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Abstract

We study the impact of the first effective medical treatment for an infectious disease—
diphtheria antitoxin—on the historical health transition in the United States. Using
an instrumental variable for local antitoxin adoption rates and information from ap-
proximately 1.6 million death certificates from 1880 to 1914, we find that the rapid
diffusion of antitoxin led to a substantial decline in diphtheria mortality rates and in-
creased life expectancy at birth. Exposure to antitoxin also significantly reduced school
absenteeism. Overall, our results suggest that medicine played a more important role
in increasing life expectancy in the early 20th century than previously thought.
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1 Introduction

Life expectancy at birth has risen dramatically in the United States since the late 19th

century. A child born in the 21st century can expect to live nearly 30 years longer than a child

born in the 1880s. The U.S. health transition began in the late 19th century, when improved

nutrition and public health measures reduced the prevalence and mortality of infectious

diseases, which were the main causes of death at the time (Cutler et al. 2006; Costa 2015).

These health improvements significantly increased life expectancy before medical innovations

such as antibiotics and better medical care continued to increase life expectancy beginning

in the late 1930s (e.g., Jayachandran and Lleras-Muney 2009; Jayachandran et al. 2010).1

It is widely believed that medical innovations did not play a major role in the decline of

infectious diseases and improvements in life expectancy before the late 1930s (Cutler 2005;

Acemoglu and Johnson 2007; Catillon et al. 2018).

This paper studies the relationship between medical innovations, the decline in infectious

diseases, and improvements in life expectancy before the onset of “the era of big medicine”

in the 1930s.2 We focus on the first widely-used medical treatment against an infectious

disease: the diphtheria antitoxin. In 1890, German physiologist, Emil von Behring invented

the antitoxin serum, and, in the late fall of 1894, the production of an antitoxin serum to treat

diphtheria patients began in the United States (Preston and Haines 1991; Hammonds 1999).3

Known as “the strangling angel of children”, diphtheria was one of the deadliest infectious

diseases for children at that time. In 1900 it contributed to about 2 percent of the crude

death rate in the United States. Between 1900 and 1920, the annual diphtheria mortality

rate fell significantly (Crum 1917). Contemporary observers have attributed this decline in

death rates to the success of treating diphtheria patients with the antitoxin serum, but the

historical demographic literature questions the effective use of the diphtheria antitoxin in

the early 20th century (Preston and Haines 1991; Condran 2008; Thomasson 2018). Hence,

even if the effectiveness of the antitoxin serum was clinically documented, its quantitative

impact on population health is ex-ante unknown.

1There is an ongoing debate about the factors that led to the mortality decline from infectious
diseases in the early 20th century (e.g., Anderson et al. 2019, 2022; Clay et al. 2020). These
include clean water technology and sanitation (e.g., Cutler and Miller 2005; Alsan and Goldin 2019),
nutrition (e.g., Fogel 1994, 2004; McKeown 1976), living conditions (e.g., Ager et al. 2024), public-
health programs (e.g., Moehling and Thomasson 2014; Egedesø et al. 2020), and environmental
factors (e.g., Barreca et al. 2016; Beach and Hanlon 2018; Hanlon et al. 2021; Hanlon 2022).

2Cutler et al. (2006) refer to the 1930s, with the introduction of sulfonamides (”sulfa” drugs),
as the onset of the “era of big medicine”.

3The New York City Department of Health produced the first diphtheria antitoxin outside of
Europe in the late fall of 1894 (Liebenau 1987; Hammonds 1999).
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Our goal is to evaluate whether the introduction of the antitoxin serum made a significant

contribution to the historical health transition in the United States. To do so, we leverage

newly collected municipality data on the diffusion of the diphtheria antitoxin, plus approx-

imately 1.6 million death certificates in Massachusetts dating from 1880 to 1914, to study

whether the treatment of diphtheria with the antitoxin serum contributed to life expectancy

gains before the era of big medicine. Using Massachusetts as a case study to evaluate the pop-

ulation health effects of the diphtheria antitoxin has several advantages. First, Massachusetts

provided the antitoxin to all residents free of charge, thereby reducing the possibility of an

income gradient in its adoption. This free-supply policy has subsequently been regarded as

a milestone in the public health history of the State. Second, the State Board of Health

(henceforth the SBH) kept a record of the number of antitoxin bottles distributed to each

municipality from the beginning of the campaign in 1895 to 1914. Compared to existing

studies that evaluate the effects of medical innovations in the 1930s and 1940s, in our study,

we can measure the uptake of new medical technology at the local level.4 Third, historical

vital statistics from Massachusetts have been well-documented and are considered reliable.

We use individual death certificates to calculate life tables, from which we obtain measures

of life expectancy for over 250 municipalities in Massachusetts for each year from 1880 to

1914. This data allows us to examine whether the rapid diffusion of the diphtheria antitoxin

led to a substantial increase in life expectancy at the municipality level, and a decrease in

age-specific mortality rates, such as infant and child mortality. One further advantage of

our study is that we can evaluate the short- and long-term consequences of exposure to the

antitoxin at the individual level. By combining the antitoxin roll-out with the complete-

count U.S. census records, we can test whether exposure to the antitoxin during childhood

had any impact on school attendance. Furthermore, by following a linked sample of boys

and girls, who lived in Massachusetts during their childhood, to adulthood, we can analyze

whether antitoxin exposure during childhood affected labor market outcomes later in life.

The main challenge when estimating the effect of the antitoxin treatment on population

health is reverse causality (the demand for medical treatment is higher during epidemics)

and omitted-variable bias. In order to circumvent this identification problem, our empirical

strategy exploits that the free distribution of the diphtheria antitoxin led to a relatively

rapid diffusion of this medical innovation in Massachusetts (Figure 1). We leverage this

sharp increase in the adoption rates and the fact that some municipalities stood to benefit

more from the antitoxin serum in terms of potential mortality reductions, as these locations

4Previous larger-area studies on the effects of the 1930s and 1940s medical innovations are not
able to measure the local diffusion of the technologies directly and rely on indirect measures (e.g.,
Acemoglu and Johnson 2007; Jayachandran et al. 2010; Alsan et al. 2021; Bhalotra et al. 2023).
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were historically more widely affected by diphtheria (Figure 2). The differential diphtheria

mortality rates across municipalities before the introduction of the antitoxin treatment and

the rapid diffusion of this medical innovation allow us to construct an instrumental variable

for the observed antitoxin adoption rates at the municipal level. In the reduced form, our

strategy corresponds to an intensity of treatment design, which has been applied in previous

work that has studied the effect of significant health improvements (e.g., Acemoglu and

Johnson 2007; Ager et al. 2018; Bütikofer and Salvanes 2020). We also show estimates based

on a slightly modified identification strategy, which in essence is more directly related to a

classical shift-share instrument, where the aggregate supply of antitoxin bottles is distributed

according to the pre-antitoxin municipality diphtheria mortality shares.

Importantly, we also conduct two falsification exercises showing that: (i) our treatment

measure is not predictable of changes in diphtheria mortality rates and life expectancy prior

to the availability of antitoxin; and (ii) that municipalities with a substantial uptake in the

antitoxin treatment after 1895 were not already on a different path of the health transition in

the 1880s. Our results are also robust to the following: (i) the inclusion of the pre-antitoxin

mortality environment; (ii) other public health interventions (the provision of clean water

and hospitals) and the pre-antitoxin distribution of doctors per capita; (iii) accounting for

children’s age structure; (iv) different functional forms; and (v) excluding (or controlling

for the distance to) Boston (see Sections 5.3 and 5.4 for details). We also show that our

“antitoxin effect” does not simply capture affected municipalities expanding their healthcare

sector (by increasing the number of doctors and nurses per capita). Overall, our results

suggest that the availability of the diphtheria antitoxin improved the mortality environment

of municipalities in Massachusetts.

Our main findings are that the roll-out of the antitoxin serum contributed to a substantial

decline in diphtheria mortality rates and improved life expectancy in early 20th-century

Massachusetts. In our baseline specification, we find that antitoxin can explain 27 percent of

the observed increase in life expectancy from 1894 to 1914. We provide evidence that child

mortality was reduced and that antitoxin can explain 17 percent of the observed decline over

this period. Thus, our result suggests that the adoption of the diphtheria antitoxin increased

life expectancy at birth because it lowered child mortality rates, which is consistent with the

pre-antitoxin age profile of diphtheria mortality. There is no strong evidence that our effects

are gender specific or that the roll-out of antitoxin significantly changed fertility behavior.

We also find robust second-order effects on stroke mortality and small detectable effects

on other infectious diseases. Given the health complications of diphtheria (e.g., secondary

pneumonia and myocarditis), these findings are not surprising, but their effect sizes are ex-

ante unknown. This shows that a “general equilibrium” analysis like ours, which takes into
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account phenomena such as co-mortality and competing risk, is important when assessing

the effects of new medical innovations on population health. In other words, although it

is clinically documented that antitoxin was an effective medicine, it is ex-ante unclear how

much it mattered for the historical mortality transition. Our insights suggest that antitoxin

played a substantial role in improving population health before the era of big medicine.

In the final part of our empirical analysis, we evaluate the short- and long-term effects

of the antitoxin treatment at the individual level. Our empirical strategy is based on an

intention-to-treat framework since we do not have information on whether an individual

received the treatment. Since the antitoxin serum was the most effective for children under

10 years of age, we focus on their exposure to the antitoxin. We first consider whether the

antitoxin treatment affected school attendance. Absenteeism from school due to sickness in

the late 19th century was common, and it is expected that the antitoxin treatment not only

prevented deaths from diphtheria but also reduced other childhood illnesses.5 To identify the

effects, we ask whether children attended school for more months if they were exposed to the

antitoxin treatment in their municipality at ages 0-9.6 Our results, based on approximately

350,000 children, suggest that this was the case. Children exposed to the antitoxin were

almost 5 percent (relative to the sample mean) less likely to attend school for three months

or fewer—a sizable effect. However, the fewer days absent from school for antitoxin-exposed

children did not translate into any detectable long-term effects on years of schooling and

adult labor market outcomes.

