sketch proof of the necessity part of 2 (§4.2 above).

4.6 Special cases

Our results generalise the comparative-statics results of Kolotilin, Mylovanov
and Zapechelnyuk (2022), Yoder (2022) and Gitmez and Molavi (2023). The
Ąrst paperŠs Proposition 1 assumes that u is S-shaped13 and less convex than
v in the conventional sense (v = ϕ ◦u for some convex and strictly increasing
ϕ : R → R ∪ ¶∞♢). Theorem 2 shows that it suffices for u to be W-shaped,
and more generally that the crater property is enough. Similarly, u need only
be coarsely less convex than v, which admits e.g. convexity of v − u as an
alternative sufficient condition. Similarly for the authorsŠ Proposition 2.

Call an interim payoff u : [0, 1] → R forward S-shaped iff it is regular and
is strictly convex on [0, x] and strictly concave on [x, 1], for some x ∈ [0, 1].

13Their deĄnition of ŚS-shapedŠ is slightly weaker than ours.
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Suppose that u is forward S-shaped and that u′ is more convex than v′ in
the conventional sense: u′ = ϕ ◦ v′ for some convex and strictly increasing
ϕ : R → R ∪ ¶∞♢. These hypotheses imply that u is coarsely less convex
than v.14 Thus by Theorem 2, less information is provided under u than
under v, whatever the prior. The same is true if u is backward S-shaped
(i.e. x 7→ u(1 − x) is forward S-shaped) and u′ is less convex than v′. These
Ąndings generalise the main result of Gitmez and Molavi (2023), which draws
the same conclusion under the additional assumption that the prior is binary.

Finally, Yoder (2022) likewise restricts attention to binary priors, and
assumes that v − u is convex. This is a special case of Proposition 1.

5 Shifts of the prior distribution

Our main results concerned comparative statics with respect to shifts of
the senderŠs interim payoff u. In this section, we consider shifts of the other
primitive of the persuasion model: the distribution F0 of the state.

Shifts of F0 may be interpreted as changes in the information available to
the sender. In particular, if the sender secures better access to information
about the latent state of the world (whose distribution is Ąxed), this manifests
precisely as increased informativeness of F0.

Proposition 4. There are no atomless distributions F0 ̸= G0 such that

arg max
F feasible given F0

∫
udF is lower than arg max

F feasible given G0

∫
udF (†)

holds for every regular and S-shaped u : [0, 1] → R.

In other words, the effect on optimal information-provision of a shift of
the prior distribution F0 depends Ąnely on the interim payoff u: there are

14Clearly v is also forward S-shaped, with the same inĆection point x̄. For any x ∈ [0, 1),
deĄne Rx

u : [x, 1] → R by Rx
u(y) := [u(y) − u(x)]/(y − x) for each y ∈ (x, 1] and Rx

u(x) :=
limy↓x R

x
u(y). For any y ∈ (x, 1], since u is forward S-shaped, Rx

u is increasing on [x, y]
iff Rx

u is strictly increasing on [x, y] iff u(αx+ (1 − α)y) ≤ αu(x) + (1 − α)u(y) for every
α ∈ [0, 1] iff u(αx+ (1 −α)y) < αu(x) + (1 −α)u(y) for every α ∈ (0, 1). The same applies
to Rx

v , analogously deĄned. What must be shown is therefore that for any x < y in [0, 1],
if Rx

u is increasing on [x, y], then so is Rx
v . So Ąx any x < y in [0, 1]. Since Rx

u and Rx
v are

strictly quasi-concave, it suffices to show that their respective maximisers z and w satisfy
z ≤ w. This is immediate if w = 1, so assume that w < 1. The Ąrst-order conditions are
Rx

u(z) ≤ u′(z), with equality if z < 1, and Rx
v(w) = v′(w). Thus since z, w ∈ [x̄, 1], z ≤ w

holds iff Rx
u(w) ≥ u′(w). And indeed Rx

u(w) = (w− x)−1
∫ w

x
ϕ ◦ v′ ≥ ϕ((w− x)−1

∫ w

x
v′) =

ϕ(Rx
v(w)) = ϕ(v′(w)) = u′(w) by JensenŠs inequality, since ϕ is convex. This argument is

adapted from Gitmez and Molavi (2023, appendix A).
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no shifts which deliver ŚincreasingŠ comparative statics robustly across all
possible interim payoffs, not even if attention is restricted to the (small and
well-behaved) class of regular and S-shaped interim payoffs.

The proof of Proposition 4 is in appendix G. In the same appendix, we
explain how the atomlessness hypothesis may be dropped.

6 Beyond the Śsingle-momentŠ case

Our analysis has focussed on the salient case in which interim payoffs depend
on only a single moment of the posterior beliefŮwithout loss, the mean.
In this section, we extend our theorems to the general case. We Ąnd that
whereas Theorem 1 extends directly, yielding Śnon-decreasingŠ comparative
statics, the analogue of Theorem 2 is a negative result stating that there is
no hope of ŚincreasingŠ comparative statics beyond the Śsingle-momentŠ case.

6.1 The general persuasion model

In the general Śmulti-momentŠ persuasion model (e.g. Dworczak & Kolotilin,
2022, §4), the uncertain state of the world is a random vector drawn from a
non-empty, compact and convex set E ⊆ R

n, where n ∈ N. By distribution,
we shall mean a CDF R

n → [0, 1] concentrated on E. The distribution of
the state (Śthe priorŠ) is denoted by F0. For distributions F and G, we call
F less informative than G iff

∫
ψdF ≤

∫
ψdG for every convex ψ : E → R.

A sender chooses a signal. Given a signal, each signal realisation induces
a posterior belief via BayesŠs rule, whose expectation (a vector) we call the
posterior mean. Each signal thus induces a random posterior mean, with some
distribution. Call a distribution feasible (given F0) iff it is the posterior-mean
distribution induced by some signal. The feasible distributions are exactly
those that are less informative than the prior F0 (e.g. Phelps, 2001, p. 94).

The senderŠs (interim) payoff at a given realised posterior belief is assumed
to depend only on its mean: her payoff at posterior mean m ∈ E is u(m),
where u : E → R is upper semi-continuous. Her problem is to choose among
the feasible distributions F to maximise her expected payoff

∫
udF .

Remark 3. The special case E ⊆ R is the one studied in the rest of this
paper. The persuasion model of Kamenica and Gentzkow (2011) is the special
case in which E is a simplex, i.e. the convex hull of an affinely independent
set Ω ⊆ R

n,15 and the prior F0 is concentrated on Ω. The interpretation is

15A set S ⊆ Rn is called affinely independent iff it is Ąnite and for any α : S → R such
that

∑
x∈S

α(x) =
∑

x∈S
α(x)x = 0, we have α(x) = 0 for each x ∈ S.
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that Ω = supp(F0) is the set of states of the world, the simplex ∆(Ω) = E is
the set of all possible beliefs about the state, and the interim payoff u is an
arbitrary upper semi-continuous function of the posterior belief.

6.2 Comparative statics

For any non-empty and Ąnite set S ⊆ E, let ∆(S) denote the set of all maps
α : S → [0, 1] such that

∑
x∈S α(x) = 1.

DeĄnition 5. For functions u, v : [0, 1] → R, we say that u is coarsely
less convex than v exactly if for any affinely independent S ⊆ E such that
u(
∑

x∈S α(x)x) ≤
∑

x∈S α(x)u(x) holds for every α ∈ ∆(S), we also have
v(
∑

x∈S α(x)x) ≤
∑

x∈S α(x)v(x) for every α ∈ ∆(S), and furthermore any
α ∈ ∆(S) at which the former inequality is strict is also one at which the
latter inequality is strict.

ŚCoarsely less convex thanŠ admits the same sufficient conditions as in
the Śsingle-momentŠ case: Lemma 1 and Corollary 1 (pp. 6 and 7) remain
true as stated, except with Ś[0, 1]Š and Ś(0, 1)Š replaced by ŚEŠ.

Our Śnon-decreasingŠ comparative-statics result, Theorem 1, remains true
exactly as stated, except with Ś[0, 1]Š replaced by ŚEŠ:

Theorem 1′. Let u, v : E → R be upper semi-continuous. If u is coarsely
less convex than v, then for any distribution F0,

arg max
F feasible given F0

∫
udF

is not strictly
higher than

arg max
F feasible given F0

∫
vdF. (⋆)

Conversely, if (⋆) holds for every distribution F0, then u must be coarsely
less convex than v.

The exact same proof (appendix B) applies, except with Ś[0, 1]Š replaced
by ŚEŠ and binary distributions replaced by distributions with affinely inde-
pendent support, plus a few smaller changes (e.g. replacing ŚRŠ by ŚRnŠ).

Recall (p. 9) our deĄnition of regularity for functions u : [0, 1] → R.
We call a function u : E → R strongly regular iff it is twice continuously
differentiable with bounded derivatives and for all distinct x, y ∈ E, the
map [0, 1] → R given by α 7→ u(αx + (1 − α)y) is regular and not affine.
(We insist on second derivatives and no affine regions in order to to rule out
uninteresting complications.)
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Theorem 2′. Suppose that E is not one-dimensional,16 and let u : E → R

be strongly regular. If u is either strictly concave or strictly convex, then for
every strongly regular v : E → R that is coarsely more convex than u and
every atomless convex-support distribution F0,

arg max
F feasible given F0

∫
udF is lower than arg max

F feasible given F0

∫
vdF. (⋆⋆)

Conversely, if (⋆⋆) holds for every strongly regular v that is coarsely more
convex than u and every atomless convex-support distribution F0, then u is
either strictly concave or strictly convex.

In other words, comparative statics are highly prior-sensitive outside of
the Śsingle-momentŠ case: a coarse-convexity increase from u yields increased
informativeness whatever the prior F0 only in the trivial cases of a strictly
concave u (when full pooling is uniquely optimal) or a strictly convex u
(when full revelation is uniquely optimal). The proof, given in appendix H,
utilises Dworczak and KolotilinŠs (2022) duality techniques.

Proposition 1 (p. 13) similarly fails beyond the Śsingle-momentŠ case:
there exist priors F0 with affinely independent support (the Kamenica and
Gentzkow (2011) special case) such that (⋆⋆) fails for some strongly regular
u, v : E → R with u is coarsely less convex than v.

7 Applications

In this section, we apply our theorems to various economic environments.
In most applications, the senderŠs interim payoff u arises from a receiver

choosing an action at the interim stage, informed by the realisation of the
signal chosen by the sender. The shape of the reduced-form interim payoff u
is then determined by the nature of the conĆict of interest between the sender
and receiver. Motivated by this, we begin (in the next section) by identifying
when a closer alignment of interests makes u coarsely more convex.

In the remainder, we apply our results to derive novel comparative statics
for the problems of persuading a privately informed receiver (Kolotilin,
Mylovanov, Zapechelnyuk & Li, 2017), persuading voters (à la Alonso &
Câmara, 2016), designing (health) risk warnings (Mariotti, Schweizer, Szech
& von Wangenheim, 2023), costly information acquisition (e.g. Ravid, Roesler
& Szentes, 2022), discretionary delegation (e.g. Xu, 2024), and persuasion
with choice.

16The dimension of a convex set E ⊆ Rn is max♣¶S ⊆ E : S affinely independent♢♣ − 1.
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7.1 Alignment and coarse convexity

In this section, we ask whether and when an increased alignment of interests
between the sender and receiver translates into coarse-convexity shifts of the
senderŠs reduced-form interim payoff u.

Recall the senderŰreceiver interpretation from §2.2. There is a non-empty
set A of actions, and the senderŠs and receiverŠs interim payoffs US(a,m) and
UR(a,m) depend on the chosen action a ∈ A and on the mean m ∈ [0, 1] of
their (posterior) belief about the state. When the posterior mean is m ∈ [0, 1],
the receiver chooses action A(m) ∈ A, so the senderŠs reduced-form interim
payoff is u(m) := US(A(m),m). We assume that A : [0, 1] → A is UR-optimal,
i.e. a selection from the correspondence m 7→ arg maxa∈A UR(a,m).

We consider shifts of the senderŠs interim payoff from (a,m) 7→ US(a,m)
to (a,m) 7→ Φ

(
US(a,m), UR(a,m),m

)
, where Φ : R

2 × [0, 1] → R is strictly
increasing in its Ąrst argumentŮthat is, Φ is a utility transformation. We
are interested in alignment-increasing utility transformations Φ, meaning
those that are increasing in their second argument (the receiverŠs payoff).

Proposition 5. Let Φ : R
2 × [0, 1] → R be convex with Φ(·, ℓ, x) strictly

increasing and Φ(k, ·, x) increasing for all k, ℓ ∈ R and x ∈ [0, 1]. Then for
any action set A, any senderŠs and receiverŠs payoffs US , UR : A × [0, 1] → R,
and any UR-optimal A : [0, 1] → R, the map x 7→ US(A(x), x) is coarsely
less convex than the map x 7→ Φ(US(A(x), x), UR(A(x), x), x).

In words, applying a convex alignment-increasing transformation Φ to the
senderŠs payoff US always makes her reduced-form interim payoff u coarsely
more convex. Convexity is satisĄed by many natural alignment-increasing
transformations, such as (k, ℓ, x) 7→ k + ρℓ for ρ ≥ 0.

The proof is in appendix I. The convexity-of-Φ hypothesis is essential,
indeed nearly necessary: Proposition 5 has a partial converse similar to that
of Lemma 1 (see appendix K). It is therefore not generally true that increased
alignment of interests leads to coarse-convexity shifts.

Example 1. Consider the alignment-increasing transformation Φ deĄned
by Φ(k, ℓ, x) := k + ϕ(ℓ) for all k, ℓ ∈ R and x ∈ [0, 1], where ϕ : R → R

is strictly increasing. It is natural for ϕ to be concave, as this captures
inequality-aversion in the senderŠs evaluation of (distributions of interim)
receiver welfare. But when ϕ is concave and not convex, x 7→ US(A(x), x)
fails to be coarsely less convex than x 7→ Φ(US(A(x), x), UR(A(x), x), x) for
some US , UR : A × [0, 1] → R and some UR-optimal A : [0, 1] → A.17

17In particular, for any UR and UR-optimal A such that the (convex) function x 7→
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7.2 Persuading a privately informed receiver

In the model of Kolotilin, Mylovanov, Zapechelnyuk and Li (2017), the
receiver chooses whether to participate (a = 1) or not (a = 0). Participation
may mean purchasing a good (at a Ąxed price), for example.

The receiverŠs inside option (i.e. her payoff from participating) is uncertain,
with distribution F0. Her outside option is privately known to her; from the
senderŠs perspective, it is a random variable that is statistically independent
of the inside option, with a distribution denoted by G. The sender values
participation: her payoff is 1 if the receiver participates, and 0 otherwise.

The sender chooses a signal. No generality is lost by ruling out screening
mechanisms that offer a menu of signals, even though the receiver has private
information (Kolotilin, Mylovanov, Zapechelnyuk & Li, 2017, Theorem 1).

At the interim stage, the receiver participates iff r ≤ m, where r is her
outside option and m ∈ [0, 1] is the mean of her posterior belief about the
inside option. The senderŠs interim expected payoff is thus u(m) := G(m)
when the posterior mean is m ∈ [0, 1]. The function u : [0, 1] → R is S-shaped
if the outside-option distribution G is unimodal.

Since a monotone-likelihood-ratio-higher distribution is exactly one that
is more convex, Theorem 2 implies that the sender optimally provides more
information whenever the outside-option distribution shifts from a unimodal
G to a monotone-likelihood-ratio-higher distribution H. This result, due to
Kolotilin, Mylovanov and Zapechelnyuk (2022, §4.2), may be reĄned using
our theorems. The shift from G to H can be more general: assuming for
simplicity that G,H admit densities g, h, it suffices e.g. for h − g to be
increasing (by Corollary 1, p. 7) or for G to be less diffuse than H in the
sense of having a more convex density (see §4.6). Furthermore, unimodality
may be weakened to W-shapedness.

Applying Proposition 5 and Theorem 2 yields that given unimodality,
any convex increase of alignment leads the sender to provide more inform-
ation. An example is when the senderŠs interim payoff shifts from G to
m 7→ G(m) + ϕ(W (m)), where ϕ : R → R is increasing and convex, and
W (m) :=

∫
max¶r,m♢G(dr) denotes the receiverŠs interim expected payoff

(not conditioned on her realised outside option). This example nests Kolo-
tilin, Mylovanov and ZapechelnyukŠs (2022) Proposition 3(i), in which ϕ is
assumed affine. Increases of alignment that are not convex may not produce

UR(A(x), x) is less convex than and not more convex than ϕ−1 in the conventional sense,
the map x 7→ US(A(x), x) − Φ(US(A(x), x), UR(A(x), x), x) = −ϕ(UR(A(x), x)) is convex
and not concave, so by Corollary 1 (p. 7), x 7→ US(A(x), x) is coarsely more convex than
and not coarsely less convex than x 7→ Φ(US(A(x), x), UR(A(x), x), x).
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comparative statics: if ϕ is concave and not convex, then increased alignment
may lead to strictly less information-provision, by Example 1 and Theorem 1.