Our paper contributes to a revived debate on whether medical advances played a major

role in the health transition before WWII. Conventional wisdom holds that technological

progress in medicine and better medical care are not the key drivers of the decline in mortality

rates and the gains in life expectancy during this period (Cutler 2005; Acemoglu and Johnson

2007; Catillon et al. 2018). However, this notion has been challenged by recent studies.

Hollingsworth et al. (2022) find that a large-scale hospital modernization program in North

Carolina that began in the late 1920s significantly reduced infant mortality. Other studies

show that the wide availability of sulfa drugs in the late 1930s and the mass production

of penicillin in the mid-1940s contributed to the decline in the rates of infectious diseases

and maternal mortality, plus increased life expectancy at birth (Thomasson and Treber

2008; Jayachandran et al. 2010; Alsan et al. 2021). However, none of these papers evaluate

whether medical advances contributed to the historical health transition already in the first

5This could be because the antitoxin treatment directly improved the health of treated individ-
uals, or that it contributed to a more effective containment of diphtheria and reduced the spread
of the bacteria more generally.

6We can test whether antitoxin exposure reduced absenteeism from school because the 1900 US
Census recorded how many months a child of school age attended school during the year.
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two decades of the 20th century when infectious diseases started their long-term decline. We

show that the diphtheria antitoxin was an effective treatment for diphtheria infections and

resulted in substantial gains in life expectancy at birth.

Our finding, that the free distribution of the diphtheria antitoxin substantially reduced

child mortality rates in late 19th and early 20th century Massachusetts, relates to the ongoing

debate about the causes of the mortality decline during the early phase of the historical health

transition. The reductions in child mortality attributable to antitoxin—17 percent from 1894

to 1914—is a quantitatively sizable effect, alongside effect sizes of studies focusing on safe

water, sewerage, and other public health efforts during this period in the US (e.g., Beach

et al. 2016; Alsan and Goldin 2019; Clay et al. 2020). Our study demonstrates that the

diphtheria antitoxin was far more effective than previously assumed (Preston and Haines

1991; Condran 2008; Thomasson 2018), and that medical technological progress contributed

to the decline in the rate of infectious diseases much earlier than is generally believed.

Finally, our individual-level results speak to a large literature on the short- and long-

term consequences of improvements in the mortality environment of children. Our short-

term results show some parallels to development studies that evaluate the effect of health

campaigns on school absenteeism (e.g., Miguel and Kremer 2004). In terms of examining

the long-term consequences of medical innovations in a historical context, the closest to our

study are the papers by Jayachandran and Lleras-Muney (2009), who show that declines in

maternal mortality rates in Sri Lanka in the mid-20th century translated into improvements

in adult female life expectancy and human-capital skills, and Bhalotra and Venkataramani

(2015), who find that the introduction of sulfa drugs in the US in 1937 stimulated human

capital accumulation and the economic mobility of affected children as adults. Economists

also assessed the long-term effects of public health initiatives and find generally positive

impacts on education and labor market outcomes of the affected cohorts (e.g., Bleakley

2007; Bütikofer and Salvanes 2020; Atwood 2022). In contrast to these studies, we find no

detectable long-term effects of the antitoxin treatment.

2 Background

In this section, we first provide a brief introduction to diphtheria. We then focus on the

development of the antitoxin serum and its distribution throughout Massachusetts. Finally,

we discuss the need for a proper identification strategy to evaluate the results of contempo-

raneous studies that highlighted the (non-)effectiveness of the antitoxin serum.

6



2.1 A brief introduction to diphtheria

Diphtheria is a contagious bacterial infection that mainly affects the upper respiratory tract,

but it can also spread to other areas of the body. The bacterium that causes diphtheria—

Corynebacterium diphtheriae—produces a toxin that can cause severe damage to the body’s

tissues and organs. Transmission occurs from person to person via respiratory droplets from

coughing or sneezing, as well as via contaminated food products. Symptoms include gen-

eral weakness and a swollen neck.7 Left untreated, diphtheria can obstruct the airways and

cause suffocation. Other complications include secondary pneumonia, myocarditis (inflam-

mation of the heart muscle) and neuritis (nerve inflammation). These complications can

be life-threatening (causing strokes and heart attacks) and may lead to long-term health

problems, such as paralysis and dysphagia. If the initial infection is treated immediately,

these complications and sequential diseases can be avoided.8

Diphtheria emerged as a notable cause of death in the U.S. during the second half of

the 19th century (e.g., Preston and Haines 1991). It was one of the most deadly infectious

diseases, along with influenza, pneumonia, tuberculosis, and diarrhea, and accounted for

about 2 percent of the crude death rate in the U.S. in 1900. The cumulative number of

diphtheria deaths in the 10 largest U.S. cities during the pre-antitoxin years 1889-93 was

approximately 40,000, which at the time was equivalent to the complete annihilation of the

population of a medium-sized city like Brockton, MA. The annual death rate from diphtheria

in these cities was nearly 1.2 deaths per 1,000 people. Boston was close to this average, with

a mortality rate of 1.18 deaths per 1,000 people (Crum 1917).9 By the end of the 19th

century, diphtheria was still epidemic in rural areas but endemic in the urban areas on the

East Coast (Hammonds 1999).

In Massachusetts, the vital records indicate that diphtheria accounted for up to 10% of

all deaths during the peak years in the 1870s. Diphtheria, known as “the strangling angel

of children”, was mostly a childhood disease. In Massachusetts in 1890, approximately 85%

of all diphtheria deaths affected those under the age of 10. Diphtheria accounted for 18%

of the deaths in children aged 1 to 10, while diphtheria under the age of 1 accounted for

only 0.4% of the deaths that year. The age distribution of diphtheria deaths is similar in

the U.S. death-registration area. Diphtheria was somewhat more deadly for boys under the

7The Corynebacterium diphtheriae bacterium had been discovered by Edwin Klebs in 1883 and
was related to the disease by Friedrich Löffler in 1884. It was later known as the Klebs-Löffler
bacillus (Barksdale 1970).

8For further details, see also the descriptions by the Centers for Disease Control and Prevention
(CDC) and Hadfield et al. (2000).

9In Germany, the country where the antitoxin was invented, diphtheria mortality rates were at
similar levels (106 per 100,000 people) during this period.
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age of 5, whereas girls between the ages of 5 and 9 were at slightly higher risk (Crum 1917).

The records from Massachusetts also show that people died from diphtheria throughout the

calendar year, but that death rates were generally higher between late fall and spring, making

the disease similar to others, such as pneumonia and influenza, in terms of seasonality.

The number of deaths caused by diphtheria (and croup - an infection of the upper air-

way) in Massachusetts, despite significant annual variations, started to steadily decline from

around 3,200 a year in the mid-1870s to less than 700 in 1914 (see Figure A.3).10 In the

1910s, diphtheria mortality accounted for less than 1% of all deaths. Although the disease

was not as deadly as other infectious diseases, such as tuberculosis, the skewed mortality-age

profile suggests that a reduction in diphtheria deaths would have had a significant impact on

life expectancy at birth. In the following two subsections, we discuss whether the introduc-

tion of the antitoxin serum played an important role in the decline of diphtheria mortality

rates at the turn of the 20th century.

2.2 Antitoxin and its distribution in Massachusetts

In 1901, Emil von Behring received the first Nobel Prize in Medicine for his work on serum

therapy, particularly for discovering an antitoxin treatment for diphtheria. Together with

Shibasaburo Kitasato, he developed the antitoxin serum in Germany in 1890—less than a

decade after identifying the Klebs-Löffler bacillus as the cause of diphtheria. The antitoxin

serum was the first effective drug to treat an infectious disease.11 It was produced by injecting

a horse with many small doses of the toxin until a high concentration of the antitoxin built up

in the horse’s blood, producing the so-called “antiserum”. Doctors then used this serum as a

therapy for treating diphtheria patients. The success of the antitoxin treatment contributed

to the success of bacteriology within medicine and improved the public image of doctors

(Preston and Haines 1991; Rothstein 1992; Condran 2008).

The widespread diffusion of the diphtheria antitoxin took place after its effectiveness had

been demonstrated at the International Congress of Hygiene and Demography in Budapest

in 1894. In the U.S., the production of antitoxin started in New York City in the late fall

of 1894, followed by Philadelphia and Boston (Liebenau 1987; Hammonds 1999). The SBH

in Massachusetts began preparing for production and started distributing antitoxin free of

charge throughout the state in March 1895, using its production facilities in Boston. Accord-

10Diphtheria was separately classified as a cause of death in the vital registration reports in
Massachusetts starting in 1858.

11The smallpox vaccination, for example, had been used for immunization purposes since the
beginning of the 18th century (e.g., Ager et al. 2018), but it could not be used as a treatment once
an individual was infected by the disease.
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ing to the Massachussets State Board of Health (1902, p.491), “the serum has been distributed

throughout the state wherever it has been called for, to local health boards, contagious diseases

hospitals and to physicians in private practice, the latter being usually supplied through the

local boards of health.”

The SBH kept records of the number of antitoxin bottles distributed to municipalities

in Massachusetts and published these numbers in their annual reports from 1895 to 1914.

The diphtheria antitoxin was produced at the laboratory of the SBH at Forest Hills (MA).12

Production of the serum increased rather quickly from 1,724 bottles in 1895 to 53,389 in

1900. Over the next 14 years, production more than doubled and the SBH distributed

118,561 bottles of antitoxin in 1914, which corresponded to close to 14 bottles per 1,000

people.13 We digitized these reports and use the statistics in our empirical analysis below.

Our analysis ends in 1914 because the SBH stopped publishing data on the distribution of

antitoxin after that. At this time, advances were also being made in the development of a

diphtheria vaccine, and eventually, a diphtheria toxoid was developed in the 1920s, allowing

mass immunization against diphtheria possible. This toxoid, along with some refinements,

is still in use today (e.g., Plotkin 2014). Hence, we are estimating the effect of the antitoxin

treatment during a time when medical immunization against diphtheria was not yet available.