We may alternatively interpret this model as having a population of receiv-
ers whose outside options are heterogeneous, with cross-sectional distribution
G. In this case, alignment should be deĄned in terms of individual receiversŠ
payoffs max¶r,m♢ rather than the average payoff W (m). When alignment in-
creases in the sense that the senderŠs payoff from (non-)participation changes
from 1 (0) to 1 + ϕ(max¶r,m♢) (0 + ϕ(max¶r,m♢)), where ϕ : R → R is
increasing, the senderŠs interim payoff shifts from u = G to v = G + ψ,
where ψ(x) :=

∫
ϕ(max¶r, x♢)G(dr) for each x ∈ [0, 1]. This is a coarse-

convexity shift by Corollary 1 provided ϕ is Śnot too concaveŠ in the sense
that ϕ′′/ϕ′ ≥ −g/G, since then ψ is convex. Then given unimodality of G,
the sender optimally provides more information by Theorem 2.

7.3 Persuading voters

Consider a generalisation of the model of the previous section featuring n ∈ N

receivers, who each cast a vote (ŚyesŠ or ŚnoŠ). The receivers (collectively)
participate iff at least k ∈ N of them voted ŚyesŠ, where k ≤ n. The inside
option is the same for all receivers, but outside options differ: from the
senderŠs perspective, they are independent draws from a distribution G.

We restrict the sender to choosing a public signal, so that all receivers
are symmetrically informed ex interim. It remains weakly dominant for each
receiver to vote for participation whenever her outside option is less than the
mean m of her posterior belief about the inside option. The senderŠs interim
payoff at posterior mean m ∈ [0, 1] is therefore u(m) := Gk:n(m), where Gk:n

denotes the distribution of the kth-lowest of n independent draws from G.
This model is like that of Alonso and Câmara (2016), except that votersŠ

preferences are not observed by the sender, and depend only on the mean.
Sun, Schram and Sloof (2024) study a slight generalisation of this model.

If G admits a strictly log-concave and differentiable density, then the
sender optimally provides more information (i) when the outside-option
distribution improves in the monotone-likelihood-ratio sense, (ii) when the
size n of the electorate falls, (iii) when the voting threshold k rises, and
(iv) when both n and k increase by an equal amount. To see why, observe
that in each of these cases, Gk:n improves in the monotone-likelihood-ratio
sense,18 which by Corollary 1 (p. 7) implies that the senderŠs interim payoff
u becomes coarsely more convex. Furthermore, Gk:n admits a strictly log-

18By Corollary 1.C.34 and Theorem 1.C.31 in Shaked and Shanthikumar (2007).
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concave density since G does; hence Gk:n is unimodal, so u is S-shaped and
thus satisĄes the crater property. Theorem 2 is therefore applicable.

These results may be generalised to allow ex-ante heterogeneity, so long
as the receivers i ∈ ¶1, . . . , n♢ are ordered: for all i < j, iŠs outside-option
distribution Gi is worse in the monotone-likelihood-ratio sense than jŠs
distribution Gj . The exact same argument applies.

7.4 (Health) risk warnings

Mariotti, Schweizer, Szech and von Wangenheim (2023) study welfare-
maximising information-provision to present-biased consumers about the
long-term risks of consuming products like tobacco, sugary drinks or alcohol.
The authors describe optimal signals, but obtain no comparative-statics
results about their informativeness; our theorems deliver such results.

In their model, a consumer (the receiver) chooses in each of two periods
t ∈ ¶0, 1♢ whether to consume (at = 1) or abstain (at = 0). If she consumes,
she earns utility 1 immediately, but may bear a cost C > 0 two periods later.

The consumer is present-biased: if she believes consumption to be harmful
with probability m ∈ [0, 1], her period-0 and period-1 selvesŠ payoffs are

a0 + βδa1 − βδ2Cma0 − βδ3Cma1 and

a0 + δa1 − βδ2Cma0 − βδ3Cma1, respectively,

where β, δ ∈ (0, 1] are parameters. A lower value of β (of δ) captures greater
present bias (impatience). Assume βδ2C > 1 (abstaining is optimal if m = 1).

The consumer cannot commit: at is chosen by her period-t self, who (by
inspection) consumes iff m ≤ x̄ := 1/βδ2C. Hence welfare, judged from the
period-0 perspective, is

u(m) =

{
1 + βδ − (1 + δ)βδ2Cm if m < x̄

0 if m ≥ x̄.

This is depicted in Figure 3a. Note that present bias (β < 1) engenders
time-inconsistency: the period-0 self desires consumption in period 1 iff
m ≤ x := (1 + βδ)x̄/(1 + δ), so whenever m ∈ (x, x̄), the consumer suffers
(u(m) < 0) from her inability to commit today to abstain tomorrow.

The consumerŠs risk (the probability with which consumption is harmful)
is drawn from an atomless full-support distribution F0. The authors study
welfare-maximising information-provision about risk, e.g. via product labels.
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ũ

u

(d) S-shaped regular approximation.

Figure 3: Application to (health) risk warnings.
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There are multiple optimal posterior-mean distributions. Welfare u may
be approximated as in Figure 3b by a regular function ũ without changing
the set of optimal distributions.

Other approximations select from among the set of optimal distributions.
Approximating welfare u by a regular M-shaped ũ, as in Figure 3c, amounts
to selecting the least informative optimal distribution. Approximating by
a regular S-shaped ũ, as in Figure 3d, selects KolotilinŠs (2014) Śupper
censorshipŠ distribution, which fully reveals [0, a) and pools [a, 1], where a
is the least x ∈ [x, 1] such that 1

1−F0(x)

∫ 1
x yF0(dy) ≥ x̄. The former kind of

approximation ũ does not satisfy the crater property; the latter kind does.
Mariotti, Schweizer, Szech and von Wangenheim (2023) focus on the

least informative optimal distribution, and they do not obtain comparative-
statics results about its informativeness. Theorem 2 suggests why: the least
informative optimum need not become more informative as parameters shift
because this selection from the set of optima amounts to assuming that
welfare is M-shaped as in Figure 3c, so that the crater property fails.

By contrast, the optimal upper-censorship distribution is monotone: it
becomes more informative whenever any of the modelŠs three parameters
C, β, δ decrease. In other words, more information is optimally provided to
consumers who are less vulnerable, more present-biased, or more impatient.

To derive this result, we apply Theorem 2. The crater property is satisĄed
since selecting the upper-censorship optimum amounts to approximating by
an S-shaped function ũ. It remains to show that any decrease of C, β or δ
causes a coarse-convexity shift. This follows from two easily-veriĄed facts:
(i) that both x and x̄ are decreasing in each of C, β and δ, and (ii) that any
increase of either x or x̄ produces a coarse-convexity shift.

7.5 Costly information acquisition (Śrational inattentionŠ)

In the literature on costly information acquisition with mean-measurable costs
(e.g. Ravid, Roesler & Szentes, 2022; Mensch & Ravid, 2022; Kreutzkamp,
2023; Thereze, 2023a, 2023b; Mensch & Malik, 2023), a decision-maker
chooses Ćexibly how to learn before taking an action. Each posterior-mean
distribution F has a cost C(F ) and a beneĄt W (F ). These are assumed to
be posterior-mean-separable: C(F ) =

∫
cdF − c(µ0) and W (F ) =

∫
wdF

for each feasible distribution F , where c, w : [0, 1] → R are convex and
continuous, and µ0 :=

∫
xF0(dx) denotes the prior mean. The interim beneĄt

w is interpreted as arising from a decision problem: w(x) = supa∈A U(a, x) for
each x ∈ [0, 1], where U(a,m) denotes the interim payoff of action a ∈ A given
posterior mean m ∈ [0, 1]. The decision-makerŠs Ćexible-learning problem
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is to choose among the feasible distributions F to maximise W (F ) − C(F ).
This is nested by the persuasion model, with u := w − c.

Following the literature,19 we say that information becomes more valuable
when the interim beneĄt w shifts to w̃ = w+ψ, where ψ : [0, 1] → R is convex.
Changes of the underlying decision problem (A, U) which cause information
to become more valuable include raising the stakes and, sometimes, adding
actions (Whitmeyer, 2024). When information becomes more valuable, the
interim payoff u = w− c becomes coarsely more convex by Corollary 1 (p. 7).
Hence by Theorem 1, the agent optimally learns no less.20 The same occurs
when information becomes cheaper in the sense that the interim cost c shifts
to c̃ = c− ψ, where ψ : [0, 1] → R is convex.

In case the prior F0 is binary, Proposition 1 provides that when informa-
tion becomes cheaper or more valuable, the decision-maker optimally learns
more. This result directly applies to DentiŠs (2022, §IV) experimental test of
the costly-information-acquisition modelŠs comparative-statics predictions.

Beyond the binary-prior case, Theorem 2 suggests that results about the
decision-maker optimally learning more will prove elusive. The mere fact that
u is the difference of two convex functions implies almost nothing.21 Rather,
satisfaction by u = w − c of the crater property (or sufficient conditions like
W-shapedness) depends on the relative curvatures of the interim cost c and
interim beneĄt w, requiring either strong assumptions or hard-to-interpret
joint restrictions. Some examples are available: for instance, u = w − c is
W-shaped if c(x) := κ♣x− µ0♣ for each x ∈ [0, 1], where κ > 0.

7.6 Discretionary delegation

Decision rights are often not set in stone, but instead granted or withdrawn
as circumstances dictate. Delegating decision-making to an agent is principal-
optimal only when its efficiency beneĄt (the agent has additional decision-
relevant information, or a lower cost of action) outweighs its agency cost (the
agentŠs preferences over actions are imperfectly aligned with the principalŠs),
and this balance depends on the available information.

To study this trade-off, consider a simple reduced-form model.22 After
the realisation of the principalŠs (senderŠs) chosen signal is publicly observed,
inducing some posterior mean m ∈ [0, 1], the principal chooses whether or

19E.g. Chambers, Liu and Rehbeck (2020), Denti (2022) and Whitmeyer (2024).
20This recovers part of Theorem 3.1 in Whitmeyer (2024).
21For any continuous v : [0, 1] → R and any ε > 0, there are convex c, w : [0, 1] → R

such that supx∈[0,1]♣v(x) − [w(x) − c(x)]♣ < ε (see e.g. Sinander, 2022, Lemma S.3).
22We use the notation of the senderŰreceiver interpretation from §2.2 (and §7.1).
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Figure 4: Application to discretionary delegation.

not to delegate. Her interim payoff is f(m) := supa∈A US(a,m) if she does
not delegate and g(m) := B(m) + US(A(m),m) if she delegates, where A is
UR-optimal and B ≥ 0 captures the efficiency beneĄt of delegating, arising
e.g. from a cost saving or from information available only to the agent. We
assume for simplicity that preferences are sufficiently misaligned that g is
concave, and that the action set A is rich enough that f is strictly convex.
The principalŠs interim payoff is u := max¶f, g♢, depicted in Figure 4a.

Xu (2024) studies the same trade-off using a different model, motivated by
the problem of algorithm-assisted decision-making. One difference is that she
gives an explicit micro-foundation for the efficiency beneĄt B of delegation;
another is that she focusses on the binary-prior binary-action case.

The interim payoff u may be approximated as in Figure 4b by a regular
W-shaped function ũ without affecting the set of optimal posterior-mean dis-
tributions. Hence the crater property is satisĄed, so Theorem 2 is applicable.

When the efficiency beneĄt of delegation falls from B to B − k where
k ≥ 0, the principal optimally acquires more information. To see why, observe
that the senderŠs interim payoff after such a shift is v = max¶u, f + k♢ − k.
The map (a, x) 7→ max¶a, f + k♢ − k does not quite satisfy the hypotheses
of Lemma 1 (p. 6),23 but it does satisfy those of its reĄnement Lemma 1∗ in
appendix K. Hence u is coarsely less convex than v, so Theorem 2 applies.

23It is convex, and it is increasing in its Ąrst argument, but not strictly so.
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Figure 5: Application to persuasion with choice.

7.7 Persuasion with choice

Consider a hybrid of the models in §7.2 and §7.5, in which the senderŠs
chosen signal informs both a participation decision by the receiver and an
action choice by the sender herself. For simplicity, assume that receiverŠs
outside option r ∈ (0, 1) is known to the sender, and that the senderŠs payoff
is separable between the receiverŠs action and her own: u := 1[r,1] + αw,
where w : [0, 1] → R is convex and α ≥ 0. This is depicted in Figure 5a.

The interim payoff u may be approximated as in Figure 5b by a regular
W-shaped function ũ without affecting the set of optimal posterior-mean
distributions. Thus the crater property is satisĄed, so Theorem 2 is applicable.

Regardless of the prior F0, the sender provides more information whenever
her own action becomes more important (α increases) or information becomes
more valuable in the sense deĄned in §7.5 (a shift of w). This follows from
Theorem 2 and Corollary 1 (p. 7), since both kinds of shift amount to adding
a convex function to the interim payoff u.

Appendix A Product structure of Śmore informat-
ive thanŠ

In this appendix, we characterise the Śless informative thanŠ order on distri-
butions in terms of the product order on convex functions [0, 1] → R. This
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result will be used in appendices B and C below.
Given a prior F0, we write F for the space of all feasible distributions. For

each F ∈ F , let CF denote the function [0, 1] → R given by CF (x) :=
∫ x

0 F
for each x ∈ [0, 1]. Let C be the space of all convex functions C : [0, 1] → R

whose right-hand derivative C+ : [0, 1) → R satisĄes 0 ≤ C+ ≤ 1 and which
obey C(x) ≤

∫ x
0 F0 for every x ∈ [0, 1], with equality at x = 0 and x = 1.

Given any C ∈ C, deĄne C+(1) := 1 by convention. The product order (or
Śpointwise orderŠ) on C is the partial order in which C smaller than C ′ exactly
if C(x) ≤ C ′(x) for every x ∈ [0, 1].

The following extends Gentzkow and KamenicaŠs (2016) observation: not
only do distributions F correspond one-to-one with convex functions CF ,
but greater informativeness of F is equivalent to CF being pointwise higher.

Lemma 2. Fix a prior F0. The map F 7→ CF is a bijection F → C (with
inverse C 7→ C+), and is increasing when F is ordered by Śless informative
thanŠ and C has the product order. Thus F and C are order-isomorphic.

Proof. Clearly the map F 7→ CF carries F into C, and is increasing. The
map C 7→ C+ similarly carries C into F , and by inspection F = C+

F for every
F ∈ F ; so weŠve found an inverse of F 7→ CF deĄned on all of C, meaning
that F 7→ CF is bijective. ■

Corollary 2. For any given prior F0, the set F of all feasible distributions
ordered by Śless informative thanŠ is a complete lattice.

Proof. By Lemma 2, we need only show that when C has the product order,
it holds for any family C′ ⊆ C that C⋆ := supC∈C′ C is its least upper bound,
and that the convex envelope of infC∈C′ C, which weŠll call C⋆, is its greatest
lower bound. For the former, C⋆ clearly belongs to C, is clearly an upper
bound of C′, and is clearly pointwise smaller than any other upper bound.
For the latter, C⋆ is an element of C, is clearly a lower bound of C′, and
exceeds every other lower bound by deĄnition of the convex envelope. ■

Appendix B Proof of Theorem 1 (p. 7)

We shall prove the following generalisation of Theorem 1. Recall that for two
distributions F and G, the order interval [G,F ] is the set of all distributions
that are more informative than G and less informative than F .

Theorem 1∗. For upper semi-continuous u, v : [0, 1] → R, the following are
equivalent:
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(i) u is coarsely less convex than v.

(ii) For every distribution F0, (⋆) holds.

(iii) For all distributions G0, F0 such that G0 is less informative than F0

and
∫
udF,

∫
vdG > −∞ for some F,G ∈ [G0, F0],

arg max
F ∈[G0,F0]

∫
udF

is not strictly
higher than

arg max
F ∈[G0,F0]

∫
vdF.

In proving Theorem 1∗, we shall write µF for the mean of a distribution
F , and shall sometimes abbreviate ŚF is less informative than GŠ to ŚF ⪯ GŠ.
For x, y ∈ R and α ∈ [0, 1], we shall write xαy := αx+ (1 − α)y.

In Theorem 1∗, property (iii) implies property (ii) because a distribution
is feasible given prior F0 exactly if it belongs to [ν, F0], where ν is the point
mass concentrated on µF0 , and obviously

∫
udν,

∫
vdν > −∞. We shall prove

that (ii) implies (i) and that (i) implies (iii).

B.1 Proof that (ii) implies (i)

Observe that given u, v : [0, 1] → R, u is coarsely less convex than v iff for
any x < z in [0, 1] satisfying

u(xαz) ≤ u(x)αu(z) for all α ∈ (0, 1), (△)

it holds for each α ∈ (0, 1) that

u(xαz) ≤(<) u(x)αu(z) implies v(xαz) ≤(<) v(x)αv(z). (⇒ : α)

We prove the contra-positive. Assume that (i) fails, meaning there are
x < z in [0, 1] and an α ∈ (0, 1) such that (△) holds and (⇒ : α) fails; we
seek a distribution F0 such that

MF0(u) := arg max
F ∈[ν,F0]

∫
udF

is strictly
higher than

MF0(v) := arg max
F ∈[ν,F0]

∫
vdF,

where ν denotes the point mass concentrated at µF0 . For this, it suffices
that F0 ∈ MF0(u) and µF0 ∈ MF0(v) (so that MF0(u) is higher than MF0(v))
and that either F0 /∈ MF0(v) or µF0 /∈ MF0(u) (so that MF0(v) is not higher
than MF0(u)). We shall use the standard ŚconcaviĄcationŠ reasoning (see
Kamenica & Gentzkow, 2011). Consider two cases.