2.3 The effectiveness of the antitoxin

How effective was the treatment of diphtheria with the antitoxin at the beginning of the

20th century? Contemporary publications report various diphtheria mortality statistics for

selected areas throughout the world, both before and after the development of the antitoxin

in the 1890s. According to Crum (1917), the pre-antitoxin (typically 1889-93) diphtheria

mortality rates varied from 18.8 (Ireland) to 411.9 (Serbia) deaths per 100,000 people, while

during the antitoxin period (typically 1910-14), the rate per 100,000 people varied from 40.1

(Serbia) to 6.8 (Chile). Several countries, including the U.S., experienced a large decline in

diphtheria mortality rates during this period. In Massachusetts, the fatality rate of diphtheria

fell from 28.3 percent (1891-94) in the pre-antitoxin era to 13.1 percent in the antitoxin era

12In the first years, the production of the serum was carried out at the laboratory rooms in the
Bussey Institution at Harvard University.

13According to the SBH annual reports (various years), each bottle contained 15-20 cubic cen-
timeters of serum in 1895. The strength of the serum gradually increased over time, which resulted
in a decrease in the amount of serum per bottle (each containing 1,500-2,000 units). The quantity of
treatment given to patients varied from less than 1,000 units to more than 20,000 units (equivalent
to 0.5-13 bottles per treatment), however, 54% of patients received less than 5,000 units. Small
doses were sometimes given to the family members of infected patients (particularly siblings), as
the antitoxin provided short-lived immunization against the disease.
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(1895-1901). The SBH estimated that the antitoxin treatment saved 10,697 lives in these

seven years (Massachussets State Board of Health 1902, p.487). These results demonstrated

the enthusiasm of medical contemporaries at the time regarding the breakthrough in treating

diphtheria infections with the serum. Yet, diphtheria mortality rates remained high at the

beginning of the 20th century, possibly due to unequal access, the inefficient deployment of

the antitoxin serum, and the stage of the disease at which patients received the antitoxin

treatment as the fatality of diphtheria increased if the serum treatment was substantially

delayed (e.g., from 6.6% on the first two days of illness to 17.8% on the sixth day of illness

or later (Massachussets State Board of Health 1902, p.486)).14

Looking at the total number of deaths caused by diphtheria (and croup) in Massachusetts

from 1858 to 1914, we cannot (visually) detect a clear trend break in the time series after

the free distribution of the antitoxin in 1895 (see Figure A.3). However, we also observe that

the gradual decline in the number of diphtheria deaths since the mid-1870s was not caused

by changes in the population at risk, as the mortality rate for diphtheria followed a similar

trend. This means that simply comparing the mortality rate for diphtheria before and after

the introduction of the antitoxin in 1895, as has been done in previous studies (e.g., Crum

1917), may not accurately reflect the importance of the antitoxin in the decline of diphtheria.

Hence, without proper data at the local or individual level, and random variations in the way

the antitoxin was administered, it remains a challenge to causally identify the effectiveness

of the antitoxin treatment.

Our detailed municipality-level data allow us to evaluate whether the free and widespread

distribution of the antitoxin in Massachusetts after 1895 contributed to historical health

transition by reducing the mortality rate from diphtheria and increasing life expectancy at

birth. Before outlining our identification strategy, we describes the data used in this study.

3 Data

Our empirical analysis draws on five main data sources: (i) the “The Annual Report on Birth,

Marriages, and Deaths in Massachusetts” from 1880 to 1914; (ii) annual death registers

and certificates from 1880 to 1914; (iii) “The Annual Report of the State Board of Health

of Massachusetts from 1895 to 1914; (iv) the complete-count U.S. Census records (1880,

14Thomasson (2018) mentions that the antitoxin treatment did not readily diffuse, citing a 1907
State Board of Health report from Indiana. Similarly, Preston and Haines (1991) argues that the
still high diphtheria mortality rates at the start of the 20th century indicate limited effectiveness in
the deployment of the antitoxin. Anecdotal evidence further suggests unequal access to antitoxin at
the turn of the 20th century. Illustrative examples include the story about how science “conquered”
diphtheria here or the history of diphtheria in Canada here.
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1900 and 1910) from IPUMS (Ruggles et al. 2021) and municipality-level statistics from

Massachusetts’ State Censuses (1880, 1885, 1895, 1905, and 1915) from Haines (2022); and

(v) newly publicly available crosswalks of linked individuals across Censuses from the Census

Tree Project (Price et al. 2021; Buckles et al. 2023). Except for (iv) and (v), we collected,

digitized, and cleaned the data.

The history of Massachusetts’ vital records (source i) is well documented and the death

registration system (starting in 1842) is generally considered reliable and of high quality.

By 1900, only around one percent of all deaths were unregistered. The decline in unknown

causes of death towards the end of the 19th century further reveals that data on the causes of

death increased substantially in accuracy (Gutman 1956). We digitized the annual mortality

statistics by including causes of death (referred to as “diseases” hereafter), as well as the

number of live births for each municipality from 1880 to 1914. Our main disease variable

is the number of deaths from diphtheria.15 In addition, we use statistics on the following

diseases in our analysis: bronchitis, digestive diseases (diarrhea, cholera, and typhoid), tuber-

culosis of the lungs (TB), pneumonia, scarlet fever, whooping cough, and strokes (apoplexy

and cerebral hemorrhage), plus accidental deaths.

The calculation of annual age-specific mortality rates at the municipality level is based on

individual death certificates (source ii). These records have been digitized and are provided

by FamilySearch.org as part of the collection “Massachusetts Deaths, 1841-1914”. For the

sample period 1880 to 1914, the records include 1,633,553 deaths in total. We derive infant

mortality rates by dividing the number of infant deaths by birth counts. Mortality rates for

children aged 1-4 are obtained by dividing the death counts by the corresponding population

of this age group (which is imputed based on births and cumulative deaths for each age

cohort).16 Our annual age-specific mortality rates (up to the age of 100 years) are calculated

as death counts over the population of that age group. The Appendix A.1 provides further

details on how we use and tabulate information from the death certificates.17

15From 1880 to 1901, these deaths are reported in the category “diphtheria and croup”, while
from 1902 to 1912 they are reported separately as “diphtheria” and “diphtheritic croup”, and for
1913 and 1914 they are reported as only one category “diphtheria” (but this also contains deaths
from croup). Therefore, we have constructed our diphtheria variable such that it includes deaths
from diphtheria and (diphtheritic) croup in all years.

16We use the same approach as Alsan and Goldin (2019). For each age from 1 to 4, we impute
the population stock by subtracting the cumulative deaths for an age cohort from the births for the
age cohort. Note, this approach assumes that there is no in- or out-migration of young children.

17In the raw digitized death certificates, there is a number of death records with a missing age
after the year 1905. We assign these age-missing deaths into age-specific deaths in proportion to the
age distribution for all death records with non-missing ages in the same year, sex, and municipality.
In addition, we only assign age-missing deaths with a documented spouse to ages above 15 years.
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Using the age-specific mortality rates, we can construct municipality-specific life tables

for every year in our sample. For this calculation, we assume deaths to be equally distributed

across the calendar years for all ages, except for the first year of life, where it is assumed

that an infant death corresponds to one-third of a life year lived. We close the table at age

100 by calculating the life years lived as one divided by the mortality rate at age 100. From

the life tables, we can compute life expectancy at all ages, but we focus on life expectancy

at birth as our main measure of population health. We further use the age-specific mortality

rates as outcomes in the regression analysis.

We also collected and digitized data on the supply of antitoxin (source iii) to each munic-

ipality from the annual reports of the SBH from 1895 (the start of the antitoxin campaign)

to 1914 (the last year when this information was published). These reports contain infor-

mation on the number of bottles supplied to each municipality (see also Section 2.2). If

municipalities were not listed, they did not receive any antitoxin directly from the SBH.18

From the SBH reports, we also collected annual data (1891-1914) on the number of infections

(cases) for the following diseases: diphtheria, scarlet fever, typhoid fever, measles, and small-

pox. The coverage increased from 68 municipalities in 1891 to around 300 municipalities at

end of our sample period. Since the SHB mentions that their case data likely suffer from

under-reporting, these findings should be interpreted with caution.

Municipality population data (1880-1915) are based on the Massachusetts State Census

records and complete count U.S. census records from IPUMS (source iv). Population is

interpolated linearly between the census years to construct annual mortality rates. The

State Census of Massachusetts was taken every 10 years starting in 1855 and contains detailed

population statistics (included in Haines (2022)), as well as information about manufacturing,

agriculture, and commercial activity which we digitized (not included in Haines (2022)) at

the town level. Haines (2022) also collected a special tabulation of the 1880 U.S. Census

for Massachusetts with detailed population statistics at the municipality level, which is

also included in our empirical analysis. From Haines (2022), we also obtain a number of

other municipality characteristics, such as the number of dwellings, rooms within dwellings,

population density, and the share of foreign-born individuals.

We also use the complete count U.S. census records to measure population size by age

groups, which we use to construct life tables (the 1890 records were lost in a fire). The

aggregation of the census data at the municipality level is based on geo-referenced crosswalks

18However, the possibility of redistribution of antitoxin from listed to non-listed municipalities
cannot be excluded according to the SBH. As a baseline, we assume that non-listed municipalities
did not receive any antitoxin bottles. We also replace extremely large per capita values with the
95 percentile value (“winsorized” values). Our conclusions are generally robust to not making this
adjustment, however, it increases the precision of our estimates.
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of individuals from Berkes et al. (2021), which contain the geographic coordinates for every

census-designated location. For every individual listed in the census, the crosswalks contain

the historical individual-level identifier (HISTID) provided by IPUMS together with the geo-

referenced location of the individual. The crosswalks are merged with the complete-count

census records by HISTID to construct different municipality-level characteristics, such as

population by age. We linearly interpolate population by age between the census years.

Finally, we construct a linked sample (1900-1940) of individuals based on the newly pub-

licly available crosswalks from the Census Tree Project (https://www.censustree.org/).

The Census Tree (CT) contains publicly available crosswalks between decennial censuses

based on the 1850-1940 complete count U.S. census records provided by IPUMS. Compared

to existing publicly available crosswalk files (the Census Linking Project (CLP) and the

IPUMS Multigenerational Longitudinal Panel project (MLP)) that also contain links of in-

dividuals between historical U.S. Census records,19 the CT archives a substantially higher

match rate (over 70% for men and over 60% for women) including systematic links for

women in non-adjacent censuses (e.g., 1900-1940). The quality of the CT links is high and

were independently verified (Buckles et al. 2023).

4 Estimation strategy

In this section, we outline our estimation strategy. Our baseline sample period contains

annual observations at the municipality level from 1880 to 1914. The sample ends in 1914

because of data availability on the supply of antitoxin. We start the empirical analysis

by estimating the relationship between the local adoption of the antitoxin and population

health, as outlined by the following equation:

ymt = βantitoxinmt + µm + µct +X′

mtΓ + εmt, (1)

where ymt is some measure of population health (e.g., life expectancy, mortality rates by

disease or age) in municipalitym at year t. Our main focus is on the diphtheria mortality rate

and life expectancy at birth, but later we also report estimates for infant and child mortality

as well as other diseases, infections, and fertility. The municipality-specific adoption of the

antitoxin is given by antitoxinmt, which is antitoxin bottles per 1,000 people supplied to

a municipality m in year t by the SBH. Since the SBH started its supply of antitoxin in

19For more details about the existing crosswalks, see https://censuslinkingproject.org/

about/ for the CLP (contains only links for males–the match rate ranges between 20-30%) and
https://usa.ipums.org/usa/mlp/mlp.shtml for the MLP (contains links for males and females
but only for adjacent census years–the match rate is 55% for males and 42% for women).
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1895, this variable is by construction zero for all municipalities beforehand. Municipality

and county-by-year fixed effects are denoted by µc and µct, respectively. The county-by-year

fixed effects flexibly account for county-specific trends in the outcome variable. The vector

X′

mt contains various pre-antitoxin municipality characteristics interacted with year fixed

effects. The set of controls includes the pre-antitoxin mortality rates from other infectious

respiratory and waterborne diseases and strokes, distance to Boston, measures of population

density and overcrowding, and the foreign-born share (all measured in 1880 and interacted

with a full set of year-fixed effects). The regression is weighted by the municipality population

size in 1895, hence, estimates reflect changes for the average person in Massachusetts.20 The

error term is εmt and standard errors are clustered at the municipality level. Summary

statistics are reported in Appendix Table A.1.

While estimating equation (1) controls for time-invariant differences across municipalities

and time-varying differences across counties, the least-squares estimate of β is likely biased

due to reverse causality and omitted variables. For example, the demand for antitoxin in a

municipality is likely higher during a diphtheria outbreak. If this bias is sufficiently strong,

it might even seem as if the antitoxin treatment reduced population health when estimating

β with least squares.

We address this identification problem by using a two-stage least squares (2SLS) method.

Our estimation strategy exploits the fact that antitoxin became suddenly and freely available

in 1895 and that some municipalities stood to benefit more from this development than oth-

ers, as they were systematically more severely affected by diphtheria prior to the availability

of the antitoxin.21 A similar empirical strategy is applied in studies such as Acemoglu and

Johnson (2007), Bleakley (2007), and Bütikofer and Salvanes (2020). Compared to these

studies, specific data on the local uptake of the medical innovation is available in our setting

(i.e., the number of antitoxin bottles distributed), which allows us to estimate the following

first-stage equation:

antitoxinmt = γtreatmentm × It × (t− 1894) + µm + µct +X′

mtΩ + ϵmt, (2)

where treatmentm is average pre-antitoxin (1891-94) diphtheria mortality rate,22 which is

20The other reason why our regressions are weighted by population size is that we calculate
annual life tables for all municipalities, including those with smaller populations. It is evident that
life expectancy will be measured with error, in particular for smaller areas. Regressions weighted
by population place less emphasis on these observations.

21For example, we observe in our mortality data that diphtheria was more widespread in urban
municipalities, which is to be expected given that the disease is airborne. In rare cases, milk
products can also serve as a source for transmission.

22The direct effect of treatmentm is absorbed by municipality fixed effects. We document the
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our cross-sectional measure of treatment intensity, It is a post-1895 indicator, and (t−1894)

is a linear trend. The remaining variables are defined as in an estimating equation (1).

Both antitoxinmt and It are zero for all municipalities prior to the uptake of the antitoxin

campaign in 1895. The estimated coefficient of interest, γ̂, quantifies how differences in the

pre-antitoxin diphtheria mortality rates translate into differences in the adoption speed of the

antitoxin. The linear-trend specification is motivated by the gradual adoption of antitoxin in

Massachusetts (see Figure 1).23 If γ̂ > 0, this would imply that municipalities more affected

by diphtheria prior to 1895 have a higher adoption speed of the antitoxin treatment when

the technology became available. The sharp cut-off date in 1895 is also used to conduct

falsification exercises in which we show that our instrument measure cannot explain changes

in diphtheria mortality and life expectancy in the pre-antitoxin period.

We also estimate a model in which the mortality outcome is by year, municipality, and

the cause of death. In this “stacked model”, the main right-hand-side variable in equa-

tions (1) and (2) is interacted with an indicator for diphtheria—the disease expected to

be most influenced by the supply of antitoxin. The disease dimension brings an additional

source of variation to the empirical model, which allows us to control for interaction fixed

effects (municipality-by-year, cause-of-death-by-year, and cause-of-death-by-municipality)

and, thus, reduces omitted variable concerns further. The key identification assumption

for this stacked specification is common trends in the difference in the mortality rate of

diphtheria, and other diseases across municipalities with different treatment intensities, if

the distribution of the antitoxin treatment did not happen.

Finally, we obtain the same conclusions using an alternative formulation of the instrument

in which the aggregate supply of bottles is distributed according to pre-antitoxin municipality

diphtheria mortality shares (i.e., a shift-share type of instrument). Appendix Section A.2

provides a detailed explanation of this alternative instrument and its relationship to that

used in equation (2).

5 Results

5.1 Descriptive evidence

First, we present descriptive evidence on the evolution of diphtheria mortality rates, the

evolution of life expectancy at birth, and antitoxin adoption rates in Massachusetts by treat-

spatial distribution of treatment intensity in Figure 2, which also gives an impression of the distri-
bution of municipalities included in the baseline sample.

23As a robustness check, we also deploy a concave trend-break (“logged year”), which matters for
the magnitudes of the counterfactual calculations, but not for the magnitude of the 2SLS estimates.
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ment intensity (above/below median) for the years 1880 to 1914. Panel A of Figure 3 shows

the development of the diphtheria mortality rate as a three-year moving average for mu-

nicipalities grouped by treatment intensity. In Panel B, we additionally subtract the 1894

diphtheria mortality rates. While the figure shows a steady decline in diphtheria deaths from

0.9 to 1.4 per 1,000 people in 1880 to around 0.25 deaths per 1,000 people at the end of

the sample, convergence in the rate across groups mainly occurred during the post-antitoxin

era. This pattern suggests that municipalities with higher pre-antitoxin diphtheria mortality

rates benefited more from the free supply of antitoxin starting in 1895.

Panels C and D of Figure 3 present the evolution of life expectancy, following the same

structure as in Panels A and B. Population-weighted average life expectancy increased from

40 years at the beginning of the 1880s to 47 years in the 1910s (not reported). As with the

diphtheria mortality rate, we only see convergence across the two municipality groups after

the introduction of the antitoxin treatment in 1895—the gap in life expectancy remained

constant at about six years from 1880 to 1894 and reduced to approximately two years

by 1914.24 We obtain a similar pattern in Appendix Figure A.4, where we first collapse

municipalities into the two groups of treatment intensity and then calculate the life tables

for each group, which avoids the problem of calculating life tables for small populations.

Figure 1 displays the supply of antitoxin per 1,000 people in Massachusetts since 1895.

The population-weighted average supply was close to 14 bottles per 1,000 people at the end

of our sample period (not reported), and we also observe that municipalities more affected

by diphtheria prior to the antitoxin treatment (the above-median sample) adopted more

antitoxin in per capita terms throughout the antitoxin period. Overall, when considering

the evolution of diphtheria and life expectancy at birth altogether, we conclude that munic-

ipalities with the potential to benefit more from antitoxin also adopted more of it. These

municipalities experienced larger declines in diphtheria mortality rates and larger increases

in life expectancy at birth. We exploit these features more systemically in our regression

analysis in the next subsections.

5.2 Determinants of the antitoxin diffusion

We begin the regression analysis by studying how the adoption of antitoxin is related to

different pre-antitoxin municipality characteristics. This exercise is based on different ver-

sions of the estimating equation (2), which we later use as the corresponding first stage in the

24Note, while we do not use the level of life expectancy (but only changes) in our empirical
analysis, we nonetheless obtain reasonable estimates. For example, we find that the population-
weighted average life expectancy in Massachusetts in 1890 was 41.4 years and 44.2 in 1901, while
is quite close to the official contemporary statistics (Glover 1921).
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2SLS framework. The estimates are reported in Table 1. All regressions include municipality

and county-by-year fixed effects and are weighted by population size in 1895. The baseline

estimate, reported in column 1, implies that 10 years into the use of the antitoxin serum,

the adoption rate is close to three bottles per 1,000 people in a municipality with an aver-

age treatment intensity. If the treatment intensity is increased by one standard deviation,

this number would be approximately 3.3 bottles per 1,000 people. This point estimate is

statistically significant at the 1% level.

Column 2 of Table 1 shows that this pattern of adoption is robust to controlling for

the mortality rate from other respiratory infectious and waterborne diseases (i.e., bronchitis,

tuberculosis, scarlet fever, pneumonia, whooping cough, measles, digestive, and typhoid) and

the stroke mortality rate. These measures are constructed in a similar way as “treatment”

by averaging over the pre-antitoxin years 1889 to 1894 (measured in logarithmic units). This

result suggests that our “treatment” measure is not simply capturing the general mortality

environment of a municipality, which, at that time, was mainly driven by infectious diseases.