Case 1: v(xαz) ≤ v(x)αv(z). Let F0 be the distribution assigning weight α
to x and 1 −α to z, so that µF0 = xαz. By (△), F0 belongs to MF0(u). Since
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v(xαz) ≤ v(x)αv(z) and (⇒ : α) fails by hypothesis, it must be that u(xαz) <
u(x)αu(z) and v(xαz) = v(x)αv(z), or equivalently u(µF0) <

∫
udF0 and

v(µF0) =
∫
vdF0. Then µF0 belongs to MF0(v) but not to MF0(u).

Case 2: v(xαz) > v(x)αv(z). Let v̂ be the concave envelope (i.e. pointwise
least majorant) of the restriction of v to [x, z], and note that v̂(xαz) ≥
v(xαz) > v(x)αv(z) and (since v is upper semi-continuous) that v̂(x) = v(x)
and v̂(z) = v(z). Then there is a β ∈ (0, 1) such that v̂ is not affine on any
neighbourhood of xβz, and v̂(xβz) = v(xβz) since v is upper semi-continuous.
Let F0 be the distribution assigning weight β to x and 1 − β to z, so that
µF0 = xβz. Then F0 /∈ MF0(v) since v̂ is not affine, and µF0 ∈ MF0(v) since
v̂(µF0) = v(µF0). And F0 belongs to MF0(u) by (△). ■

B.2 Proof that (i) implies (iii), using lemmata

DeĄnition 6. Let u, v : [0, 1] → R be upper semi-continuous. Given distri-
butions F,H such that F ⪯ H, we say that u is dominated by v on [F,H]
iff ∫

udH > −∞,

∫
vdF > −∞, and H ∈ arg max

G∈[F,H]

∫
udG

implies that
∫
vdH ≥

∫
vdF , with the inequality strict if

∫
udH >

∫
udF .

We say that u is interval-dominated by v iff for all distributions F ⪯ H, u is
dominated by v on [F,H].

Interval-dominance is a standard concept in the comparative-statics
literature, due to Quah and Strulovici (2007, 2009). Our deĄnition is slightly
adapted from the standard one in order to deal with the −∞ case; this
adaptation ensures that standard results remain applicable.

Our proof will use some measure-theoretic concepts and lemmata. Recall
that a distribution is a CDF [0, 1] → [0, 1]. A distribution family is a collection
λ = (λx)x∈[0,1], where λx is a distribution for each x ∈ [0, 1], and x 7→

∫
wdλx

is Borel measurable for any continuous w : [0, 1] → R. For any distribution
family λ and any distribution F , deĄne F λ : [0, 1] → [0, 1] by

F λ(x) :=

∫
λy(x)F (dy) for each x ∈ [0, 1].

It follows from the next result that F λ is well-deĄned. (SpeciĄcally, part (a)
yields that y 7→

∫
1[0,x]dλy = λy(x) is Borel measurable, hence F -integrable.)

Lemma 3. Let λ be a distribution family, let F be a distribution, and let
u : [0, 1] → R be upper semi-continuous. Then
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(a) x 7→
∫
udλx is Borel measurable, and

(b) F λ is a distribution, and
∫
udF λ =

∫ ∫
udλxF (dx).

Moreover, for any distribution family ν such that νx ⪯ λx for F -a.e. x ∈ [0, 1],

(c) F ν ⪯ F λ, and

(d) there exists a distribution family (ρx)x∈[0,1] such that

ρx ∈ arg max
G∈[νx,λx]

∫
udG for F -a.e. x ∈ [0, 1]. (1)

Lemma 4. Fix a distribution F and distribution families λ, ν such that
νx ⪯ λx for all x ∈ [0, 1]. Let u, v : [0, 1] → R be upper semi-continuous,
and suppose that u is dominated by v on [νx, λx] for all x ∈ [0, 1]. Then u is
dominated by v on

[
F ν , F λ

]
.

We relegate the proofs of Lemmata 3 and 4 to appendix B.3 below.

Proof that (i) implies (iii). Let u, v : [0, 1] → R be upper semi-continuous,
with u coarsely less convex than v. We shall show that u is interval-dominated
by v. This suffices by Proposition 5 in Quah and Strulovici (2007).24

So Ąx any distributions F ⪯ H; we must show that u is dominated by v
on [F,H]. We consider three cases of increasing generality.25 Recall that we
call a distribution binary iff its support comprises at most two values.

Case 1: F is a point mass and H is binary. If H is a point mass, then
there is nothing to prove. Assume for the remainder that supp(H) = ¶x, z♢
where x < z. By the standard ŚconcaviĄcationŠ reasoning (see Kamenica &
Gentzkow, 2011), H ∈ arg maxG∈[F,H]

∫
udG iff (△) holds. Moreover, choos-

ing α ∈ (0, 1) so that F is the point mass at xαz,
∫
udH ≥(>)

∫
udF holds

iff u(xαz) ≤(<) u(x)αu(z), and
∫
vdH ≥(>)

∫
vdF holds iff v(xαz) ≤(<)

v(x)αv(z). Since u is coarsely less convex than v, it follows that u is dominated
by v on [F,H].

Case 2: F is a point mass. By Lemma 4 and the previous case, it suffices
to exhibit distribution families ν, λ and a distribution G such that F = Gν ,
H = Gλ, and for all x ∈ [0, 1], νx ⪯ λx, νx is a point mass, and λx is binary.

24Our deĄnition of interval-dominance is adapted from the standard one so as to allow
for the possibility that some integrals may be −∞. Under our deĄnition, Proposition 5 in
Quah and Strulovici (2007) remains valid, with the same proof.

25We thank Ian Jewitt for suggesting this argument.
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For each x ∈ [0, 1], let νx be the point mass at µH ; clearly ν = (νx)x∈[0,1]

is a distribution family. Toward constructing λ and G, let F be the set of
all distributions with mean µH , and let B be the set of all elements of F
that are binary. By Theorem 2.1 in Karr (1983), B is precisely the set of
extreme points of F . Moreover, the topology of weak convergence makes
F compact and metrisable by ProkhorovŠs theorem (e.g. Billingsley, 1999,
Theorems 5.1 and 6.8). Hence B is a Borel subset of F (e.g. Phelps, 2001,
Proposition 1.3) and, by ChoquetŠs theorem (e.g. Phelps, 2001, p. 14), there
is a Borel probability measure π on F such that π(B) = 1 and

∫
wdH =

∫ ∫
wdLπ(dL) for any continuous w : [0, 1] → R.

Since F is compact and metrisable, it is a standard Borel space. Hence by
the Borel isomorphism theorem (e.g. Srivastava, 1998, Theorem 3.3.13), there
exists a Borel measurable bijection ϕ : [0, 1] → F with Borel measurable
inverse ϕ−1. Let G be the CDF of the pushforward of π by ϕ−1. Since
π(B) = 1, there exists a Borel measurable λ : [0, 1] → B such that λ = ϕ
G-a.e.26 Since λ is Borel measurable, it is a distribution family (e.g. Warga,
1972, Theorem IV.1.6). We have Gν = F since F is the point mass at µH

(as F ⪯ H), and for all x ∈ [0, 1], νx ⪯ λx and λx is binary. Finally, to show
that Gλ = H, observe that π is the pushforward by ϕ of the Borel measure
A 7→

∫
A dG, and thus π equals the pushforward by λ of A 7→

∫
A dG. Hence

∫
wdH =

∫ ∫
wdLπ(dL) =

∫ ∫
wdλxG(dx) =

∫
wdGλ

for all continuous w : [0, 1] → R, where the last equality follows from
Lemma 3(b). It follows that H = Gλ.

Case 3: F and H are arbitrary. By Lemma 4 and the previous case, it
suffices to exhibit distribution families ν, λ such that F = F ν , H = F λ,
and for all x ∈ [0, 1], νx ⪯ λx and νx is a point mass. To that end, for
each x ∈ [0, 1], let νx be the point mass at x; clearly ν = (νx)x∈[0,1] is a
distribution family, and F = F ν . By BlackwellŠs theorem (e.g. Phelps, 2001,
p. 94), there exists a distribution family λ = (λx)x∈[0,1] such that µλx = x

for all x ∈ [0, 1] and H = F λ; clearly νx ⪯ λx for each x ∈ [0, 1]. ■

B.3 Proofs of the lemmata

Proof of Lemma 3. For (a), recall that since u is upper semi-continuous,
it is the pointwise limit of a pointwise decreasing sequence (un)n∈N of

26For example, λ := 1ϕ−1(B) × ϕ+ 1[0,1]\ϕ−1(B) × L, where L ∈ B.
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continuous functions. By the monotone convergence theorem, x 7→
∫
udλx is

the pointwise limit of the (pointwise decreasing) sequence x 7→
∫
undλx of

Borel measurable functions. Hence x 7→
∫
udλx is Borel measurable.

For (b), note that w 7→
∫ ∫

wdλxF (dx) deĄnes a continuous linear func-
tional on the space of continuous functions w : [0, 1] → R endowed with the
supremum norm, mapping positive functions to positive values and constant
functions to their images. Hence by the RieszŰMarkov representation the-
orem (e.g. Aliprantis & Border, 2006, Theorem 14.12), there exists a unique
distribution G such that

∫
wdG =

∫ ∫
wdλxF (dx) for every continuous

w : [0, 1] → R. Moreover,

∫
udG = lim

n→∞

∫
undG = lim

n→∞

∫ ∫
undλxF (dx)

=

∫
lim

n→∞

∫
undλxF (dx) =

∫ ∫
udλxF (dx),

where the Ąrst, third and fourth equalities follow from the monotone conver-
gence theorem. For any x ∈ [0, 1], the above argument with u replaced by
1[0,x] yields G(x) = F λ(x), showing that G = F λ; hence (b) holds.

For (c), given any convex function ϕ : [0, 1] → R, we have
∫
ϕdνx ≤∫

ϕdλx for F -a.e. x ∈ [0, 1] since νx ⪯ λx for F -a.e. x ∈ [0, 1], so that

∫
ϕdF ν =

∫ ∫
ϕdνxF (dx) ≤

∫ ∫
ϕdλxF (dx) =

∫
ϕdF λ

where the equalities follow from part (b) since ϕ is convex and thus upper
semi-continuous.

For (d), let G be the space of all distributions endowed with the topology
of weak convergence, and let D be the set of all pairs (G,H) ∈ G2 that
satisfy G ⪯ H, equipped with the product topology. G is separable and
metrisable by ProkhorovŠs theorem (e.g. Billingsley, 1999, Theorem 6.8).
Hence by the measurable maximum theorem (e.g. Aliprantis & Border, 2006,
Theorem 18.19), for each n ∈ N, the correspondence D ⇒ G given by

(G,H) 7→ arg max
L∈[G,H]

∫
undL

admits a Borel measurable selection Rn : D → G, since the correspondence
(G,H) 7→ [G,H] is continuous with non-empty and compact values, and the
map L 7→

∫
undL is continuous.

A collection (πx)x∈[0,1] ⊆ G is a distribution family if and only if x 7→ πx

is a Borel measurable map [0, 1] → G (e.g. Warga, 1972, Theorem IV.1.6).
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Hence x 7→ λx and x 7→ νx are Borel measurable maps [0, 1] → G. Since
νx ⪯ λx for F -a.e. x ∈ [0, 1], it follows (possibly after modifying x 7→ λx

and x 7→ νx on an F -null set) that x 7→ (νx, λx) is a Borel measurable map
[0, 1] → D. Then for each n ∈ N, x 7→ Rn(νx, λx) =: ρn

x is a Borel measurable
map [0, 1] → G, so (ρn

x)x∈[0,1] is a distribution family.
By Theorem IV.2.1 in Warga (1972), we may assume (passing to a

subsequence is necessary) that there is a distribution family (ρx)x∈[0,1] such
that

lim
n→∞

∫ ∫
w(x, y)ρn

x(dy)F (dx) =

∫ ∫
w(x, y)ρx(dy)F (dx) (2)

for any w : [0, 1]2 → R with w(x, ·) continuous for each x ∈ [0, 1], w(·, y) Borel
measurable for each y ∈ [0, 1], and x 7→ maxy∈[0,1]♣w(x, y)♣ F -integrable.

It remains to establish (1). To this end, note that W : D → R deĄned by

W (G,H) := max
L∈[G,H]

∫
udL for each (G,H) ∈ D

is upper semi-continuous (e.g. Aliprantis & Border, 2006, Lemma 17.30), so
that the map U : [0, 1] → R given by

U(x) := max
G∈[νx,λx]

∫
udG for each x ∈ [0, 1]

is Borel measurable, being the composition of the Borel measurable map
x 7→ (νx, λx) with W . For each n ∈ N, the map Un : [0, 1] → R deĄned by

Un(x) :=

∫
undρn

x = max
G∈[νx,λx]

∫
undG for each x ∈ [0, 1]

is Borel measurable since (ρn
x)x∈[0,1] is a distribution family, and satisĄes

Un ≥ U since un ≥ u. Hence for any Borel A ⊆ [0, 1],

∫

A

∫
udρxF (dx) =

∫

A
lim

m→∞

∫
umdρxF (dx) = lim

m→∞

∫

A

∫
umdρxF (dx)

= lim
m→∞

lim
n→∞

∫

A

∫
umdρn

xF (dx) ≥ lim
n→∞

∫

A
UndF ≥

∫

A
UdF

where the Ąrst two equalities follow from the monotone convergence theorem,
the third equality follows from (2) above since um is continuous for each
m ∈ N, the Ąrst inequality holds since (um)m∈N is pointwise decreasing,27

27For any m ≤ n, we have um ≥ un, hence
∫
umdρn

x ≥
∫
undρn

x = Un(x) for every

x ∈ [0, 1], hence
∫

A

∫
umdρn

xF (dx) ≥
∫

A
UndF . Now let n → ∞, then m → ∞.
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and the Ąnal inequality holds since Un ≥ U for all n ∈ N. Thus
∫
udρx ≥ U(x)

for F -a.e. x ∈ [0, 1].
Hence to establish (1), it suffices to show that νx ⪯ ρx ⪯ λx for F -

a.e. x ∈ [0, 1]. We shall prove that νx ⪯ ρx for F -a.e. x ∈ [0, 1], omitting
the analogous argument for the other half. To this end, note that there
exists a countable set Φ of continuous convex functions [0, 1] → R such
that any convex function [0, 1] → R is the pointwise limit of a pointwise
decreasing sequence of functions in Φ.28 Moreover, it holds for any ϕ ∈ Φ
that

∫
ϕdνx ≤

∫
ϕdρx for F -a.e. x ∈ [0, 1], since if this inequality were to fail

for all x ∈ A where A ⊆ [0, 1] is F -non-null, then

∫

A

∫
ϕdρxF (dx) <

∫

A

∫
ϕdνxF (dx) ≤

∫

A

∫
ϕdρn

xF (dx) for all n ∈ N,

(where the second inequality holds since νx ⪯ ρn
x for all x ∈ [0, 1],) which

would contradict (2) with w(x, y) := 1A(x)ϕ(y). Since Φ is countable, it
follows that there is an F -null set A ⊆ [0, 1] such that

∫
ϕdνx ≤

∫
ϕdρx for

every x ∈ [0, 1] \ A and every ϕ ∈ Φ. Hence by the monotone convergence
theorem,

∫
ϕdνx ≤

∫
ϕdρx holds for every x ∈ [0, 1] \A and every convex ϕ :

[0, 1] → R. Equivalently (since A is F -null), νx ⪯ ρx for F -a.e. x ∈ [0, 1]. ■

Proof of Lemma 4. Suppose that

∫
udF λ > −∞,

∫
vdF ν > −∞, and F λ ∈ arg max

G∈[F ν ,F λ]

∫
udG. (3)

We must show that
∫
vdF λ ≥

∫
vdF ν , and that the inequality is strict if∫

udF λ >
∫
udF ν .

By Lemma 3(d), we may choose a distribution family (ρx)x∈[0,1] such that

ρx ∈ arg max
G∈[νx,λx]

∫
udG for F -a.e. x ∈ [0, 1].

DeĄne

A :=


x ∈ [0, 1] :

∫
udλx > −∞ and

∫
vdνx > −∞

}

and B :=

{
x ∈ A : λx ∈ arg max

G∈[νx,λx]

∫
udG

}
.

28For example, the set of all maps of the form x 7→ maxk∈¶1,...,K♢[α(k)x+ β(k)] where
K ∈ N and α, β : ¶1, . . . ,K♢ → Q. (Here Q ⊆ R denotes the rational numbers.)
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We have
∫

A dF = 1 by (3) and Lemma 3(b). We further claim that
∫

B dF = 1.
Suppose toward a contradiction that

∫
B dF < 1; then

∫
udF λ =

∫ ∫
udλxF (dx) <

∫ ∫
udρxF (dx) =

∫
udF ρ,

where the equalities follow from Lemma 3(b), and the inequality is strict since∫
udF λ > −∞. But F ρ belongs to

[
F ν , F λ

]
by Lemma 3(c) since ρx ∈ [νx, λx]

for F -a.e. x ∈ [0, 1], so
∫
udF λ ≥

∫
udF ρ by (3); a contradiction.