The remaining columns control for medical doctors per 1,000 people, distance to Boston,

population density (persons per 1,000 square miles), crowding (persons per dwelling and

per room), and the foreign-born share (all measured in 1895, interacted with the indicator

and a linear trend). The rate of antitoxin adoption was higher in places with more medical

doctors and in more densely and overcrowded municipalities where infectious diseases could

spread more easily (see e.g., Ager et al. 2024).25 While the magnitude of the treatment effect

reduces to approximately 1.4 bottle per 1,000 people (after 10 years) in the most conservative

specification (column 7), the point estimate remains statistically significant at the 1% level.

Finally, Appendix Table A.2 reports the results of a pre-antitoxin balance test, in which we

observe that treatment is significantly correlated with the mortality rate of other infectious

diseases and the number of physicians per capita.

5.3 Antitoxin and population health

Before we incorporate the insight from Table 1 (that some municipalities had more to benefit

from with the adoption of antitoxin), into our 2SLS framework, we conduct two falsification

exercises. First, in Appendix Table A.3, we show results from a placebo experiment using

false start dates for the antitoxin distribution in Massachusetts. The idea is to consider

what would have happened if the free distribution of antitoxin after 1895 would have in-

stead occurred at the beginning of the 1880s. If municipalities with a substantial uptake in

25Since we later demonstrate that antitoxin reduced mortality and increased life expectancy,
the positive coefficient on pre-antitoxin doctors indicates that the supply of doctors contributed
positively to the health transition by facilitating the diffusion of antitoxin.
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antitoxin after 1895 were already on a different path of the health transition in the 1880s,

our placebo exercise would detect significant effects. Reassuringly, and consistent with the

descriptive evidence, this is not the case. In all specifications with incorrect start dates

(assuming the antitoxin distribution begins in 1880, . . . , 1885), and restricting the sample

to include only the pre-antitoxin period, we obtain small and insignificant 2SLS estimates

for the diphtheria mortality rate and life expectancy at birth.26 Second, consistent with the

descriptive evidence reported in Figure 3, Appendix Figure A.8 reports reduced-form event

study estimates for life expectancy and diphtheria (Panel A and B), which also suggests

that our instrument is not picking pre-existing trends in the outcomes. Overall, it seems

plausible that post-antitoxin improvements in our health outcomes are, in fact, related to

the free distribution of the antitoxin treatment.

Table 2 presents our main results on how the adoption of antitoxin influenced population

health. Our empirical investigation of this relationship begins by estimating (1) with least

squares (Panel A), using annual observations from 1880 to 1914. Municipalities are weighted

by population size in 1895. The two main outcomes are the diphtheria mortality rate (column

1) and life expectancy at birth (columns 2-4). We see that the point estimates, βOLS, for

diphtheria mortality and life expectancy are statistically insignificant and close to zero.

Overall, when estimating the relationship simply by least squares, we cannot reject the

hypothesis that the adoption of the antitoxin treatment did not improve population health.

A different picture emerges when using 2SLS as the method of estimation (Panel B).

For both outcomes, the point estimate of β2SLS has the expected sign and is statistically

significant at the 5-percent level with a strong first-stage relationship (the Kleibergen-Paap

F-statistic is well over 10). Relative to pre-antitoxin average life expectancy, the 2SLS

estimate, reported in column 2, indicates that one more bottle of antitoxin per 1,000 people

increases life expectancy by 1.2 percent. The corresponding reduced-form estimates are

reported in Panel C of Table 2. Moreover, we present results based on a more classical

shift-share approach in which the aggregate number of bottles are distributed according to

pre-antitoxin diphtheria mortality shares. The estimates using this alternative approach are

reported in Appendix Table A.4 and are similar to the 2SLS estimates presented in Table 2.

Based on the statistical evidence from contemporaneous publications (see Section 2.3),

the antitoxin treatment could have gender-specific effects. Because gender is stated on the

death certificate, we can calculate life expectancy separately for men and women. Columns

3 and 4 of Table 2 reveal that there are no differential effects of the antitoxin treatment on

26The sample period includes the years 1880 to 1896. Similar results are obtained if the sample
period is restricted to the pre-antitoxin period (up to 1894), but the strength of the first stage is
increased when including more years for the diffusion of the antitoxin.
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life expectancy at birth by gender.27

In Figure 4, we use the reduced-form estimate of Table 2 to conduct counterfactual

experiments with annual delays in the free distribution of antitoxin, which allows us to

interpret the magnitude of our estimates. For example, in 1895, we assume a delay of one

year, while at the end of our sample window, the delay is assumed to be 20 years (i.e., no

distribution of antitoxin within our sample period). The counterfactual (in a given year) is

the observed outcome minus the predicted change. In terms of life expectancy (Panel A),

we observe a 1.4 year difference at the end of the sample for average treatment intensity.

In comparison, from 1895 to 1914, life expectancy in Massachusetts increased by almost 5

years, implying that the availability of antitoxin can potentially explain up to 27 percent

of the observed increase in life expectancy over this period. Panel B demonstrates that

antitoxin can explain almost half of the decline in the observed diphtheria mortality rate.

The no-antitoxin scenario is the most extreme counterfactual, and if we instead assume a

5-10-year delay, these numbers become somewhat smaller. However, this still indicates that

antitoxin played an important role in the historical mortality transition in Massachusetts at

the beginning of the 20th century.28

5.4 Robustness

Next, we present a number of robustness checks based on the baseline annual linear trend-

break model as outlined in equation (2). We use these findings to think about the sensitivity

of our baseline counterfactual calculations. The first exercises are outlined in Appendix Table

A.5. First, we show in columns 1 and 6 that our results remain robust when controlling for

various municipality characteristics associated with urbanity and the mortality environment.

The additional control variables included are those robustly correlated with the adoption of

the antitoxin treatment from Table 1: mortality rates from other infectious respiratory and

waterborne diseases, doctors per 1,000 people, distance to Boston, population density and

people per dwelling (all measured prior to antitoxin availability and interacted with a full

set of year fixed effects). Second, we add time-varying controls for the population shares

of children (ages 0, 1 to 4, 5 to 9, 10 to 14). This may be important because diphtheria

was mostly a childhood disease, although, by definition, life expectancy takes into account

27The data availability of death certificates used to calculate life expectancy in columns 2-4
reduces the sample of municipalities by 14.

28We get a similar counterfactual quantification combining the first stage and 2SLS estimates and
use these annual delays in terms of the supply of antitoxin bottles. However, it is more straight-
forward to use the reduced-form estimates when expressing the statistical uncertainty around the
different counterfactual scenarios, as we do in Figure 4.
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variations in age structures. As seen in Columns 2 and 7, this does not change our baseline

conclusion. Third, we have obtained adoption dates for the introduction of public water

works and the roll-out of hospitals from the SBH annual reports and control for these in

columns 3 and 8. Adding those potential confounders does not affect our findings (point

estimates change very little). Fourth, we obtain similar insights using alternative functional

forms: in columns 4 and 9, the 2SLS estimates are based on a level-log model, while in

column 10 we use a log-log model. The latter functional form is more suitable for life

expectancy at birth as the outcome, which has only a few zeros. This is not the case for the

diphtheria mortality rate, which in some years could be zero in smaller places. Hence, we

report a reduced-form Poisson estimate in column 5. This model takes into account that the

outcome variable is highly skewed. For all these modified specifications, we reach the same

conclusion, that the free supply of antitoxin improved population health.

Appendix Table A.6 presents further robustness checks. Columns 1 and 5 report es-

timates similar to the baseline when using treatment intensity logged, which implies that

fewer municipalities are included in the sample (i.e., municipalities with zero pre-diphtheria

mortality rates). Unweighted 2SLS estimates are reported in columns 2 and 6. In columns

3 and 7, we scale the number of antitoxin bottles by the number of children aged 0 to 10

(the most affected group) instead of the entire population and, in columns 4 and 8, Boston

is excluded from the sample. Again, we see that our baseline conclusion is robust to these

modifications.29 Finally, we address the issue that life expectancy, in many instances, is

derived from municipalities with relatively few deaths during a particular year and age. In

column 9, the outcome is life expectancy at birth, but the denominators in the life tables

are based on five-year population age groups from the State census (Haines 2022) instead of

single-year age groups from the Federal census. In column 10, we calculate life expectancy

at birth for five-calendar years instead of single calendar years. In both specifications, we

obtain point estimates relatively similar to our baseline specification.30

In Figure A.9, we summarize the robustness exercise in terms of our counterfactual

calculations. To this, we add a specification, where the trend is concave in years since

1894 (i.e., logged year) instead of linear as in the baseline. While this reduced-form estimate

29Appendix Table A.7 demonstrates that our findings are robust to the inclusion of lagged out-
comes to capture persistence in mortality and life expectancy and also, potentially, mean-reverting
dynamics (it should be noted that in this specification, the inclusion of lagged dependent variables
produces biased and inconsistent estimates). The results are also robust if we instead include the
initial (1880) outcome variable interacted by year fixed effects (not reported).

30Moreover, in Appendix Figure A.4, we collapse municipalities into two regions according to their
treatment intensity (below and above median) and calculate life expectancy for each region, which
should also avoid the problem of small areas in life tables. This figure also provides reduced-form
evidence of antitoxin increasing life expectancy.
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is statistically significant at the one percent level, this turns out to be the most conservative

counterfactual, since here we multiply the reduced-form estimate with a log-linear trend

instead of a linear trend (thus, we obtain the same 2SLS estimates in the two types of

specifications). The main takeaway from our robustness analysis, as visualized in Figure A.9,

is that antitoxin can explain at the very least 6 percent of the increase in life expectancy at

the end of our sample window (see blue dashed line in Panel A).