Since u is dominated by v on [νx, λx] for all x ∈ [0, 1], we have
∫
vdλx ≥∫

vdνx for every x ∈ B. This together with
∫

B dF = 1 implies that

∫
vdF λ =

∫ ∫
vdλxF (dx) ≥

∫ ∫
vdνxF (dx) =

∫
vdF ν ,

where the equalities follow from Lemma 3(b).
It remains only to show that if

∫
udF λ >

∫
udF ν , then

∫
vdF λ >

∫
vdF ν .

So assume that
∫
udF λ >

∫
udF ν , and let

Cw :=


x ∈ B :

∫
wdλx >

∫
wdνx

}
for w ∈ ¶u, v♢.

Note that Cu is F -non-null, since otherwise

∫
udF λ =

∫ ∫
udλxF (dx) ≤

∫ ∫
udνxF (dx) =

∫
udF ν ,

where the inequality holds since
∫

B dF = 1, and the equalities follow from
Lemma 3(b). We have Cu ⊆ Cv since u is dominated by v on [νx, λx] for all
x ∈ [0, 1]. Thus Cv is F -non-null, so

∫
vdF λ =

∫ ∫
vdλxF (dx) >

∫ ∫
vdνxF (dx) =

∫
vdF ν ,

where the inequality holds since
∫
vdλx ≥

∫
vdνx for F -a.e. x ∈ [0, 1] and∫

vdF ν > −∞, and the equalities follow from Lemma 3(b). ■

Appendix C Proof of Theorem 2 (p. 10)

We prove the necessity of the crater property for comparative statics in
§C.1, following the logic of the sketch proof in the text (§4.2), and then
prove sufficiency in §C.2. The latter proof relies on a lemma whose proof is
relegated to a separate section, §C.3.
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C.1 Proof of necessity

We shall rely on the following lemma.

Lemma 5. Suppose there are x′ < x < X < w < w′ in [0, 1] and a
function p : [0, 1] → R that is affine on [x′, X] and on [X,w′], with p ≥ u on
[x′, w′] with equality on ¶x,w♢, and p′(x) < p′(w). Let F0 be any atomless
distribution with support [x′, w′] such that

1

F0(X)

∫ X

0
ξF0(dξ) = x and

1

1 − F0(X)

∫ 1

X
ξF0(dξ) = w.

Then
∫X

0 F =
∫X

0 F0 for any distribution F optimal for u given prior F0.

See Figure 2 (p. 11) for a graphical illustration of the hypotheses. The
lemma asserts that under these hypotheses, it is strictly sub-optimal to pool
states on either side of the kink point X: optimal distributions F may pool
within [0, X] and within [X, 1], but not across.

Proof. Fix a distribution F that is feasible given F0 and that satisĄes
∫X

0 F <∫X
0 F0. Let G be the distribution with support ¶x,w♢ and mean µF0 , and

note that G is less informative than F0 and that
∫X

0 G =
∫X

0 F0. We will
show that G is strictly better than F for u given F0. Note that F (x′) = 0
and F (w′) = 1 since F0 is atomless with support [x′, w′].29 We have

∫
udF ≤

∫
pdF = p(w′) −

∫ w′

0
p′F

= p(w′) − p′(w)

∫ w′

0
F


+ [p′(w) − p′(x)]

∫ X

0
F

< p(w′) − p′(w)

∫ w′

0
G


+ [p′(w) − p′(x)]

∫ X

0
G

=

∫
pdG =

∫
udG,

where the weak inequality holds since u ≤ p on [x′, w′], the Ąrst equality
is obtained by integrating by parts,30 the second equality holds since p is
affine on [x′, X] and on [X,w′], the strict inequality holds since

∫ w′

0 F =

29For the former, using the notation from appendix A, we have CF ≤ CF0
and CF0

(x′) =
0 ≤ CF (x′), whence [CF (x) − CF (x′)]/(x − x′) ≤ [CF0

(x) − CF0
(x′)]/(x − x′) for every

x ∈ (x′, w′], so that letting x ↓ x′ yields F (x′) ≤ F0(x′) = 0. The latter is analogous.
30Invoking e.g. Theorem 18.4 in Billingsley (1995).
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w′ −µF0 =
∫ w′

0 G,
∫X

0 F <
∫X

0 F0 =
∫X

0 G and p′(x) < p′(w), the penultimate
equality holds for the same reasons as the Ąrst two equalities (recalling that
G(w′) = 1), and the Ąnal equality holds because p = u G-a.e. ■

Proof of the converse (necessity) part of Theorem 2. Let u : [0, 1] → R be
regular, and suppose that it does not satisfy the crater property. That means
that there are x′ < y < z < w′ in [0, 1] such that u is concave on [x′, y]
and [z, w′] and strictly convex on [y, z], we have u′(x′) ̸= u′(w′),31 and the
tangents to u at x′ and at w′ cross at coordinates (X ′, Y ′) ∈ R

2 that either
violate y ≤ X ′ ≤ z or satisfy Y ′ > u(X ′). It cannot be that u is affine on
both [x′, y] and [z, w′], since that would imply y ≤ X ′ ≤ z and Y ′ < u(X ′).
Assume that u is not affine on [x′, y]; the other case is analogous.

We seek a regular v : [0, 1] → R that is coarsely more convex than u
and an atomless convex-support distribution F0 such that (⋆⋆) fails. We
shall Ąrst construct a distribution F0 and x < X < w in (x′, w′) such
that the hypotheses of Lemma 5 are satisĄed, and then construct a regular
v : [0, 1] → R that is coarsely more convex than u and a distribution F that is
optimal for v given prior F0 and has

∫X
0 F <

∫X
0 F0. Then by Lemma 5, every

distribution G that is optimal for u given F0 satisĄes
∫X

0 F <
∫X

0 F0 =
∫X

0 G,
so fails to be less informative than FŮthus (⋆⋆) fails.

We consider separately the cases in which u is not and is affine on [z, w′].
(The sketch proof in the text corresponds to the Ąrst case.)

Case 1: u is not affine on [z, w′]. In this case, there are x ∈ (x′, y) and
w ∈ (z, w′) such that u′(x) < u′(w) and the tangents to u at x and at w
intersect at coordinates (X,Y ) ∈ R

2 satisfying y ≤ X ≤ z and Y > u(X).32

Let p : [0, 1] → R be the pointwise maximum of the two tangents (refer to
Figure 2 on p. 11); it is affine on [x′, X] and on [X,w′], satisĄes p ≥ u on
[x′, w′] with equality on ¶x,w♢, and p′(x) < p′(w). Let F0 be a distribution
that is atomless with support [x′, w′],

1

F0(X)

∫ X

0
ξF0(dξ) = x and

1

1 − F0(X)

∫ 1

X
ξF0(dξ) = w.

Observe that the hypotheses of Lemma 5 are satisĄed.
Since u′ is bounded, we may choose a regular v : [0, 1] → R that coincides

with u on [X, 1] and that weakly exceeds u and is strictly convex on [0, X]

31This is without loss since if u′(x′) = u′(w′) then we may choose x′ and w′ differently
(in particular, closer together) such that u′(x′) ̸= u′(w′).

32If the tangent to u at x′ (at w′) strictly exceeds u at z (at y), choose x (w) such that
the tangent to u at x (at w) crosses u at z (at y); if not, choose x := x′ + ε (w := w′ − ε)
for a sufficiently small ε ∈ (0, (w′ − x′)/2).
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(refer to Figure 2 on p. 11). It is easily seen that v is coarsely more convex
than u. By Lemma 5, it suffices to exhibit a distribution F that is optimal
for v given prior F0 and that satisĄes

∫X
0 F <

∫X
0 F0.

It is easily veriĄed (see footnote 11 on p. 12) that there are a ∈ [0, X)
and b ∈ (z, w) which satisfy

v(b) − v(a)

b− a
= v′(b) and b :=

1

1 − F0(a)

∫ 1

a
ξF0(dξ).

DeĄne a distribution F by F := F0 on [0, a), F := F0(a) on [a, b) and
F := 1 on [b, 1]. Clearly F is feasible given F0, and

∫X
0 F <

∫X
0 F0 since

a < X ≤ z < b.
It remains to prove that F is optimal for v given F0. To this end, let

q : [0, 1] → R match v on [0, a] ∪ ¶b♢ and be affine on [a, 1]. By inspection, q
exceeds v on [x′, w′], is convex on [x′, w′], has

∫
qdF0 =

∫
qdF , and satisĄes

q = v F -a.e. Using each of these facts in turn,33 we obtain for any distribution
G that is feasible given F0 (i.e. any G less informative than F0) that

∫
vdG ≤

∫
qdG ≤

∫
qdF0 =

∫
qdF =

∫
vdF.

Case 2: u is affine on [z, w′]. In this case, there is an x ∈ (x′, y) such that
the tangent to u at x crosses u at some X ∈ (z, w′). Fix any w ∈ (X,w′), and
let p : [0, 1] → R match the aforementioned tangent on [x′, X] and match
u on [X,w′]; it is affine on [x′, X] and on [X,w′], satisĄes p ≥ u on [x′, w′]
with equality on ¶x,w♢, and p′(x) < p′(w). Let F0 be a distribution that is
atomless with support [x′, w′],

1

F0(X)

∫ X

0
ξF0(dξ) = x and

1

1 − F0(X)

∫ 1

X
ξF0(dξ) = w.

The hypotheses of Lemma 5 are satisĄed.
Let v : [0, 1] → R be regular, affine on [z, w′], and strictly convex on [0, z]

and [w′, 1]. Clearly v is coarsely more convex than u. Thus by Lemma 5, it
suffices to exhibit a distribution F that is optimal for v given prior F0 and
that satisĄes

∫X
0 F <

∫X
0 F0 (i.e. states on either side of X are pooled).

To that end, let

b :=
1

1 − F (z)

∫ 1

z
ξF0(dξ),

33We could instead appeal to the duality theorem of Dworczak and Martini (2019).
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and deĄne a distribution F by F := F0 on [0, z), F := F0(z) on [z, b) and
F := 1 on [b, 1]. Then

∫X
0 F <

∫X
0 F0,34 and F is optimal for v given F0. ■

C.2 Proof of sufficiency

Given any distribution F , let CF : [0, 1] → R be given by CF (x) :=
∫ x

0 F for
each x ∈ [0, 1]. We shall make free use of the order isomorphism described in
appendix A between distributions F ordered by informativeness and convex
functions CF ordered by pointwise inequality.

The sufficiency proof relies on three lemmata. The Ąrst is a version
of Dworczak and MartiniŠs (2019) duality theorem. Given any regular u :
[0, 1] → R, let M(u) denote the space of all convex and Lipschitz continuous
functions p : [0, 1] → R satisfying p ≥ u.

Lemma 6. Let u : [0, 1] → R be regular, and let F0 be an atomless
distribution. Then

min
p∈M(u)

∫
pdF0 = max

F feasible given F0

∫
udF,

where both sides are well-deĄned. Moreover, for p ∈ M(u) and a distribution
F feasible given F0 to solve (respectively) the minimisation and maximisation
problems, it is necessary and sufficient that both

(a) p is affine on any interval on which CF < CF0 , and

(b) p = u on supp(F ).

Proof of Lemma 6. Fix a distribution F0. The result is trivial if F0 is de-
generate, so suppose not. Since u is regular, for any convex and continuous
q : [0, 1] → R such that q ≥ u, there is a p ∈ M(u) such that p ≤ q. Thus
the Ąrst part follows from Theorem 1(ii) in Dizdar and Kováč (2020) applied
to the restriction of u to supp(F0), since u is regular.

For the second part, Ąx any p ∈ M(u) and any distribution F that
is feasible given F0. Since F0 is atomless, we have F0(0) = 0 and thus
F (0) = 0.35 Because p is convex and Lipschitz, we may extend its derivative
p′ : (0, 1) → R continuously to [0, 1] by letting p′(0) and p′(1) be the right-

34If b ≥ X, then
∫ X

0
(F0 − F ) =

∫ X

z
[F0 − F0(z)] > 0 as F0 > F0(z) on (z, 1], while if

b ≤ X we have
∫ X

0
(F0 − F ) =

∫ 1

X
(F − F0) =

∫ 1

X
(1 − F0) > 0 as F0 < 1 on [0, w′).

35We have CF ≤ CF0
and CF0

(0) = 0 ≤ CF (0), whence [CF (x) − CF (0)]/x ≤ [CF0
(x) −

CF0
(0)]/x for every x ∈ (0, 1], so that letting x ↓ 0 yields F (0) ≤ F0(0) = 0.
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and left-hand derivatives at 0 and at 1, respectively. Then for any distribution
G with G(0) = 0, integrating by parts twice,36

∫
pdG = p(1) −

∫
p′G = p(1) − p′(1)CG(1) +

∫
CGdp′,

where the last term is to be understood in the LebesgueŰStieltjes sense. Thus

∫
pdF0 ≥

∫
pdF ≥

∫
udF,

where the Ąrst inequality is strict unless (a) holds, while the second is strict
unless (b) holds since p and u are continuous. ■

Lemma 7. Let u : [0, 1] → R be regular and satisfy the crater property,
and suppose there are x < z in [0, 1] such that the tangent to u at x (at z)
weakly exceeds u on [x, z]. Then there is a y ∈ (x, z] (a y ∈ [x, z)) such that
u is concave on [x, y] (on [y, z]) and strictly convex on [y, z] (on [x, y]).

Proof of Lemma 7. Suppose that the tangent to u at x weakly exceeds u on
[x, z]; the other case is analogous. Let y be the largest y′ ∈ [x, z] such that u
is concave on [x, y′]. We have y > x since u is regular. It remains to show
that u is strictly convex on [y, z]. This is immediate if y = z, so suppose for
the remainder that y < z.

Let ẑ be the largest w ∈ [y, 1] such that u is strictly convex on [y, w];
clearly ẑ > y by the regularity of u. We must show that ẑ ≥ z, so suppose
toward a contradiction that ẑ < z. Then by regularity, u is concave on [ẑ, w]
for some w ∈ (ẑ, z]. But then u violates the crater property, since the tangent
to u at x strictly exceeds u on [y, ẑ] (as u is strictly convex on [y, ẑ]). ■

Lemma 8. Let u, v : [0, 1] → R be regular, and suppose that u satisĄes the
crater property and is coarsely less convex than v. Let F0 be an atomless
convex-support distribution. Then for any

p ∈ arg min
r∈M(u)

∫
rdF0 and q ∈ arg min

r∈M(v)

∫
rdF0,

if q is affine on an interval [x, y] ⊆ supp(F0), then so is p.

Lemma 8 is proved in the next section.

36This is licensed by e.g. Theorem 18.4 in Billingsley (1995).
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Proof of the Ąrst (sufficiency) part of Theorem 2. Fix regular u, v : [0, 1] →
R such that u satisĄes the crater property and is coarsely less convex than
v, let F0 be an atomless convex-support distribution, and Ąx

G′ ∈ arg max
F feasible given F0

∫
udF and H ′ ∈ arg max

F feasible given F0

∫
vdF.

We shall construct

G′′ ∈ arg max
F feasible given F0

∫
udF and H ′′ ∈ arg max

F feasible given F0

∫
vdF

such that G′′ is less informative than H ′ and G′ is less informative than H ′′.
We derive G′′ from G′ by fully pooling signal realisations over each

concavity interval of u, in the following precise sense. Assume without loss of
generality that u is not strictly convex, and enumerate the maximal proper
intervals on which u is concave as ([xk, zk])K

k=1 (where K ∈ N). For each k,
let yk denote the mean of G′ conditional on the event [xk, zk]. (In case [xk, zk]
is G′-null, let yk be an arbitrary element of [xk, zk].) DeĄne a distribution
G′′ by

G′′(w) :=





G′(xk−) if w ∈ [xk, yk) for some k ∈ ¶1, . . . ,K♢

G′(zk) if w ∈ [yk, zk] for some k ∈ ¶1, . . . ,K♢

G′(w) otherwise,

where ŚG(x−)Š is shorthand for limy↑xG
′(y). For any G′-non-null [xk, zk],

the distribution ŚG′′ conditional on [xk, zk]Š is less informative than the
distribution ŚG′ conditional on [xk, zk]Š,37 so

∫
[xk,zk] udG′′ ≥

∫
[xk,zk] udG′. And

we have G′′ = G′ on X := [0, 1] \
⋃K

k=1[xk, zk], so that
∫

X udG′′ =
∫

X udG′

since X is open. Thus
∫
udG′′ ≥

∫
udG′, which since G′ optimal for u given

prior F0 implies that G′′ is, too.
We similarly derive H ′′ from H ′ by spreading signal realisations over

each convexity interval of v as much as possible subject keeping H ′′ less
informative than the prior F0. Formally, assume without loss of generality
that v is not strictly concave, enumerate the maximal proper intervals on
which v is convex as (Iℓ)

L
ℓ=1 (where L ∈ N), and deĄne I :=

⋃L
ℓ=1 Iℓ. Let C

be the convex envelope of 1ICF0 + 1[0,1]\ICH′ , and let the distribution H ′′ be
be deĄned by CH′′ = C. We have H ′′ = H ′ off I, and clearly ŚH ′′ conditional
on IℓŠ is more informative than ŚH ′ conditional on IℓŠ for each H ′-non-null

37Explicitly: the distribution 1(zk,1] + 1[xk,zk] × [G′′ −G′′(xk−)]/[G′′(zk) −G′′(xk−)] is
less informative than the distribution 1(zk,1] +1[xk,zk] × [G′ −G′(xk−)]/[G′(zk)−G′(xk−)].
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Iℓ, so
∫
vd(H ′′ −H ′) =

∑L
ℓ=1

∫
Iℓ
vd(H ′′ −H ′) ≥ 0, which since H ′ is optimal

for v given prior F0 implies that H ′′ is, too.
It remains to prove that G′′ is less informative than H ′ and that G′ is

less informative than H ′′. We shall rely on the following claim, whose proof
(relegated to the end) hinges on Lemmata 7 and 8.

Claim. Let G and H be optimal (given prior F0) for u and v, respectively.
Then for any a < b in [0, 1] such that CH < CF0 on (a, b) and CH = CF0 on
¶a, b♢, there are c ≤ d in supp(G) such that CG ≤ CH on [a, b] \ (c, d) and u
is affine on [c, d].

To prove that G′′ is less informative than H ′, it suffices to show that for
any a < b in [0, 1] such that CH′ < CF0 on (a, b) and CH′ = CF0 on ¶a, b♢,
we have CG′′ ≤ CH′ on (a, b). So Ąx such a pair a < b. By the claim, there
are c ≤ d in supp(G′′) such that CG′′ ≤ CH′ on [a, b] \ (c, d) and u is affine
on [c, d]. And (c, d) is empty, since supp(G′′) ∩ [c, d] must be a singleton by
deĄnition of G′′ and the fact that u is concave on [c, d].

Similarly, to prove that G′ is less informative than H ′′, it suffices to show
that for any a < b in [0, 1] such that CH′′ < CF0 on (a, b) and CH′′ = CF0 on
¶a, b♢, we have CG′ ≤ CH′′ on (a, b). So Ąx such a pair a < b. By the claim,
there are c ≤ d in supp(G′) such that CG′ ≤ CH′′ on [a, b] \ (c, d) and u is
affine on [c, d]. If [a, b] and [c, d] are disjoint, then we are done. Suppose for
the remainder that [a, b] ∩ [c, d] is non-empty. We must show that CG′ ≤ CH′′

on [a′, b′] := [a, b] ∩ [c, d].
v is convex on [a′, b′] since [a′, b′] ⊆ [c, d], so by deĄnition ofH ′′, the restric-

tion of CH′′ to [a′, b′] equals the convex envelope of 1(a′,b′)CF0 + 1¶a′,b′♢CH′′ .
We have CG′ ≤ 1(a′,b′)CF0 + 1¶a′,b′♢CH′′ on [a′, b′] by hypothesis and the fact
that G′ is less informative than the prior F0.38 Thus since CG′ is convex, it
must satisfy CG′ ≤ CH′′ on [a′, b′].

Proof of the claim. Fix a < b in [0, 1] such that CH < CF0 on (a, b) and
CH = CF0 on ¶a, b♢. Note that [a, b] ⊆ supp(F0) since the latter is convex.
Since u and v are regular, Lemma 6 provides that there exist

p ∈ arg min
r∈M(u)

∫
rdF0 and q ∈ arg min

r∈M(v)

∫
rdF0,

and that q is affine on [a, b]. By Lemma 8, it follows that p is also affine on
[a, b]. Write [a′, b′] for the maximal interval I such that p is affine on I and

38At a′, we have if a′ = c that CG′ (a′) ≤ CH′′ (a′), and if not then a′ = a, in which case
CG′ (a′) ≤ CF0

(a′) = CH′′ (a′) since G′ is less informative than F0. Similarly at b′.
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[a, b] ⊆ I ⊆ supp(F0). We have CG = CF0 on ¶a′, b′♢ by Lemma 6, which
since supp(F0) is convex and contains [a′, b′] implies that (a′, b′) ∩ supp(G)
is non-empty. DeĄne

c := inf
[
(a′, b′) ∩ supp(G)

]
and d := sup

[
(a′, b′) ∩ supp(G)

]
.

We Ąrst show that CG ≤ CH on [a, b] \ (c, d). This is trivial if c ≤ a and
b ≤ d, so suppose not. Assume that a < c; we will show that CG ≤ CH

on [a,min¶b, c♢]. (We omit the analogous argument that CG ≤ CH on
[max¶a, d♢, b] when d < b.) By deĄnition of c, CG is affine on [a′, c]. Since
CG ≤ CF0 with equality at a′, where CF0 is convex and differentiable at a′ (F0

being atomless), CG coincides on [a′, c] with the tangent to CF0 at a′. Similarly,
since CH ≤ CF0 with equality at a and CH is convex, we have on [a, 1] that CH

exceeds the tangent to CF0 at a. Since the latter tangent exceeds the former
on [a, 1], it follows that CG ≤ CH on [a′, c] ∩ [a, 1] = [a, c] ⊇ [a,min¶b, c♢].

It remains to show that u is affine on [c, d]. Since u is regular, it suffices
to show that u is affine on [x,w] for any x < w in (a′, b′) ∩ supp(G). Fix
such a pair x < w, and note that by Lemma 6, p is tangent to u at x and at
w. Then since p ≥ u and u satisĄes the crater property, Lemma 7 provides
that there are y ∈ (x,w] and z ∈ [x,w) such that u is concave on [x, y] and
on [z, w] and strictly convex on [x, z] and on [y, w]. Clearly it must be that
y = w and z = x, so that u is concave on [x,w]. Since p is convex and p ≥ u
on [x,w] with equality on ¶x,w♢, it follows that u is affine on [x,w]. □

With the claim established, the proof is complete. ■

C.3 Proof of Lemma 8

We rely on the following result, which follows from Lemmata 6 and 7.

Corollary 3. Let u : [0, 1] → R be regular, let F0 be an atomless convex-
support distribution, and let p minimise

∫
pdF0 over M(u). Then

(i) for any x < z such that [x, z] is maximal among the intervals of
affineness of p within supp(F0), there are

x < y ≤

∫ z
x ξF0(dξ)

F0(z) − F0(x)
≤ y′ < z

such that p(y) = u(y) and p(y′) = u(y′), and

(ii) if p(y) > u(y) for some y ∈ supp(F0) such that F0(y) > 0 (F0(y) < 1),
then y > 0 and there is x ∈ [0, y) (y < 1 and there is z ∈ (y, 1]) such
that p is affine on [x, y] (on [y, z]).
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Moreover, if u satisĄes the crater property, then

(iii) given x < y such that [x, y] is maximal among the intervals of affineness
of p within supp(F0), and F0(x) > 0 (F0(y) < 1), it holds that p(x) =
u(x) (p(y) = u(y)), that u is convex and not affine on some open
interval I containing x (y), and that

u′ <(>)
p(y) − p(x)

y − x
on (0, x) ∩ I (on (y, 1) ∩ I).

Proof of Corollary 3. Fix F maximising
∫
udF among distributions feasible

given F0. For (i), Ąx x < z such that [x, z] is maximal among intervals of
affineness of p within supp(F0). Then CF = CF0 on ¶x, z♢ by Lemma 6.39

Then (x, z) is F -non-null since F0 has convex support,40 and thus there are
y, y′ ∈ supp(F ) such that

x < y ≤

∫
(x,z) ξF (dξ)
∫

(x,z) dF
≤ y′ < z.

By (b), p(y) = u(y) and p(y′) = u(y′). Finally, since CF = CF0 on ¶x, z♢ and
F0 is atomless, F = F0 on ¶x, z♢ and F is continuous at x and z, so that

∫ z
x ξF (dξ)∫
(x,z) dF

=
zF (z) − xF (x) − [CF (z) − CF (x)]

F (z) − F (x)
=

∫ z
x ξF0(dξ)

F0(z) − F0(x)
.

This proves (i).
For (ii), suppose that p(y) > u(y) for some y ∈ supp(F0) such that

F0(y) > 0 (the case F0(y) < 1 is analogous). Then y /∈ supp(F ) by (b), so
that CF is affine on a neighbourhood of y. Moreover, y > min supp(F0) since
F0 is atomless. Then, y > 0 and, since supp(F0) is convex and CF0 is strictly
convex on supp(F0), there is x ∈ [0, y) such that CF < CF0 on [x, y). Hence,
p is affine on [x, y] by (a), as p is continuous.

For (iii), Ąx x < y such that [x, y] is maximal among intervals of affineness
of p within supp(F0), and F0(x) > 0 (the case F0(y) < 1 is analogous). By
(i), there is w ∈ (x, y) such that p(w) = u(w), so that p is tangent to u
at w. Then, there is z ∈ [x,w) such that u is strictly convex on [x, z] and

39If e.g. CF (x) < CF0
(x), then x lies in the interior of supp(F0), CF < CF0

on a
neighbourhood of x, and p is affine on this neighbourhood by (a), contradicting the
deĄnition of [x, z].

40Since F0 has convex support, CF0
is not affine on [x, z]. Then, neither is CF , and thus

supp(F ) ∩ (x, z) is not empty.
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concave on [z, w], by Lemma 7. Let b := min supp(F0) and a be the smallest
a′ ∈ [b, x] such that p is affine on [a′, x]. We consider two cases.

Case 1. a = x. Note that x > b since F0 is atomless and F0(x) > 0.
Then, by the hypothesis of this case, there exists an increasing sequence
(xk)k∈N ⊆ (b, x) such that limk xk = x and on which CF = CF0 , by (a). Then,
there exists an increasing sequence (yk)k∈N ⊆ (b, x) ∩ supp(F ) such that
limk yk = x, since CF0 is strictly convex on supp(F0). By (b), p(yk) = u(yk)
for each k ∈ N. Then, since p is convex and u is regular, by the hypothesis
of this case, u is convex and not affine on [yk′ , x] for some k′ ∈ N, and

u′ <
p(y) − p(x)

y − x
on (yk′ , x).41

Moreover, p(x) = u(x) and thus u is affine on [x,w] if z = x, since p ≥ u
with equality on ¶x,w♢ and u is concave on [z, w]. The result follows by
choosing I = (yk′ , z) if z > x, and I = (yk′ , w) otherwise.

Case 2. a < x. In this case, there is x̂ ∈ (a, x) such that p(x̂) = u(x̂), by
(i). Then, p is tangent to u at x̂, and thus there is ŷ ∈ (x̂, x] such that u is
concave on [x̂, ŷ], and strictly convex on [ŷ, x], by Lemma 7. DeĄne

I :=





(ŷ, z) if ŷ < x < z

(x̂, z) if ŷ = x

(ŷ, w) if x = z.

Note that ŷ < z, for otherwise u would be concave on [x̂, w] and thus p would
be affine on [x̂, w] (since p = u on on ¶x̂, w♢), contradicting x̂ < x. Then I
contains x, since x̂ < ŷ ≤ x ≤ z < w.

To show that u is convex and not affine on I, note that u is strictly
convex on [ŷ, z], as it is regular and strictly convex on [ŷ, x] and [x, z]. Then
p(x) = u(x), since u satisĄes the crater property and, clearly, the tangents
to u at x̂ and w intersect at (x, p(x)). Hence u is affine on [x̂, x] (on [x,w])
if ŷ = x (x = z), since u is concave on [x̂, ŷ] with u(x̂) = p(x̂) (on [z, w] with
u(w) = p(w)). Since ŷ < z and u is strictly convex on [ŷ, z], u is convex and
not affine on I.

It remains to show that

u′ <
p(y) − p(x)

y − x
on (0, x) ∩ I.

41To see why this last property must hold, suppose it were to fail. Then there is a
sequence (zk)∞

k=1 ⊆ (b, x) with limk→∞ zk = x such that u′(zk) ≥ [p(y) − p(x)]/(y − x).
Since u is regular, it follows that u′ ≥ [p(y) − p(x)]/(y−x) on [yk′ , x] for some k′ ∈ N. But
then p is affine on [yk′ , x] since u(yk′ ) = p(yk′ ), contradicting the hypothesis of this case.
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To this end, since u is convex on I, we may assume without loss of generality
that

u′(x) ≥
p(y) − p(x)

y − x
.

Then x = z and equality holds, since p ≥ u with equality at x and u is strictly
convex on [x, z]. The result follows since ŷ < z and u is strictly convex on
[ŷ, x]. ■

Proof of Lemma 8. Fix F0, p and q. Suppose toward a contradiction that
there exist x̃ < z̃ in supp(F0) such that q is affine on [x̃, z̃], but p is not.
Assume without loss of generality that [x̃, z̃] is maximal among the intervals
of affineness of q within supp(F0). We consider two cases.

Case 1. u is convex on [x̃, z̃]. We shall construct a ∈ [0, x̃] such that u
is concave on [a, z̃] and p(a) = u(a). A similar argument yields b ∈ [z̃, 1]
such that u is concave on [x̃, b] and p(b) = u(b). Then u is concave on [a, b]
and thus p is affine on [a, b], contradicting the fact that p is not affine on
[x̃, z̃] ⊆ [a, b].

To construct a, note that v is convex on [x̃, z̃] by the hypothesis of this
case, since u is coarsely less convex than v. Then v is affine on [x̃, z̃] by (i)
(since (i) implies that q(y) = v(y) for some y ∈ (x̃, z̃)). Then so is u, as it is
coarsely less convex than v. Then, if p(x̃) = u(x̃), we may take a = x̃. Hence,
assume without loss of generality that p(x̃) > u(x̃).

Let z̄ be the largest z ∈ [x̃, 1] such that p is affine on [x̃, z]. Then z̄ < z̃
by hypothesis, and z̄ > x̃ by (ii) (which is applicable since F0(x̃) < 1). Let
x̄ be the smallest x ∈ [0, x̃] ∩ supp(F0) such that p is affine on [x, z̄]. By (i),
there is a ∈ (x̄, z̄) such that p(a) = u(a). And a belongs to [0, x̃] since u and
p are affine on [x̃, z̄] and since p ≥ u, with strict inequality at x̃.

It remains to prove that u is concave on [a, z̃]. As u is affine on [x̃, z̃] and
regular, and x̃ < z̄ < z̃, it suffices to show that u is concave on [a, z̄]. Note
that p is tangent to u at a as x̄ < a < z̄ and p(a) = u(a). Then u is concave
on [a, z̄] by Lemma 7, as p ≥ u on [a, z̄], and u and p are affine on [x̃, z̄].42

Case 2. u is not convex on [x̃, z̃]. In this case, since u is regular, there
are x̃ ≤ c < d ≤ z̃ such that [c, d] is maximal among the intervals in [x̃, z̃]
on which u is strictly concave. Then p and u differ somewhere in (c, d) and
thus, by (ii), p is not strictly convex on (c, d). Hence there are x̄ < z̄ such
that [x̄, z̄] is maximal among the intervals of affineness of p within supp(F0),

42Indeed, Lemma 7 yields y ∈ (a, z̄] such that u is concave on [a, y] and strictly convex
on [y, z̄]. And y = z̄ since u is affine on [x̃, z̄].
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and [x̄, z̄] ∩ (c, d) is not empty. Since p is not affine on [x̃, z̃], either x̃ < x̄ or
z̄ < z̃. We consider the case x̃ < x̄; the other is analogous.

Note that x̄ < d ≤ z̃, where the strict inequality holds as [x̄, z̄] ∩ (c, d) is
not empty. We shall exhibit a w ∈ (x̄, z̃] such that

u(x̄)αu(w) ≥ u(x̄αw) for all α ∈ (0, 1), (4)

a ỹ ∈ (x̄, w) such that q(ỹ) = v(ỹ), and show that v(x̄) < q(x̄). To see why
this suffices, note that it implies that given α ∈ (0, 1) such that x̄αw = ỹ,

v(x̄)αv(w) < q(x̄)αq(w) = q(ỹ) = v(ỹ),

where the strict inequality holds since α ∈ (0, 1), v(x̄) < q(x̄) and v(w) ≤
q(w), and the Ąrst equality holds as q is affine on [x̃, z̃] ⊇ [x̄, w]. Together
with (4), this contradicts the fact that u is coarsely less convex than v.

To construct w note that, by (i), there is

x̄ <

∫ z̄
x̄ ξF0(dξ)

F0(z̄) − F0(x̄)
≤ ȳ < z̄

such that p(ȳ) = u(ȳ). DeĄne w := min¶ȳ, z̃♢ and note that w ∈ (x̄, z̃]. To
establish (4), note p is tangent to u at ȳ, so that there is γ ∈ [x̄, ȳ) such that
u is strictly convex on [x̄, γ] and concave on [γ, ȳ], by Lemma 7. Then (4)
holds since p(x̄) = u(x̄) by (iii) (which is applicable since F0(x̄) > 0 and
x̃ < x̄).43

To construct ỹ ∈ (x̄, w) such that q(ỹ) = v(ỹ), let [a, b] be the maximal
interval of convexity of u containing x̄. (This is well-deĄned since u is regular).
Note that if x̄ ∈ (c, d) then γ = x̄, as u is concave on (c, d) and on [γ, ȳ], and
strictly convex on [x̄, γ]. But then u would be affine on [x̄, ȳ] since p = u on
¶x̄, ȳ♢, contradicting the fact that u is strictly concave on [c, d]. Hence x̄ < c
as x̄ < d. Then b ≤ c, and by (iii) (applicable since F0(x̄) > 0 and x̃ < x̄) we
have that a < x̄ < b, that u is not affine on [a, b], and that

u′ <
p(z̄) − p(x̄)

z̄ − x̄
on (a, x̄). (5)

We rely on the following claim, proved at the end.