5.5 Other mortality and health-care sector outcomes

Since diphtheria mainly affected children, Table 3 presents the impact of the antitoxin treat-

ment on infant and child mortality rates (total and by gender). These variables are often

used in the literature as important markers of (child) population health (e.g., Alsan and

Goldin 2019). Moreover, this exercise also serves as an additional robustness check for the

data used in the denominator. For diphtheria mortality (and other diseases, reported below),

we use population counts from the State census, which are reported in the vital statistics

or available in (Haines 2022). For the life tables, we use population counts by single-year

age groups from the Federal census. Since deaths during the first year of life often occur

within the first couple of months, it is common to use the number of live births to represent

the population at risk when constructing the infant mortality rate. We follow this approach

using the birth counts from individual birth records. The child mortality rate spans the ages

1 to 4, and we use the individual death and birth records to construct the number of people

in that age group (see Appendix Section A.1 for details).

For the infant mortality rate (columns 1 to 3), the average antitoxin effect is negative, but

far from being significant and for boys the point estimate is even positive but statistically

insignificant.31 For the child mortality rate (columns 4 to 6), the point estimate is negative,

highly statistically significant, and quantitatively similar for both genders. The percent

declines are the largest for the child mortality rate (relative to the pre-antitoxin mean). In

particular, the estimate in column 4 suggests that a one-bottle increase in antitoxin per

1,000 people reduces the child mortality rate by about 3 percent (measured relative to the

pre-antitoxin mean). In Appendix Figure A.10, we use the reduced-form estimate of column

4 to construct a counterfactual for the child mortality rate similar to Figure 4. We observe

that antitoxin can explain up to 17 percent of the decline in the child mortality rate at the

end of the sample period.

In Appendix Table A.8, we also consider age-specific mortality rates (ages 0 to 10) directly

from the life tables as outcomes. Across all ages, the point estimate on antitoxin per 1,000

31Note, the results and relatively large standard errors are not driven by outliers.
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people is negative and, in eight out of 11 cases, statistically significant at conventional levels.

Evaluated relative to the relevant pre-antitoxin mean mortality rate, the negative effects

are most pronounced at ages 1 to 4, which is consistent with the historic age profile for

diphtheria mortality (e.g., Crum 1917) and the evidence reported in Table 3. For example,

the estimated coefficient at age 4 implies that a one-bottle increase in antitoxin leads to a 4

percent decrease in this age-specific mortality rate.32

Next, we assess whether the availability of the antitoxin treatment reduces the mortality

burden from diphtheria. We use the diphtheria mortality ratio (i.e., the number of diphtheria

deaths per 1,000 deaths) to address this question. Column 1 of Table 4 reports the result.

The point estimate is negative and statistically significant at the 1-percent level indicating

that the effect of the diphtheria antitoxin was first-order and reduced the mortality burden

of diphtheria. In the remainder of Table 4, we investigate whether the antitoxin treatment

reduced the fatality rate of diphtheria, had second-order effects on other causes of death, and

changed fertility behavior. Column 2 provides suggestive evidence that the antitoxin treat-

ment reduced fatality (diphtheria death per 1,000 cases of diphtheria), however, the estimate

is not statistically significant at any conventional levels. In columns 3 to 5, we consider other

diseases as outcomes (deaths from strokes, other infectious diseases, and accidents). In all

specifications, we control for the pre-antitoxin mortality rates of the outcome interacted with

year fixed effects. The antitoxin effect on strokes reported in column 3 is negative and sta-

tistically significant at the 5-percent level, while the effect on other infectious diseases (i.e.,

bronchitis, tuberculosis, scarlet fever, pneumonia, whooping cough, measles, typhoid, and

digestive illnesses) reported in column 4 is small in magnitude (relative to the pre-antitoxin

mean), but significant at the 10-percent level. We find no effects on deaths from accidents,

which is to be expected (column 5).

In general, second-order mortality effects are not that surprising given the health com-

plications of diphtheria and secondary infections. This also means that assessing the effect

of antitoxin on life expectancy using data on the mortality burden of diphtheria in back-

of-the-envelope calculation would likely underestimate the true effect, since these simple

calculations misses possible spillover-effects to other diseases. There is also some evidence

that the antitoxin treatment reduced the crude birth rate (column 6), but the effect size is

small in magnitude and statistically insignificant.

32The outcomes in Appendix Table A.8 are so-called q-type mortality rates, which are being used
in the calculation of the life tables. The relationship between the m-type mortality rate and the
q-type is given by: qx = mx/(1+ (1− ax)mx), where mx is the (m-type) age-specific mortality rate
and ax is the expected number of months an individual at a given age lives within the calendar
year. For age 0, we use a0 = 1/3; for all other ages reported in Appendix Table A.8, we set ax
equal to one-half, which is also our approach when setting up the life tables.
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Appendix Table A.9 provides a complementary analysis to study the effects on individual

mortality rates (i.e., “diseases”). We “stacked” the cause-of-death mortality rates (columns

1-5) and cases rates (column 6), so the panel dimension becomes municipality-year-disease.

In this specification, we can control for municipality-by-year, disease-by-year-by-county, and

municipality-by-disease fixed effects. Accounting for these additional set of fixed effects

further mitigates the concern that our estimates might be driven by omitted variables. We

can add this additional set of controls since we interact the main right-hand-side variables

in equations (1) and (2) with an indicator for diphtheria (since our working hypothesis is

that the antitoxin treatment should have a first-order effect on this disease). While the

baseline model can be interpreted along the lines of a difference-in-differences estimation,

the stacked model is more similar to a triple-differences estimation. In the first column, all

13 causes of death are included as controls, while in columns 2 to 5, we vary the included

control causes (e.g., column 3 only includes childhood diseases as controls).33 In all five

specifications, the point estimates are between -0.11 and -0.06, which is close to our baseline

estimates. The final column shows the effect of the antitoxin treatment on the number

of diphtheria infections relative to the number of infections of scarlet fever, typhoid fever,

measles, and smallpox. The estimated coefficient is negative but not statistically significant

at conventional levels. Taken together, these results reveal that municipalities with higher

rates of antitoxin adoption experienced larger declines in their diphtheria mortality rate

relative to other diseases.

One remaining issue is whether the “antitoxin effect” simply captures the expansion of

the healthcare sector at that time. Municipalities severely affected by diphtheria could have

requested more doctors, such that the increased number of antitoxin bottles per 1,000 peo-

ple simply reflects affected municipalities having more medical doctors available. To check

whether this was the case, we obtain the number of doctors, nurses, and pharmacists per

1,000 people at the municipality level from the full-count U.S. censuses. We then apply the

baseline annual 2SLS specification, which means that we had to interpolate the occupation

rates between the census years. Table 5 summarizes the results for doctors (Panel A), nurses

(Panel B), and pharmacists (Panel C). In all specifications, the effects are quantitatively

small and statistically insignificant. Although the healthcare sector contributed to the mor-

tality transition by facilitating the diffusion of antitoxin (see Table 1), our results suggest

that the health benefits from the antitoxin treatment did not simply reflect more affected

municipalities expanding their healthcare sector.

33Including, for example, stroke deaths as a control disease, in column 1, can be problematic,
since in Table 4 we demonstrate that these were affected by the antitoxin treatment, which is why
the subsequent columns include different sets of control diseases.
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6 Effects on School Attendance and Adult Outcomes

Thus far, we have documented that the availability of the antitoxin serum substantially

reduced diphtheria mortality rates and increased life expectancy at birth. Our results also

reveal that the antitoxin treatment for diphtheria was most effective for children below age

10. In this section, we examine whether exposure to antitoxin treatment affected school

attendance in the short term and had implications on the educational attainment and labor

market outcomes of exposed children as adults.

We start our analysis by combining a measure of antitoxin exposure during childhood

with individual data on school attendance from the U.S. Census in 1900. While other

historical US Censuses (1850-1930) only contained a question about school attendance (as

little as one day of school during the previous (census) year counted as attending), in 1900,

enumerators also asked how many months a person of school age attended school during

the census year (June 1, 1899 to May 31, 1900). In Massachusetts, the average length of

schooling in each year during the 1890s was nine months (Massachussets State Board of

Education 1901, p.101).

Since we do not have information about the antitoxin treatment at the individual level,

we cannot distinguish whether the use of the antitoxin directly affected the sickness of treated

individuals or whether a more efficient containment of diphtheria reduced the spread of the

bacteria more generally. Instead, our estimation approach utilizes the annual variation in

antitoxin treatment across municipalities at the time when children were 0-9 years old. This

allows us to test whether young children with potential access to the antitoxin treatment

were less sick and could therefore attend school for more months during the year. Our

sample for the short-term analysis includes all 5 to 15-year-old white children who lived in

Massachusetts in 1900.

The econometric model of this subsection is described by the following equation:

yibm = βExposurebm + µb + µm + ΓXim + ϵibm, (3)

where yibm is a dummy variable if child i born in year b living in municipality m attends

school (i) at all; (ii) for three months or less; and (iii) for at least for nine months. The

variable of interest, Exposurebm, captures the average exposure to the antitoxin treatment

over the first nine years of life. For example, a child born in 1890 living in municipality m

in 1900 is assigned the average number of antitoxin bottles per 1,000 people supplied to this

municipality over the years 1890-99 (note there was no antitoxin available before 1895).34

34The assumption is that children received the antitoxin treatment in the municipality in which
they were listed in the 1900 Census. If a child was younger than nine years in 1900, we only assign
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All specifications include fixed effects for municipality (µm) and birth year (µb). The set

of controls, Xim, includes dummies for gender, place of birth, rural, year of immigration,

and a set of parental controls including dummies for mother’s and father’s birthplace, their

year of immigration, age of the mother and father, whether the mother and father were

literate, whether the father or mother was absent at the time of the census, and whether the

father worked in a white-/blue-collar skilled occupation. We cluster standard errors at the

municipality level.

Table 6 summarizes the results. For each outcome, we report two specifications. The

first specification only controls for municipality and birth year fixed effects, while the second

specification also includes the set of individual and parental controls. Exposure to the

antitoxin treatment during childhood did not increase school attendance along the extensive

margin (columns 1-2), however, given that a child attended, they stayed in school for more

months. In particular, we show that more exposed children were less likely to stay in school

for three months or less (columns 3-4), and, instead, they attended school for at least nine

months in 1900 (columns 5-6). The estimated coefficients are statistically significant at the

1-percent level. There are no noticeable differences by gender and family background (see

Appendix Table A.10).35 We regard this as suggestive evidence that access to the antitoxin

treatment reduced sickness in class and thus children could attend school more regularly.

The results are also quantitatively sizable: evaluated at the sample mean, antitoxin exposure

reduced the likelihood of attending school for three or fewer months by almost 5 percent and

increased the likelihood of attending school for at least nine months by almost 1 percent.

Since exposure to the antitoxin treatment increased the time children spent in school, it

would be interesting to know if this had any implications for educational attainment and

labor market outcomes of the affected children as adults. To answer this question, we use the

CT crosswalks for the years 1900 to 1940 to follow 5- to 15-year-old boys and girls living in

Massachusetts in 1900 into adulthood (these individuals were aged 45 to 55 in 1940). The CT

obtains higher match rates than existing linking methods without substantially increasing

false positives (Price et al. 2021), and it is also reassuring that we can replicate the results

of Table 6 using the linked sample (see Appendix Table A.11).

Using the linked sample, we can test whether exposure to the antitoxin treatment during

childhood had any detectable long-run effects. Table 7 reports the estimates for years of

schooling (column 1) and the following labor market outcomes: whether the person worked in

a low-skilled occupation (column 2), in a blue-collar skilled occupation (column 3), in a white-

the average exposure up to their current age in 1900. For the long-term analysis, we use the average
exposure over the first nine years of life.

35Note, results remain qualitatively unchanged if we restrict the sample to include only children
aged 5-15 who were born in Massachusetts.
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collar occupation (column 4), the occupational income score (column 5), and wages (column

6).36 The estimating equation is (3) and the estimation method is least squares.37 Although

school absenteeism rates for exposed children decreased in 1900, we find no evidence that

these children went for more years to school and had better labor market outcomes as adults.

The estimated effect of exposure to antitoxin during childhood on the years of schooling in

column (1) is statistically insignificant and quantitatively close to zero. A similar picture

emerges when considering the adult labor market outcomes of exposed children in columns

(2)-(6). The estimated coefficient on antitoxin exposure is always statistically insignificant

and very small in size (precise null effects). This is also the case when looking at individuals

at the ages of 25-35 (linked sample 1900 to 1920) or at the ages of 35-45 (linked sample

1900-1930). The results are reported in Appendix Table A.12. We also obtain similar results

when using the crosswalks of linked men from the Census Linking Project (CLP).38

Our near-zero (and statistically insignificant) long-term results could imply, that condi-

tional on surviving into adulthood, the antitoxin treatment enabled children who grew up

in municipalities with high rates of diphtheria to end up in similar occupations as adults

as children from municipalities with lower rates of diphtheria. Alternatively, the effect of

reduced school absenteeism might not be large enough to generate significant increases in the

years of schooling and better labor market outcomes of the exposed boys as adults. Overall,

our results suggest that while exposure to the antitoxin treatment during childhood likely

reduced absenteeism from school, the long-term effects on educational attainment and labor

market outcomes a few decades later appear negligible.

7 Concluding remarks

This paper contributes to the debate on whether medical advances played an important role

in the early phase of the health transition in the United States. We examined the health

effects of the diphtheria antitoxin, which was developed to combat diphtheria—a leading

cause of death in children in the early 20th century. Our focus was on Massachusetts, whose

historical vital statistics are reliable and well-documented. In 1895, the Massachusetts State

36We use IPUMS variable OCC1950 to define white-collar jobs (codes 0-490, excluding farmers
and farm managers), blue-collar skilled occupations (codes 500-595), and low-skilled occupations
(codes 600-970).

37We obtain similar results when replacing the actual antitoxin exposure with the predicted
distribution of antitoxin based on our 2SLS approach in equation (3).

38The CLP crosswalks contain only men over time and produce a lower match rate than the
Census Tree Project. See https://censuslinkingproject.org/ and Abramitzky et al. (2021) for
more details on the linking method and the corresponding match rates of the CLP links.
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Board of Health began providing municipalities with diphtheria antitoxin free of charge for

medical use. Using over 1.5 million death certificates and municipality data on the adoption

of the antitoxin treatment for the years 1880 to 1914, we find that the provision of antitoxin

serum substantially reduced diphtheria mortality rates and increased life expectancy at birth.

Our baseline estimate indicates that antitoxin can explain 27 percent of the increase in life

expectancy at birth and 17 percent of the decrease in child mortality. Thus, the observed

increase in life expectancy was primarily driven by the decrease in child mortality. Since

infant and child mortality accounted for the largest proportion of the total mortality burden

at that time, the diffusion of the antitoxin treatment—by preventing mortality due to a

major childhood disease—led to noticeable improvements in health before “the era of big

medicine”. This suggests that medical innovations may have played a much larger role in

increasing life expectancy in the early 20th century than previously thought.
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Santiago Pérez, “Automated linking of historical data,” Journal of Economic Literature,

2021, 59 (3), 865–918.

Acemoglu, Daron and Simon Johnson, “Disease and development: the effect of life

expectancy on economic growth,” Journal of Political Economy, 2007, 115 (6), 925–985.

Ager, Philipp, Casper Worm Hansen, and Peter Sandholt Jensen, “Fertility and

early-life mortality: Evidence from smallpox vaccination in Sweden,” Journal of the Eu-

ropean Economic Association, 2018, 16 (2), 487–521.

, James J Feigenbaum, Casper W Hansen, and Hui Ren Tan, “How the other

half died: Immigration and mortality in US cities,” Review of Economic Studies, 2024, 91

(1), 1–44.

Alsan, Marcella and Claudia Goldin, “Watersheds in Child Mortality: The Role of

Effective Water and Sewerage Infrastructure, 1880–1920,” Journal of Political Economy,

2019, 127 (2), 586–638.

, Vincenzo Atella, Jay Bhattacharya, Valentina Conti, Iván Mej́ıa-Guevara,

and Grant Miller, “Technological Progress and Health Convergence: The Case of Peni-

cillin in Postwar Italy,” Demography, 2021, 58 (4), 1473–1498.

Anderson, D. Mark, Kerwin Kofi Charles, and Daniel I. Rees, “Reexamining the

contribution of public health efforts to the decline in urban mortality,” American Economic

Journal: Applied Economics, 2022, 14 (2), 126–157.

27



, , Claudio Las Heras Olivares, and Daniel I. Rees, “Was the First Public Health

Campaign Successful?,” American Economic Journal: Applied Economics, 2019, 11 (2),

143–75.

Atwood, Alicia, “The long-term effects of measles vaccination on earnings and employ-

ment,” American Economic Journal: Economic Policy, 2022, 14 (2), 34–60.

Barksdale, Lane, “Corynebacterium diphtheriae and its relatives,” Bacteriological Reviews,

1970, 34 (4), 378–422.

Barreca, Alan, Karen Clay, Olivier Deschenes, Michael Greenstone, and

Joseph S. Shapiro, “Adapting to climate change: The remarkable decline in the US

temperature-mortality relationship over the twentieth century,” Journal of Political Econ-

omy, 2016, 124 (1), 105–159.

Beach, Brian and W. Walker Hanlon, “Coal smoke and mortality in an early industrial

economy,” The Economic Journal, 2018, 128 (615), 2652–2675.

, Joseph Ferrie, Martin Saavedra, and Werner Troesken, “Typhoid fever, water

quality, and human capital formation,” The Journal of Economic History, 2016, 76 (1),

41–75.

Berkes, Enrico, Ezra Karger, and Peter Nencka, “The Census Place Project: A

Method for Geolocating Unstructured Place Names,” Unpublished Working Paper, 2021.

Bhalotra, Sonia, Atheendar Venkataramani, and Selma Walther, “Womenâs Fer-
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Figure 1: Antitoxin adoption rates

Notes: The figure shows the development of the average number of antitoxin bottles per 1,000 people

by treatment intensity (1. y-axis) and the total amount of bottles to all municipalities (2. y-axis).

We report three-year moving averages and use the 1895 municipality population size as weights.

Treatment intensity is measured as the average pre-antitoxin (1891-94) diphtheria mortality rate in

logarithmic units. The vertical line indicates the first year when antitoxin became freely available

for adoption.
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Figure 2: Spatial variation in pre-antitoxin (1889-1894) diphtheria mortality
rates

Notes: This figure shows the spatial variation in diphtheria mortality rates (i.e., treatment inten-

sity) as defined in Equation (2).
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Figure 3: Diphtheria mortality rates and life expectancy at birth

(a) Diphtheria, average by group (b) and deviation from 1894 values

(c) Life expectancy, average by group (d) and deviation from 1894 values

Notes: The figure shows the development of the average diphtheria mortality rate per 1,000 people

(Panel A and B) and life expectancy at birth (Panel C and D) by treatment intensity (below/above

median). Panel A/C shows this development by group and Panel B/D in addition subtracts the

1894 value for each group. We report three-year moving averages and use the 1895 municipality

population size as weight. Treatment intensity is measured as the average pre-antitoxin (1889-94)

diphtheria mortality rate. The vertical line indicates the first year when antitoxin became freely

available for adoption.
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Figure 4: Counterfactual scenarios

(a) Life expectancy at birth

(b) Diphtheria mortality rate

Notes: This figure uses the baseline reduced-form estimates (and 95 percent confidence bands) to

calculate the counterfactual (CF) development for the life expectancy at birth (Panel A) and the

diphtheria mortality rate (Panel B). The CF calculations are based on annual delays for average

treatment intensity. These are the gray solid curves (and dashed ones indicate the 95-percent

confidence bands. The solid black curves are the observed population weighted averages of the

outcomes. All curves are three-year moving averages.
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Table 1: Antitoxin adoption by municipality characteristics