Claim. a ≤ x̃ and z̃ ≤ z̄.

43This is easily seen graphically. It follows from the facts that p is affine on [x̄, ȳ], that
p ≥ u on [x̄, ȳ] with equality on ¶x̄, ȳ♢, that u is convex on [x̄, ẑ] and concave on [ẑ, ȳ] for
some ẑ ∈ [x̄, ȳ], and that x̄ < w ≤ ȳ.
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By (i), we may choose

x̃ < y ≤

∫ z̃
x̃ ξF0(dξ)

F0(z̃) − F0(x̃)
< z̃

such that q(y) = v(y). Note that y < min¶ȳ, z̃♢ = w since y < z̃ and

y ≤

∫ z̃
x̃ wdF0(w)

F0(z̃) − F0(x̃)
<

∫ z̄
x̄ wdF0(w)

F0(z̄) − F0(x̄)
≤ ȳ,

where the strict inequality holds as F0 has convex support, x̃ < x̄ and, by
the claim, z̃ ≤ z̄. Thus we may take ỹ := y if y > x̄. If instead y ≤ x̄, note
that v is convex on [a, b], as u is coarsely less convex than v and convex
on [a, b]. Moreover, q is affine on [x̃, z̃] and q ≥ v with equality at y. Since
a ≤ x̃ < y ≤ x̄ < b ≤ c ≤ z̃, it follows that v = q on [x̃, b] = [a, b] ∩ [x̃, z̃]. As
x̄ < w, we may then choose any ỹ ∈ (x̄,min¶b, w♢).

It remains to prove that v(x̄) < q(x̄). Note that, by (4) and (5),

u(x̃)αu(w) > u(x̃αw) for all α ∈ (0, 1),

since a ≤ x̃ < x̄, and u is convex on [a, x̄].44 Hence, choosing α ∈ (0, 1) such
that x̄ = x̃αw,

q(x̄) = q(x̃)αq(w) ≥ v(x̃)αv(w) > v(x̄),

where the equality holds since q is affine on [x̃, z̃] ⊇ [x̃, w], the weak inequality
as q ≥ v, and the strict inequality holds since u is less convex than v.

Proof of the claim. We begin by exhibiting x̃ ≤ c′ < d′ ≤ z̃ such that u is
strictly convex on [x̃, c′] and [d′, z̃], and concave on [c′, d′]. By (i),

v(x̃αz̃) = q(x̃αz̃) = q(x̃)αq(z̃) ≥ v(x̃)αv(z̃) for some α ∈ (0, 1),

where the second equality holds since q is affine on [x̃, z̃], and the inequality
holds since q ≥ v. Then

u(x̃αz̃) ≥ u(x̃)αu(z̃) for some α ∈ (0, 1), (6)

since u is coarsely less convex than v. Hence the tangent to u at some
a⋆ ∈ (x̃, z̃) weakly exceeds u on [x̃, z̃], as u is regular. Therefore, by Lemma 7,

44In detail, on (a, x̄), u′ > [p(z̄) − p(x̄)]/(z̄ − x̄) = [p(w) − p(x̄)]/(w − x̄) ≥ [u(w) −
u(x̄)]/(w − x̄), and thus the continuous map that matches u on [x̃, x̄] ∪ ¶w♢ and is affine
on [x̄, w], is convex and not affine on [x̃, w]. Then the result follows from (4).
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there are c′ ∈ [x̃, a⋆) and d′ ∈ (a⋆, z̃] such that u is strictly convex on [x̃, c′]
and [d′, z̃], and concave on [c′, a⋆] and [a⋆, d

′]. As u is regular, it is concave
on [c′, d′], as desired.

Note that b ≤ c < d ≤ z̃. Then a ≤ x̃ since u is regular. Indeed, if x̃ < a
then, by deĄnition of a and b, there would exist x̃ ≤ a′ < a and b < b′ ≤ z̃
such that u is strictly concave on [a′, a] and [b, b′]. But then c′ ≤ a′ and
b′ ≤ d′, contradicting the fact that u is convex and not affine on [a, b].

It remains to show that z̃ ≤ z̄. Suppose this fails and seek a contradiction.
Then p(z̄) = u(z̄) by (iii), and thus

u(x̄)αu(z̄) = p(x̄)αp(z̄) = p(x̄αz̄) ≥ u(x̄αz̄) for all α ∈ (0, 1), (7)

where the Ąrst equality holds since p(x̄) = u(x̄), and the second since p is
affine on [x̄, z̄]. Moreover, u is convex and not affine on some open interval I
containing z̄, by (iii). Then

c′ ≤ c < d ≤ z̄,

where the Ąrst inequality holds since x̃ ≤ c < d and u is strictly convex
on [x̃, c′] and strictly concave on [c, d], and the last inequality holds since
[x̄, z̄] ∩ (c, d) ̸= ∅ and u is strictly concave on [c, d] and convex on I ∋ z̄.
Then u is convex on [z̄, z̃], as it is convex and not affine on I ∋ z̄, concave on
[c′, d′], and strictly convex on [d′, z̃]. Then (5) and (7) contradict (6), since
a ≤ x̃ < x̄ and u is convex on [a, x̄].45 □

With the claim established, the proof is complete. ■

Appendix D Proof of Proposition 1 (p. 13)

The second (converse) part of Proposition 1 follows from the proof in ap-
pendix B.1 of the second (converse) part of Theorem 1∗.46

To prove the Ąrst part, let u, v : [0, 1] → R be upper semi-continuous,
assume that u is coarsely less convex than v, and let F0 be a binary distribu-
tion. Write µ for the mean of F0. Assume without loss of generality that F0

is supported on ¶0, 1♢ (that is, F0 = 1 − µ+ µ1¶1♢).47 Given x, y ∈ R and
α ∈ [0, 1], let us write xαy := αx+ (1 − α)y.

45To see why, note that the map 1[x̃,x̄]∪[z̄,z̃]u+ 1(x̄,z̄)p is convex and not affine on [x̃, z̃].
46The argument there shows that if u is not coarsely less convex than v, then we can

construct a prior F0 such that arg maxF

∫
udF is strictly higher than (a fortiori not lower

than) arg maxF

∫
vdF . And the constructed prior is, in fact, binary.

47If F0 is degenerate (F0 = 1[µ,1]) then the result is trivial. If not, then F0 is supported
on ¶x, y♢ with x < µ < y, all feasible distributions have support in [x, y], and u♣[x,y] is
coarsely less convex than v♣[x,y]; so the interval [x, y] may as well be [0, 1].
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Write cav u for the concave envelope of u. Let [x,w] be the maximal
interval containing µ on which cav u is affine. DeĄne

U := ¶u = cav u♢ ∩ [x,w],

and note that x,w ∈ U since u is upper semi-continuous. Further deĄne

y := sup(U ∩ [0, µ]) and z := inf(U ∩ [µ, 1]),

and note that y, z ∈ U by upper semi-continuity. Clearly x ≤ y ≤ µ ≤ z ≤ w.
Let

M(u) := arg max
F feasible given F0

∫
udF.

Kamenica and Gentzkow (2011) showed that M(u) is the set of all mean-µ
distributions F such that

∫
udF = (cav u)(µ). Thus M(u) is the set of all

mean-µ distributions supported on U . It follows that the distribution G (H)
with mean µ and support ¶y, z♢ (¶x,w♢) is the least (most) informative
distribution in M(u).

For the function v, analogously deĄne V ⊆ [0, 1], x′, y′, z′, w′ ∈ V, and
distributions G′, H ′ in M(v). We must show that H is less informative than
H ′ and that G is less informative than G′. The former requires precisely that
x′ ≤ x and w ≤ w′, while the latter requires that y′ ≤ y and z ≤ z′.

We Ąrst show that x′ ≤ x and w ≤ w′. Since x,w ∈ U , we have u(xαw) ≤
u(x)αu(w) for every α ∈ (0, 1). As u is coarsely less convex than v, it follows
that v(xαw) ≤ v(x)αv(w) for each α ∈ (0, 1), implying that [x,w] ⊆ [x′, w′].

Claim. V ∩ [x,w] ⊆ U .

Proof. Take any ŷ ∈ V ∩ [x,w]. The result is trivial if ŷ = x or ŷ = w, so
suppose not: ŷ = xαw for some α ∈ (0, 1). Then

v(xαw) = (cav v)(xαw) ≥ (cav v)(x)α(cav v)(w) ≥ v(x)αv(w)

since xαw ∈ V (the equality), cav v is concave (Ąrst inequality), and cav v ≥ v
(second inequality), whence u(xαw) ≥ u(x)αv(w) because u is coarsely less
convex than v. So u(xαw) = u(x)αv(w), and thus ŷ = xαw ∈ U . □

We now show that y′ ≤ y; the argument for z ≤ z′ is analogous. If y′ < x,
then y′ < x ≤ y since y ∈ U ⊆ [x,w]. Suppose instead that x ≤ y′. Then
since y′ ≤ µ ≤ w, we have y′ ∈ [x,w]. As y′ ∈ V, it follows from the claim
that y′ belongs to U . So y′ ∈ U ∩ [0, µ], and thus y′ ≤ sup(U ∩ [0, µ]) = y. ■
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Appendix E Proof of Proposition 2 (p. 13)

The argument is close to the proof of the converse (necessity) half of The-
orem 2, which we sketched in §4.2 and which is given in full in appendix C.
Fix a distribution F0 that is not binary. Choose an X ∈ (0, 1) such that
0 < limz↑X F0(z) ≤ F0(X) < 1. DeĄne

x :=
1

F0(X)

∫

[0,X]
ξF0(dξ) and w :=

1

1 − F0(X)

∫

(X,1]
ξF0(dξ),

and note that x < X < w. Fix a convex p : [0, 1] → R that is affine on
[0, X] and on [X, 1], but not affine on [0, 1]. Clearly we may choose a regular
and M-shaped u : [0, 1] → R such that p = u on ¶x,w♢ and p > u on
[0, 1] \ ¶x,w♢, and such that u is convex on [X, y] and concave on [y, 1] for
some y ∈ (X, 1). Let G be the distribution supported on ¶x,w♢ whose mean
is the same as that of F0. Then G is uniquely optimal for u given F0, since any
other feasible distribution F has

∫
udF <

∫
pdF ≤

∫
pdF0 =

∫
pdG =

∫
udG,

where the weak inequality holds since p is convex and F is feasible given F0,
the Ąrst equality holds since p is affine on [0, X] and on [X, 1], and the Ąnal
equality holds since p = u G-a.e.

Since u′ is bounded, we may choose a regular v : [0, 1] → R that coincides
with u on [X, 1] and that weakly exceeds u and is strictly convex on [0, X].
Then v is S-shaped and coarsely more convex than u. Let δ := F0(a) −
limz↑a F0(z), and observe that there are a ∈ [0, X] and π ∈ [0, 1] such that

v(b) − v(a)

b− a
= v′(b), where b :=

πδa+
∫ 1

a ξF0(dξ)

πδ + 1 − F0(a)
> 0.

DeĄne F by F := F0 on [0, a), F := F0(a) − πδ on [a, b), and F := 1
on [b, 1]. (That is, F reveals [0, a), pools (a, 1], reveals a with probability
1 − π, and otherwise pools it with (a, 1].) Let q : [0, 1] → R be affine on
[X, 1] and satisfy q ≥ v, with equality on [0, a] ∪ ¶b♢. The distribution F is
optimal for v given F0 since for any (other) feasible distribution H, we have∫
vdH ≤

∫
qdH ≤

∫
qdF0 =

∫
qdF =

∫
vdF , where the second inequality

holds since q is convex and H is feasible given F0, the Ąrst equality holds
since q is affine on [a, 1], and the Ąnal equality holds since q = v F -a.e.

Since p(X) > u(X), it must be either that a < X or that a = X and
πδ > 0. Thus F is not more informative than G, so (⋆⋆) fails. ■
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Appendix F Proof of Proposition 3 (p. 14)

For the Ąrst half (sufficiency), Ąx an atomless convex-support prior distri-
bution F0, and let u, v : [0, 1] → R be regular with u coarsely less convex
than v. If v is concave, then so is u, and thus u satisĄes the crater property,
so that (⋆⋆) holds by Theorem 2. If instead v is strictly convex, then F0 is
uniquely optimal for v given F0, so (⋆⋆) holds.

For the second half (necessity), Ąx a regular v : [0, 1] → R that is neither
concave nor strictly convex; we shall exhibit a regular u : [0, 1] → R that is
coarsely less convex than v, an atomless convex-support prior distribution F0,
and a distribution F that is optimal for v given F0 such that no distribution
optimal for u given F0 is less informative than F . The argument will be
similar to the proof in appendix C.1 of the converse (necessity) part of
Theorem 2, which we sketched in §4.2.

By hypothesis (and using regularity), there are x′ < z < w′ in [0, 1] such
that either v is strictly convex on [x′, z] and concave on [z, w′], or v is concave
on [x′, z] and strictly convex on [z, w′]. We consider the former case (the
latter is analogous), and distinguish two (sub-)cases.

Case 1: v is not affine on [z, w′]. In this case, we may choose w ∈ (z, w′)
such that the tangent to v at w crosses v on [x′, w) exactly once, at some
a′ ∈ (x′, z). Since v′ is bounded, we may choose a regular u : [0, 1] → R

such that u− v is concave (so u is coarsely less convex than v), u is strictly
concave on [0, a′] and on [w, 1], and u ≤ v on [x′, w′], with equality on [a′, w].
Then since u is strictly concave on [x′, a′] and strictly convex on [a′, z], we
may choose an x ∈ (x′, a′) such that the tangent to u at x lies strictly above
(below) u at a′ (at z). It follows that there is a convex p : [0, 1] → R and
an X ∈ (a′, z) such that p is affine on [x′, X] and on [X,w′], and u ≥ p on
[x′, w′], with equality on ¶x,w♢ and with strict inequality at X.

Let F0 be a distribution that is atomless with support [x′, w′],

1

F0(X)

∫ X

0
ξF0(dξ) = x and

1

1 − F0(X)

∫ 1

X
ξF0(dξ) = w.

As v is S-shaped on [x′, w′], an Śupper censorshipŠ distribution F is optimal
by KolotilinŠs (2014, p. 14) well-known result: for a ∈ (0, 1) satisfying

v(b) − v(a)

b− a
= v′(b), where b :=

1

1 − F0(a)

∫ 1

a
ξF0(dξ),

this distribution F fully reveals [0, a) and pools [a, 1].48 It is easy to see
graphically (in Figure 2 on p. 11, paying attention to p) that a must be

48Explicitly, F = F0 on [0, a), F = F0(a) on [a, b) and F = 1 on [b, 1].
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strictly smaller than X. Thus the optimal distribution F pools some states
to the left of X with states to its right. For the payoff u, however, it is
strictly sub-optimal to pool states on either side of X together. This is
reasonably intuitive given the shape of u; formally, it follows from Lemma 5
in appendix C.1. Thus (⋆⋆) fails: no distribution optimal for u given F0 is
less informative than F , since the latter pools across X while the former do
not.

Case 2: v is affine on [z, w′]. In this case, since v′ is bounded, we may
choose x < y in (x′, z) and a regular u : [0, 1] → R such that u = v on [y, w′],
u is strictly concave on [0, y] and on [w′, 1], and the tangent to u at x crosses
u exactly once on (z, w′), at some X ∈ (z, w′). Fix some w ∈ (X,w′).

Let p : [0, 1] → R match the aforementioned tangent on [x′, X] and match
u on [X,w′]. Clearly p is affine on [x′, X] and on [X,w′] with p′(x) < p′(w)
(so p is convex). We furthermore have p ≥ u on [x′, w′], with equality on
¶x,w♢. Let F0 be a distribution that is atomless with support [x′, w′],

1

F0(X)

∫ X

0
ξF0(dξ) = x and

1

1 − F0(X)

∫ 1

X
ξF0(dξ) = w.

The hypotheses of Lemma 5 in appendix C.1 are satisĄed. Thus to show that
(⋆⋆) fails, it suffices to exhibit a distribution F that is optimal for v given F0

and that satisĄes
∫X

0 F <
∫X

0 F0 (i.e. states on either side of X are pooled).
To that end, let

b :=
1

1 − F (z)

∫ 1

z
ξF0(dξ),

and deĄne a distribution F by F := F0 on [0, z), F := F0(z) on [z, b) and
F := 1 on [b, 1]. Then

∫X
0 F <

∫X
0 F0,49 and clearly F is optimal for v given

F0. ■

Appendix G Proof of Proposition 4 (p. 15)

Fix any atomless F0 ̸= G0; we shall Ąnd a regular and S-shaped u : [0, 1] → R

for which (†) fails. If F0 is not less informative than G0, then (†) fails for any
strictly convex u : [0, 1] → R, since F0 (G0) is uniquely optimal for u given
F0 (G0). Assume for the remainder that F0 is less informative than G0.

49If b ≥ X, then
∫ X

0
(F0 − F ) =

∫ X

z
[F0 − F0(z)] > 0 as F0 > F0(z) on (z, 1], while if

b ≤ X we have
∫ X

0
(F0 − F ) =

∫ 1

X
(F − F0) =

∫ 1

X
(1 − F0) > 0 as F0 < 1 on [0, w′).
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For any atomless distribution F , integration by parts50 yields

1

1 − F (y)

∫ 1

y
xF (dx) =

1 − yF (y) −
∫ 1

y F

1 − F (y)
= 1 +

(1 − y)F (y) −
∫ 1

y F

1 − F (y)

for each y ∈ (0, 1). We have
∫ 1

y F0 ≥
∫ 1

y G0 for every y ∈ (0, 1) since F0 is
less informative than G0. Since in addition F0 ̸= G0, it cannot be that F0 is
Ąrst-order stochastically dominated by G0, and thus F0(a) < G0(a) for some
a ∈ (0, 1). It follows that

b :=
1

1 − F0(a)

∫ 1

a
xF0(dx) <

1

1 −G0(a)

∫ 1

a
xG0(dx). (8)

Choose a regular and S-shaped u : [0, 1] → R such that (u(b)−u(a))/(b−
a) = u′(b). Let F be the distribution given by F := F0 on [0, a), F := F0(a)
on [a, b) and F := 1 on [b, 1]. Write a′ for the unique y ∈ (0, 1) satisfying

u(β(y)) − u(y)

β(y) − y
= u′(β(y)), where β(y) :=

1

1 −G0(y)

∫ 1

y
xG0(dx),

deĄne b′ := β(a′), and let G be the distribution given by G := G0 on [0, a′),
G := G0(a′) on [a′, b′) and G := 1 on [b′, 1]. By KolotilinŠs (2014, p. 14)
well-known result, F (G) is uniquely optimal for u given F0 (G0). By (8), we
have a > a′, so F is not less informative than G. Thus (†) fails. ■

The atomlessness hypothesis in Proposition 4 can be dropped: it suffices
to assume that F0 is not degenerate. Then there are a, α ∈ [0, 1] such that

lim
x↑a

F0(x) + α


F0(a) − lim

x↑a
F0(x)


< lim

x↑a
G0(x) + α


G0(a) − lim

x↑a
G0(x)


< 1,

and thus the proof above remains applicable, with minor modiĄcations along
the lines of the proof of Proposition 2 (appendix E) to take care of atoms.

Appendix H Proof of Theorem 2′ (p. 17)

For the Ąrst half (sufficiency), Ąx an atomless convex-support prior distribu-
tion F0, and let u, v : E → R be strongly regular with u coarsely less convex
than v. If u is strictly concave, then the point mass at µ0 :=

∫
xF0(dx) is

uniquely optimal for u given F0, so (⋆⋆) holds. If u is strictly convex, then
so is v, in which case F0 is uniquely optimal for v given F0, so (⋆⋆) holds.

50Licensed by e.g. Theorem 18.4 in Billingsley (1995).
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For the second half (necessity), say that a strongly regular u : E → R

satisĄes the crater property iff for all distinct x, y ∈ E, the map [0, 1] → R

given by α 7→ u(αx+ (1 − α)y) satisĄes the crater property.

Lemma 9. Let u : E → R be strongly regular and satisfy the crater property,
and let ℓ be the Lebesgue measure on a two-dimensional affine subspace of
R

n. Then

arg max
F feasible given F0

∫
udF

is a singleton for any distribution F0 admitting a density with respect to ℓ.

Proof of Lemma 9. Since u is strongly regular, it is Lipschitz continuous.
Hence by Theorem 7 in Dworczak and Kolotilin (2022), it suffices to show
that there exists no ε > 0 and distinct x, y ∈ E such that ∇u(x) = ∇u(y),
αx+ (1 − α)y ∈ E for all α ∈ [−ε, 1 + ε], and

αu(x) + (1 − α)u(y) ≥ u(αx+ (1 − α)y) for all α ∈ [−ε, 1 + ε].

So suppose toward a contradiction that some ε > 0 and x, y ∈ E have these
properties. DeĄne w : [0, 1] → R by w(α) := u(αx + (1 − α)y) for each
α ∈ [0, 1]. By hypothesis, the tangent to w at 0 lies above the graph of w,
and is tangent to w also at 1. Since u is strongly regular, w is not affine.
Hence w violates the crater property by Lemma 7 (appendix C.2, p. 41), so
u violates the crater propertyŮa contradiction. ■

Fix a strongly regular u : E → R that is neither strictly concave nor
strictly convex; we shall Ąnd a strongly regular v : E → R that is coarsely
more convex than u and an atomless convex-support distribution F0 such
that (⋆⋆) fails. If u violates the crater property, then such v and F0 exist by
Theorem 2. Assume for the remainder that u satisĄes the crater property.

Assume without loss that E has dimension n, and note that n ≥ 2
by hypothesis. For any S ⊆ E, let int(S) denote its relative interior. For
each x ∈ int(E), let Hx denote the Hessian matrix of u at x. We consider
separately the case in which u has a saddle point, i.e. an x ∈ int(E) at which
Hx is indeĄnite,51 and the case in which it does not.

Case 1: Hx is indeĄnite at some x ∈ int(E). Assume without loss that
x = 0. Since H0 is indeĄnite, it admits eigenvalues λ1, λ2 such that λ2 < 0 <
λ1. As H0 is symmetric, its eigenvectors (appropriately rescaled) form an
orthonormal basis of R

n. We henceforth express elements of E in coordinates

51Recall that an n× n matrix M is positive (negative) semi-deĄnite iff x · (Mx) ≥(≤) 0
for all x ∈ Rn, and indeĄnite iff it is neither positive nor negative semi-deĄnite.
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relative to this basis, with the eigenvectors associated with λ1 and λ2 as
(respectively) the Ąrst and second basis vectors. Then u11(0) = λ1, u12(0) = 0
and u22(0) = λ2, where subscripts denote partial derivatives. Assume without
loss that u(0) = u1(0) = u2(0) = 0. Let

S := ¶x ∈ R
n : ∥x∥ ≤ 1 and xi = 0 for i > 2♢,

and note that since 0 ∈ int(E), we may assume without loss that S ⊆ E.
Let u⋆ : S → R be given by

u⋆(x) := 1
2


λ1x

2
1 + λ2x

2
2


for each x ∈ S.

A second-order Taylor expansion of u around 0 yields that

♣u(x) − u⋆(x)♣
/

∥x∥2 → 0 as x → 0 in S. (9)

Since u is strongly regular, we may choose a convex and twice differentiable
ψ : E → R with ♣ψ(x)♣

/
∥x∥3 → 0 as x → 0 such that v : E → R given by

v(x) := u(x) − 1
2λ2(x1 + x2)2 + ψ(x) for each x ∈ E

is strongly regular. Since v − u is convex, v is coarsely more convex than u.
By a second-order Taylor expansion of v around 0,

♣v(x) − v⋆(x)♣
/

∥x∥2 → 0 as x → 0 in S, (10)

where v⋆ : S → R is given by

v⋆(x) := u⋆(x) − 1
2λ2(x1 + x2)2 for each x ∈ S.

Let F ⋆
0 be the uniform distribution on S. Note that there are no distinct

x, y ∈ int(S) such that either ∇u⋆(x) = ∇u⋆(y) or ∇v⋆(x) = ∇v⋆(y). Hence
by Theorem 7 in Dworczak and Kolotilin (2022),

arg max
F feasible given F ⋆

0

∫
u⋆dF = ¶F ⋆♢ and arg max

F feasible given F ⋆
0

∫
v⋆dF = ¶G⋆♢

for some distributions F ⋆ and G⋆. We shall (a) show that G⋆ is not more
informative than F ⋆, and then (b) deduce that (⋆⋆) fails for some atomless
convex-support prior distribution F0.

For part (a), let F be the posterior-mean distribution induced (given
prior F ⋆

0 ) by a signal that reveals the Ąrst coordinate of the state and nothing
else. The map p : S → R given by p(x) := 1

2λ1x
2
1 for each x ∈ S is convex

57



and Lipschitz with p ≥ u⋆, and it satisĄes
∫

(p− u⋆)dF = 0 since F assigns
probability 1 to ¶x ∈ S : x2 = 0♢. Hence F ⋆ = F by Theorem 5 in Dworczak
and Kolotilin (2022). Thus if G⋆ were more informative than F ⋆, then any
distribution more informative than F ⋆ would also be optimal for v⋆, since
F ⋆ = F reveals the Ąrst coordinate of the state and v⋆(x1, ·) is affine for each
x1 ∈ [−1, 1]. As G⋆ is uniquely optimal for v⋆ given F ⋆

0 , it therefore cannot
be more informative than F ⋆.

For part (b), deĄne uε, vε : S → R by uε(x) := u(εx)/ε2 and vε(x) :=
v(εx)/ε2 for each x ∈ S and ε ∈ (0, 1). Since u, v and thus uε, vε are strongly
regular and satisfy the crater property, Lemma 9 implies that

arg max
F feasible given F ⋆

0

∫
uεdF = ¶F ε♢ and arg max

F feasible given F ⋆
0

∫
vεdF = ¶Gε♢

for some distributions F ε and Gε. Write F ε
0 for the pushforward of F ⋆

0 by
x 7→ εx. Since rescaling interim payoffs (by 1/ε2) and the prior (by 1/ε)
affects neither feasibility nor the senderŠs preferences,52

arg max
F feasible given F ε

0

∫
udF and arg max

F feasible given F ε
0

∫
vdF

are equal to the pushforward by x 7→ εx of (respectively) F ε and Gε. Since
F ⋆ (G⋆) is uniquely optimal for u⋆ (v⋆) given F ⋆

0 and uε → u⋆ (vε → v⋆)
uniformly as ε ↓ 0 by (9) (by (10)), F ε → F ⋆ (Gε → G⋆) weakly as ε ↓ 0.53

Since G⋆ is not more informative than F ⋆, it follows there is an ε > 0 such
that Gε fails to be more informative than F ε, so that (⋆⋆) fails for F0 = F ε

0 .

Case 2: Hx is indeĄnite at no x ∈ int(E). Say that u is locally (strictly)
concave at x ∈ int(E) iff u is (strictly) concave on an open convex neighbour-
hood of x. Analogously deĄne local (strict) convexity.

Claim. For any x ∈ int(E), if Hx is not positive (negative) semi-deĄnite,
then u is locally strictly concave (convex) at x.

52Writing F ◦ ε−1 for the pushforward by x 7→ εx of a distribution F , (i) a distribution
F is feasible given F ⋆

0 iff F ◦ ε−1 is feasible given F ε
0 , and (ii) for F,G concentrated on S,∫

uεdF ≥(>)
∫
uεdG iff

∫
ud(F ◦ ε−1) ≥(>)

∫
ud(G ◦ ε−1), and similarly for vε and v.

53We have uε → u⋆ uniformly since supx∈S ♣uε(x)−u⋆(x)♣ = supx∈S ♣u(εx)−u⋆(εx)♣/ε2 →
0 as ε ↓ 0 by deĄnition of u⋆ and (9). To conclude that F ε → F ⋆ weakly, note Ąrst that
by ProkhorovŠs theorem (e.g. Billingsley, 1999, Theorem 5.1), (F ε)ε>0 converges weakly
along a subsequence to some distribution F . Hence

∫
u⋆d(F − F ε) and

∫
♣u⋆ − uε♣dF ε

vanish as ε ↓ 0, so that
∫
u⋆dF = limε↓0

∫
uεdF ε ≥ limε↓0

∫
uεdF ⋆ =

∫
u⋆dF ⋆, where

the inequality follows from the deĄnition of F ε, since F ⋆ is feasible given F ⋆
0 . Since F ⋆ is

uniquely optimal for u⋆ given F ⋆
0 , it follows that F = F ⋆. Similarly for vε and Gε.
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Proof of the claim. If Hx is not positive (negative) semi-deĄnite, then the
same is true of Hy for all y in an open convex neighbourhood of x, as y 7→ Hy

is continuous. By the case-2 hypothesis, Hy is negative (positive) semi-deĄnite
for all y in this neighbourhood. So u is locally concave (convex) at x. By
strong regularity, u must be locally strictly concave (convex) at x. ■

Since u is strongly regular and (by hypothesis) not strictly convex, it is
not convex, so there is an x ∈ int(E) at which Hx is not positive semi-deĄnite.
By the claim, u is locally strictly concave at x. Let T be the hyperplane in
R

n+1 tangent to the graph of u at x. Since u is not concave (it is strongly
regular, and by hypothesis not strictly concave), we may choose x so that T
intersects the graph of u at some y ∈ int(E) \ ¶x♢. Since u is locally strictly
concave at x and continuous, we may choose y so that T does not intersect
the graph of u on co(¶x, y♢) \ ¶x, y♢, where Śco(·)Š denotes the convex hull.

DeĄne w : [0, 1] → R by w(α) := u(αx+ (1 − α)y) for each α ∈ [0, 1]. By
Lemma 7 (appendix C.2, p. 41), w is strictly convex on an open interval that
contains 0. Hence, after replacing x with a nearby point if necessary, we may
assume without loss that w′′(0) > 0. Since w coincides with the restriction
of u to co(¶x, y♢), it follows that Hy is not negative semi-deĄnite, so that u
is locally strictly convex at y by the claim.

Let t : E → R be the map having graph T , and let p := max¶u, t♢.
Assume that n = 2; this is without loss, as it amounts to replacing E by its
intersection E′ with a two-dimensional affine space containing x and y, and
the v and F0 constructed below (with domain E′) can easily be extended
to E. Since u is locally strictly concave (convex) at x (at y) and t ≥ u on
co(¶x, y♢)\¶x, y♢, replacing E by a convex two-dimensional subset containing
co(¶x, y♢) if necessary, we may without loss assume that p is convex and
that there is a convex open set A ∋ x such that p is affine on A, p = u on
E \A, and both A and E \A are Lebesgue-non-null. Clearly we may choose
a strongly regular v : E → R that is coarsely more convex than u and an
x′ ∈ int(E) such that, letting p′ := max¶v, t′♢ where t′ is the map E → R

whose graph equals the plane tangent to v at x′, both of the following hold:

Ű p′ is convex, p′ is affine on an open convex set A′ ∋ x′ such that A′ \A
is Lebesgue-non-null, and p′ = v on E \A′.

Ű There exists a distribution F0 with full support, a density with respect
to the Lebesgue measure on R

2, and
∫

A zF0(dz)/
∫

A F0(dz) = x and∫
A′ zF0(dz)/

∫
A′ F0(dz) = x′.

Let F (F ′) pool states in A (in A′) and reveal all other states. By
Theorem 5 in Dworczak and Kolotilin (2022), F (F ′) is optimal for u (for v)
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given F0; by Lemma 9, uniquely optimal. Since A′ \A is F0-non-null, F ′ is
not more informative than F . Hence (⋆⋆) fails. ■

Appendix I Proof of Proposition 5 (p. 19)

For x, y ∈ R and α ∈ [0, 1], write xαy := αx+(1−α)y. DeĄne u, v : [0, 1] → R

by u(x) := US(A(x), x) and v(x) := UR(A(x), x) for each x ∈ [0, 1]. Choose
any x < y in [0, 1] such that u(xβy) ≤ u(x)βu(y) for every β ∈ (0, 1), and
Ąx an α ∈ (0, 1). Note that v(xαy) ≤ v(x)αv(y) since v is convex (as A is
UR-optimal). Thus

Φ
(
u(xαy), v(xαy), xαy

)
≤ Φ

(
u(xαy), v(x)αv(y), xαy

)

≤ Φ
(
u(x)αu(y), v(x)αv(y), xαy

)

≤ Φ
(
u(x), v(x), x)αΦ(u(y), v(y), y

)
,

where the Ąrst inequality holds since Φ
(
u(xαy), ·, xαy

)
is increasing, the

second holds since Φ
(
·, v(x)αv(y), xαy

)
is (strictly) increasing, and the Ąnal

inequality holds since Φ is convex. Moreover, the second inequality is strict
if u(xαy) < u(x)αu(y), as Φ

(
·, v(x)αv(y), xαy

)
is strictly increasing. ■

Appendix J Relation to the theory of monotone
comparative statics

In this appendix, we discuss in detail how our results relate to the general
theory of monotone comparative statics.

J.1 The literature

The general comparative-statics literature (e.g. Topkis, 1978; Milgrom &
Shannon, 1994; Quah & Strulovici, 2009) asks, for any problem in which an
agent chooses an action a from a partially ordered set A, what shifts of the
agentŠs objective function U : A → R lead her optimally to choose a higher
action.54 This framework nests the persuasion problem, in which the senderŠs
action is a distribution F drawn from the set of all distributions feasible given
the prior F0, ordered by Śless informative thanŠ, and her objective function is

54A detail: the literature actually restricts attention to action sets A whose partial order
has a lattice structure. This proviso is satisĄed in the persuasion model (see appendix A).
This technicality has no bearing on the discussion in this appendix.
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U(F ) :=
∫
udF . When u shifts, the senderŠs objective function U changes,

and our question is which such shifts lead to more informative choices.
Topkis (1978) and Milgrom and Shannon (1994) ask what shifts of U

yield an increase of the optimal choices arg maxa∈A U(a) for any constraint
set A ⊆ A.55 Quah and Strulovici (2009, 2007) describe weaker conditions
which ensure that arg maxa∈A U(a) increases for any order interval constraint
set A = [a, a] ⊆ A.56 The persuasion model has an order interval constraint
set, namely [δ, F0], where F0 is the prior distribution and δ denotes the point
mass concentrated at the mean of F0.

To allow for the possibility of multiple optimal actions, one must extend
the notion of Ślower thanŠ from actions to sets of actions. In this paper, we
have used the natural extension (deĄned at the end of §2.1), which is called
the weak set order (WSO) in the literature. Most of the literature concerns
itself with the strong set order (SSO). The sense in which the SSO is stronger
is difficult to interpret, suggesting that the gap between the two set orders
is a technical artefact without economic substance.57 Our reading of the
literature is that the SSO is used despite its uninterpretable extra strength,
on the (reasonable) grounds that it yields a fruitful theory.58 The WSO/SSO
distinction will become important toward the end of our discussion below.

The general theory features two classes of results and corresponding prop-
erties. The Ąrst concern ŚencouragementŠ properties such as increasing/single-
crossing differences and interval dominance, which capture the idea that
one objective function is relatively more keen on higher actions than an-
other objective function. Such ŚencouragementŠ properties characterise Śnon-
decreasingŠ comparative statics: ŚencouragingŠ shifts of the objective function
do not strictly decrease optimal choices, and there is a converse.59

The second kind of result in the literature introduces ŚcomplementarityŠ
assumptions such as (quasi-)supermodularity and I-quasi-supermodularity.
ŚComplementaryŠ objective functions U are those such that increasing one
ŚdimensionŠ of the action makes the agent keener to increase other Śdimen-
sionsŠ.60 When the objective shifts in an ŚencouragingŠ way and either the old
or the new objective exhibits ŚcomplementarityŠ, optimal choices increase;

55Actually, precisely: any non-empty sublattice A ⊆ A.
56Recall that [a, a] := ¶a ∈ A : a ≲ a ≲ a♢, where ≲ denotes the partial order on A.
57See Theorem 1 in Che, Kim and Kojima (2021) for a characterisation of the gap.
58In particular, it yields necessity as well as sufficiency in the comparative-statics

theorems of Milgrom and Shannon (1994) and Quah and Strulovici (2009).
59This fact is dimly known in the literature, but rarely written down. Exceptions include

Quah and Strulovici (2007, Proposition 5) and Anderson and Smith (2024).
60This gloss is exact if actions are ordered by a product order, such as the usual inequality

on Rn. Beyond product orders, the ŚdimensionsŠ language is purely analogical.
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and there is a converse.

J.2 Our theorems in context

Our Theorem 1 is a result of the Ąrst kind: it identiĄes the correct Śencourage-
mentŠ property for u, namely Ścoarsely less convex thanŠ, which characterises
Śnon-decreasingŠ comparative statics for the persuasion model. The proof
of the sufficiency half of Theorem 1 is the one place where we are able to
use a result from the literature: we (i) show that if u is coarsely less convex
than v, then U(F ) =

∫
udF is interval-dominated by V (F ) =

∫
vdF , and

then (ii) invoke Quah and StruloviciŠs (2007) Proposition 5 to conclude that
choices under u are not strictly higher than choices under v. (It turns out,
however, that most of the action is in part (i): the argument there is fairly
intricate, and exploits the special structure of the persuasion problem.) The
necessity half of Theorem 1 is straightforward.

Having obtained Theorem 1, we next seek a result of the second kind,
which identiĄes a further condition on u or v under which if u is coarsely less
convex than v, then less informative choices are made under u than under
v. The literature is of no help here, because the objective U(F ) =

∫
udF

satisĄes no ŚcomplementarityŠ property except in trivial cases (e.g. if u is
concave).

We must therefore strike out on our own, by asking for comparative
statics in the (more natural) weak set order. This turns out to be fruitful:
it delivers our Theorem 2, which describes a non-trivial property whose
satisfaction by u is necessary and sufficient for comparative statics to hold
between u and any v that is coarsely more convex. Both the sufficiency and
necessity parts of our proof rely on novel arguments that exploit the structure
of the persuasion model.

From the perspective of the comparative-statics literature, Theorem 2 may
be viewed as a proof of concept: ŚincreasingŠ comparative statics in the weak
set order can sometimes be had even though the literatureŠs ŚcomplementarityŠ
assumptions fail. This matters because in our experience, ŚcomplementarityŠ
tends to fail in economic models, severely limiting the applicability of the
existing theory. (There is one important exception: in applications with totally
ordered actions (e.g. real numbers), ŚcomplementarityŠ holds automatically.)

Appendix K Tightness of Lemma 1 (p. 6)

Lemma 1 is nearly tight, in the following sense:
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Partial converse of Lemma 1. If Φ : R × [0, 1] → R is such that for
every upper semi-continuous u : [0, 1] → R, u is coarsely less convex than
x 7→ Φ(u(x), x), then Φ must be convex on R × (0, 1) with Φ(·, x) increasing
for every x ∈ (0, 1).

This partial converse is implied by the following result, which closes the
small gap between Lemma 1 and its converse by giving an exact characterisa-
tion of coarse-convexity-increasing transformations Φ. This result has other
useful consequences, such as the fact (used in §7.6) that u is coarsely less
convex than max¶u, ψ♢ whenever ψ : [0, 1] → R is strictly convex.

Lemma 1∗. For a map Φ : R × [0, 1] → R, the following are equivalent:

(i) For every u : [0, 1] → R, u is coarsely less convex than x 7→ Φ(u(x), x).

(ii) For every upper semi-continuous u : [0, 1] → R, u is coarsely less convex
than x 7→ Φ(u(x), x).

(iii) For any x < y in [0, 1], α ∈ (0, 1) and a, b, c ∈ R such that c ≤(<)
αa+(1−α)b, we have Φ(c, αx+(1−α)y) ≤(<) αΦ(a, x)+(1−α)Φ(b, y).

For the proof, we write aαb := αa+ (1 − α)b for a, b ∈ R and α ∈ [0, 1].

Proof of the partial converse of Lemma 1. By Lemma 1∗, it suffices to show
that property (iii) implies that Φ is convex on R × (0, 1) and that Φ(·, x) is
increasing for each x ∈ (0, 1). So let Φ satisfy (iii), and note that it follows
that for each c ∈ R, Φ(c, ·) is convex, hence continuous on (0, 1).

For convexity, property (iii) immediately implies that Φ(α(a, x) + (1 −
α)(b, y)) ≤ Φ(a, x)αΦ(b, y) for any α ∈ (0, 1) and any (a, x), (b, y) ∈ R × [0, 1]
such that x ≠ y. To show that the same holds when x = y = z ∈ (0, 1), (in
other words, that Φ(·, z) is convex for each z ∈ (0, 1)) observe that for any x ∈
(0, z) and y ∈ (z, 1) such that xαy = z, we have Φ(aαb, z) ≤ Φ(a, x)αΦ(b, y),
so letting x, y → z yields Φ(aαb, z) ≤ Φ(a, z)αΦ(b, z) by continuity.

For monotonicity, take any z ∈ (0, 1) and c < a in R; we must show that
Φ(c, z) ≤ Φ(a, z). For any x ∈ (0, z) and y ∈ (z, 1) such that 1

2x + 1
2y = z,

property (iii) implies Φ(c, z) < 1
2Φ(a, x) + 1

2Φ(a, y), which as x, y → z yields
Φ(c, z) ≤ Φ(a, z) by continuity. ■

Proof of Lemma 1∗. (iii) implies (i) since for any u : [0, 1] → R and any
x < y in [0, 1] such that u(xβy) ≤ u(x)βu(y) for every β ∈ (0, 1), property (iii)
(with a := u(x), b := u(y) and c := u(xαy)) implies for each α ∈ (0, 1) that
Φ(u(xαy), xαy) ≤ Φ(u(x), x)αΦ(u(y), y), with strict inequality if u(xαy) <
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u(x)αu(y). (i) immediately implies (ii). To show that (ii) implies (iii), we
prove the contra-positive: let Φ violate (iii), meaning that there are x < y in
[0, 1], α ∈ (0, 1) and a, b, c ∈ R such that either

(1) c ≤ aαb and Φ(c, xαy) > Φ(a, x)αΦ(b, y), or

(2) c < aαb and Φ(c, xαy) ≥ Φ(a, x)αΦ(b, y).

To show that (ii) fails, deĄne u : [0, 1] → R by u := a on [0, x], u(xαy) := c,
u := b on [y, 1] and u := min¶a, b, c♢ − 1 on (x, xαy) ∪ (xαy, y). Clearly u is
upper semi-continuous. We have u(xβy) ≤ u(x)βu(y) for every β ∈ (0, 1),
with strict inequality at β = α in case (2), and furthermore Φ(u(xαy), xαy) ≥
Φ(u(x), x)αΦ(u(y), y), with strict inequality in case (1). Thus u is not coarsely
less convex than x 7→ Φ(u(x), x). ■

Appendix L Extension: speciĄc shifts

In this appendix, we show that the crater property remains necessary for
ŚincreasingŠ comparative statics when attention is conĄned to shifts of the
senderŠs interim payoff u that are more speciĄc than coarse-convexity shifts:
in particular, conventional increased convexity and adding a convex function.

Proposition 6. Let u : [0, 1] → R be regular. The following are equivalent:

(i) u satisĄes the crater property.

(ii) For any regular v : [0, 1] → R such that v = ϕ ◦ u for some convex and
strictly increasing ϕ : R → R ∪ ¶∞♢, (⋆⋆) holds for every atomless
convex-support distribution F0.

(iii) For any regular v : [0, 1] → R such that v = u+ ψ for some convex ψ :
[0, 1] → R, (⋆⋆) holds for every atomless convex-support distribution
F0.

Proof. (i) implies (ii) and (iii) by Corollary 1 and Theorem 2 (pp. 7 and 10).
To show that (iii) implies (i), we shall prove the contra-positive, by

arguing that in the proof of the necessity half of Theorem 2 (appendix C.1),
v can be chosen so that v − u is convex. We shall focus on Case 1 (the
argument for Case 2 is similar). Since u is regular, we may choose a regular
w : [0, 1] → R such that w = u on [X, 1] and, on each sub-interval of [0, X]
on which u is convex (concave), w− u is affine (w is affine). Note that w− u
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is convex, and that w is convex on [0, X]. Fix any χ : [0, 1] → R that is
continuously differentiable with bounded derivative, is strictly convex on
[0, X], and vanishes on [X, 1]. Then v := w + χ weakly exceeds u, is strictly
convex on [0, X], and coincides with u on [X, 1]; and evidently v−u is convex.

To show that (ii) implies (i), we shall modify the proof in appendix C.1 of
the necessity half of Theorem 2. We again focus on Case 1 (Case 2 is similar).
By replacing x and x′ (w and w′) with larger (smaller) values if necessary,
we can ensure that u(x) ̸= u(w), without loss u(x) < u(w), that X ∈ (y, z),
and that for some z′ ∈ (z, w), u is strictly increasing and strictly concave
on [z′, w′] and max[x′,z′] u = u(z′). Fix an ε ∈ (0,min¶u(w) − u(z′), 1♢), and
choose a ϕ : R → R that is strictly increasing, continuously differentiable,
equal to the identity on

(
−∞, u(w) − ε2

)
, affine on

(
u(w) − ε2/2,∞

)
, and

satisĄes ϕ
(
u(w) − ε2/2

)
= ϕ

(
u(w) − ε2

)
+ ε. Then v := ϕ ◦ u equals u on

[x′, z′], and satisĄes v(w) > u(w) and v′(w) > u′(w). Moreover, [v(w) −
u(w)]/[v′(w) − u′(w)] vanishes as ε ↓ 0. Hence for sufficiently small ε, the
tangent to v at w is steeper than the tangent to u at w, and the tangents
cross in (z, w). Moreover, the former tangent approaches the latter as ε
vanishes. Thus (recalling the properties of p and F0) for sufficiently small
ε, there exists a function q : [0, 1] → R, an x⋆ ∈ (x, y), a X⋆ ∈ (X, z) and a
w⋆ ∈ (z, w) such that q is affine on [x′, X⋆] and on [X⋆, w′], weakly exceeds
v on [x′, w′], is tangent to v at x⋆ and at w⋆, and satisĄes

1

F0(X)

∫ X⋆

0
ξF0(dξ) = x⋆ and

1

1 − F0(X)

∫ 1

X⋆
ξF0(dξ) = w⋆.

Then the distribution F that reveals only whether the state exceeds X⋆ is
optimal for v (by the argument in footnote 12, p. 12). Since X⋆ ̸= X, F
pools states on either side of X, so (⋆⋆) fails. ■

Appendix M Extension: constrained persuasion

In this appendix, we extend our analysis to encompass constraints on the
senderŠs choice of signal, following the small but growing literature on con-
strained (or costly) persuasion.61 We focus on two important types of con-
straint: monotonicity and coarseness. In the former case, the sender can use
only monotone partitional signals; in the latter, she can use only signals that
send at most K messages, for some K ≥ 2.

61See e.g. Gentzkow and Kamenica (2014), le Treust and Tomala (2019) and Doval and
Skreta (2024). Some of this work is surveyed by Kamenica, Kim and Zapechelnyuk (2021).
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We ask whether comparative-statics conclusions can be drawn under
assumptions weaker than those identiĄed by Theorem 2 (p. 10). For both
constraint types, the answer is ŚnoŠ: the crater property remains necessary.

M.1 Monotone partitional signals

In many applied settings, information is provided via scores: the state space
[0, 1] is partitioned into intervals, and all that is revealed about the realisation
of the state is which interval is belongs to. Examples include ratings in online
commerce, grades in academic settings, and credit scores. Such signals are
called monotone partitional.

We call a distribution F M-feasible (given F0) iff it is the posterior-
mean distribution induced by some monotone partitional signal. As is well-
known, a distribution F is M-feasible given an atomless F0 iff it is feasible
for F0 and [0, 1) may be partitioned into intervals [x, y) such that either
(i) F = F0 on [x, y) or (ii) F = F0(x) on [x, µ) and F = F0(y) on [µ, y)
where µ := [

∫ y
x zF0(dz)]/[F0(y) − F0(x)] . In other words, states are either

fully revealed (case (i)) or pooled with adjacent states (case (ii)).

Proposition 7. Let u : [0, 1] → R be regular. If

arg max
F M-feasible given F0

∫
udF is lower than arg max

F M-feasible given F0

∫
vdF

for every regular v : [0, 1] → R that is coarsely more convex than u and every
atomless convex-support distribution F0, then u satisĄes the crater property.

Thus restricting the sender to using only M-feasible distributions does
not permit comparative-statics conclusions to be drawn under any weaker
assumptions on the interim payoff u: the crater property remains necessary.

Proposition 7 follows directly from the proof of the necessity half of The-
orem 2 (sketched in §4.2 above) since by inspection, the feasible distributions
F and G which appear in that argument are in fact M-feasible.

M.2 Coarse signals

In practice, communication is often coarse, with only a Ąnite number of
messages in use. This may be due to bounded rationality or information-
processing costs, for example. Such coarseness can be modelled by constrain-
ing the sender to use only signals that send at most K messages, for some
exogenous K (Aybas & Turkel, 2024; Lyu, Suen & Zhang, 2023).
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A distribution F is the posterior-mean distribution induced by a sig-
nal satisfying this constraint if and only if F is feasible given F0 and has
♣supp(F )♣ ≤ K. We call such distributions K-feasible (given F0).

Proposition 8. Let u : [0, 1] → R be regular, and Ąx any K ≥ 2. If

arg max
F K-feasible given F0

∫
udF is lower than arg max

F K-feasible given F0

∫
vdF (⋆K)

for every regular v : [0, 1] → R that is coarsely more convex than u and every
atomless convex-support distribution F0, then u satisĄes the crater property.

Sketch proof. We focus on the generic case in which optimal distributions are
unique. We will show that with a small addition, the proof of the necessity
half of Theorem 2 (sketched in §4.2 above) remains applicable. The argument
there shows that if a regular u : [0, 1] → R violates the crater property, then
there is a prior distribution F0 and a coarsely more convex, regular and
S-shaped v : [0, 1] → R such that the distribution G that is uniquely optimal
for u given F0 is binary, and is not less informative than the distribution F
that is uniquely optimal for v given F0. Since G is binary, it is K-feasible, so

arg max
H K-feasible given F0

∫
udH = ¶G♢.

Since v is S-shaped, we have by Proposition 8 in Lyu, Suen and Zhang (2023)
that

arg max
H K-feasible given F0

∫
udH =

{
F †
}

for a distribution F † that is less informative than F . Then G is not less
informative than F †, so (⋆K) fails. ■
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