(1) (2) (3) (4) (5) (6) (7) (8)

treatment x I x (t-1894) 0.320*** 0.240*** 0.236*** 0.211*** 0.151*** 0.138*** 0.142*** 0.143***
(0.054) (0.055) (0.056) (0.055) (0.051) (0.049) (0.049) (0.050)

ln(infec. rate, 89-94) x I x (t-1894) 0.248*** 0.251*** 0.255*** 0.354*** 0.166** 0.055 0.057
(0.075) (0.076) (0.072) (0.072) (0.072) (0.070) (0.086)

ln(stroke rate, 89-94) x I x (t-1894) -0.003 -0.042 -0.043 -0.067* 0.018 0.018
(0.041) (0.044) (0.040) (0.037) (0.042) (0.043)

doctors pr. capita in 95 x I x (t-1894) 0.091*** 0.074** 0.123*** 0.136*** 0.136***
(0.033) (0.029) (0.034) (0.037) (0.037)

dist Boston x I x (t-1894) -0.009*** -0.006*** -0.006*** -0.006***
(0.002) (0.002) (0.002) (0.002)

persons pr 1,000 sqm in 95 x I x (t-1894) 0.038*** 0.028*** 0.028***
(0.009) (0.009) (0.009)

persons pr. dwelling in 95 x I x (t-1894) 0.072* 0.072*
(0.038) (0.040)

persons pr. room in 95 x I x (t-1894) -0.131 -0.125
(0.512) (0.484)

fb share in 95 x I x (t-1894) -0.013
(0.386)

N× T 9,625 9,625 9,380 9,360 9,360 9,360 9,360 9,360

Notes: This table reports how the number of antitoxin bottles per 1,000 people is related to baseline municipality characteristics. The

variable of interest, “treatment”, is the diphtheria mortality rate averaged over the pre-antitoxin years 1891 to 1894; “doctors pr. capita”

is the number of doctors pr. 1,000 people in 1895; “dist Boston” is the aerial distance to Boston; “pop density in 95” is measured

as the number of people per 1,000 square miles in 1895; “persons pr. dwelling in 95” is the number of people per dwelling in 1895;

“persons pr. room in 95” is the average number of persons per in 1895; “fb share” is the share of foreign-born individuals in 1895.

These municipality characteristics are interacted with a post-1895 dummy and a linear trend (I × (t− 1894)). All regressions control for

municipality and county-by-year fixed effects and are weighted by population size in 1895. The sample period is annually from 1880 to

1914. Standard errors (in parentheses) account for arbitrary heteroskedasticity and are clustered at the municipality level. ***, **, and

* indicate significance at the 1, 5, and 10 percent level.
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Table 2: The effect of antitoxin on population health

(1) (2) (3) (4)
diphteria life exp life exp life exp

all all female male

Panel A: OLS estimates

antitoxin p.c. -0.007 -0.006 0.006 0.036
(0.007) (0.029) (0.031) (0.030)

Panel B: 2SLS estimates

antitoxin p.c. -0.107*** 0.506*** 0.698*** 0.675***
(0.023) (0.170) (0.197) (0.196)

Panel C: Reduced-form estimates

treat x I x yr -0.024*** 0.094*** 0.101*** 0.124***
(0.004) (0.031) (0.031) (0.034)

Mean pre-y 0.904 41.93 43.21 40.66
N × T 9625 9135 9135 9135
N 275 261 261 261
F-Stat 35.67 33.83 33.83 33.83

Notes: This table reports OLS estimates (Panel A), 2SLS estimates (Panel B), and reduced-form

estimates (Panel C) of the relationship between the adoption of antitoxin per 1,000 people and the

diphtheria mortality rate (column 1) and life expectancy at birth (columns 2-4). The sample includes

annual observations at the municipality level from 1880 to 1914. All regressions are weighted

with the municipality population size in 1895 and control for municipality and county-by-year fixed

effects. “Mean pre-y” is the mean of the outcome measured over the relevant pre-antitoxin period.

Standard errors (in parentheses) account for arbitrary heteroskedasticity and are clustered at the

municipality level. ***, **, and * indicate significance at the 1, 5, and 10 percent level.
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Table 3: Effects on the infant and child mortality rates

(1) (2) (3) (4) (5) (6)
infant rate infant rate infant rate child rate child rate child rate

female male female male

antitoxin p.c. -0.480 -1.221 0.237 -0.632*** -0.636*** -0.644***
(1.074) (1.057) (1.163) (0.206) (0.216) (0.220)

Mean pre-y 152.1 139.1 163.3 23.35 22.69 24.01
N × T 9169 9169 9169 9169 9169 9169
N 262 262 262 262 262 262
F-Stat 33.96 33.96 33.96 33.96 33.96 33.96

Notes: This table reports effects on infant and child mortality rates using the linear trend-break

model as outlined in Equation (2). The infant mortality rate uses the number of live birth in the

denominator to measure the population at risk, while it is the population aged 1 to 4 for the child

mortality rate. The rates are expressed per 1,000 births or per 1,000 children aged 1 to 4. All re-

gressions are weighted by the municipality population size in 1895 and control for municipality and

county-by-year fixed effects. Standard errors (in parentheses) account for arbitrary heteroskedastic-

ity and are clustered at the municipality level. ***, **, and * indicate significance at the 1, 5, and

10 percent level.

Table 4: Other vital outcomes

(1) (2) (3) (4) (5) (6)
diph ratio fatality stroke infec rate accidents birth rate

antitoxin p.c. -3.546*** -2.442 -0.028* -0.104* 0.011 -0.496
(0.915) (17.230) (0.015) (0.062) (0.013) (0.681)

Mean pre-y 42.90 449.5 0.545 7.756 0.738 27.09
N × T 9616 2030 9625 9625 9625 9625
N 275 111 275 275 275 275
F-Stat 46.03 23.53 45.72 38.96 43.91 19.57

Notes: This table reports effects on the diphtheria death ratio (column 1), the fatality rate (column

2), other causes of deaths (columns 3-5), and the crude birth rate (column 6) using the baseline

annual linear trend-break model as outlined in equation (2). The sample includes the years 1880

to 1914. All variables are expressed per 1,000 people. All regressions are weighted by the munici-

pality population size in 1895 and control for municipality and county by-year fixed effects. Each

regression also controls for the pre-antitoxin outcome (in 1894) interacted with year fixed effects in

order to capture possible convergence effects. Standard errors (in parentheses) account for arbitrary

heteroskedasticity and are clustered at the municipality level. ***, **, and * indicate significance

at the 1, 5, and 10 percent level.
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Table 5: Effects on the health-care sector

(1) (2) (3) (4) (5)
age groups all 20-29 30-39 40-49 50-59

Panel A: Doctors

antitoxin p.c. -0.029 -0.013 -0.010 -0.011 0.003
(0.020) (0.010) (0.008) (0.008) (0.007)

Panel B: Nurses

antitoxin p.c. -0.018 -0.003 0.005 -0.009 -0.001
(0.088) (0.062) (0.017) (0.008) (0.004)

Panel C: Pharmacists

antitoxin p.c. -0.004 -0.004 -0.001 0.002 -0.003
(0.014) (0.005) (0.008) (0.004) (0.004)

N × T 9590 9590 9590 9590 9590
N 274 274 274 274 274
F-Stat 35.54 35.54 35.54 35.54 35.54

Notes: This table reports the impact of the antitoxin treatment on the number of doctors per 1,000

people (Panel A), the number of nurses per 1,000 people (Panel B), and the number of pharmacists

per 1,000 people (Panel C). The top row indicates the corresponding age group (e.g., column 2

provides the number of doctors/nurses/pharmacists in the ages 20-29). The method of estimation

is 2SLS using the baseline annual linear trend-break model as outlined in Equation (2). The sample

includes the years 1880 to 1914. All regressions are weighted by the municipality population size in

1895 and control for municipality and county-by-year fixed effects. Standard errors (in parentheses)

account for arbitrary heteroskedasticity and are clustered at the municipality level. ***, **, and *

indicate significance at the 1, 5, and 10 percent level.
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Table 6: Antitoxin Treatment and School Attendance in 1900

(1) (2) (3) (4) (5) (6)
==1 if attends == 1 if attends == 1 if attends

at all ≦ 3 months ≧ 9 months

Exposure 0.002 0.002 -0.005*** -0.005*** 0.006*** 0.006***
(0.003) (0.003) (0.001) (0.001) (0.001) (0.001)

Observations 512,670 423,268 354,712 296,002 354,712 296,002
R-squared 0.143 0.165 0.029 0.039 0.099 0.111
Municipality FE YES YES YES YES YES YES
Year of Birth FE YES YES YES YES YES YES
Ind. Controls NO YES NO YES NO YES
Mean pre-y 0.652 0.659 0.107 0.107 0.680 0.680

Notes: This table reports how antitoxin exposure affected school attendance. The sample includes 5 to 15-year-old children in Mas-

sachusetts in 1900. The dependent variable is a dummy of whether a child attended school at all (columns 1-2); for no more than three

months (columns 3-4); and for at least nine months (columns 5-6). The variable of interest, “Exposure”, denotes the average number of

antitoxin bottles per 1,000 people that a child during the first nine years was exposed to (see page 24 for details). All regressions control

for municipality and year of birth fixed effects. Columns 2, 4, and 6 also include the following set of controls: dummies for gender, place

of birth, rural, year of immigration, and a set of parental controls including dummies for mother’s and father’s birthplace, their year of

immigration, age of the mother and father, mother’s and father’s literacy, whether the father or mother was absent at the time of the

census, and whether the father worked in a white-/blue-collar skilled occupation. Standard errors (in parentheses) account for arbitrary

heteroskedasticity and are clustered at the municipality level. ***, **, and * indicate significance at the 1, 5, and 10 percent level.
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Table 7: The Long-run Effects of Antitoxin Treatment

(1) (2) (3) (4) (5) (6)
yrs in school low-skilled blue-collar skilled white-collar ln(occscore) ln(wages)

Exposure 0.008 0.0001 -0.0007 0.0001 0.0008 0.0018
(0.005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0011)

Observations 232,410 241,359 241,359 241,359 161,679 131,740
R-squared 0.172 0.0873 0.1022 0.0963 0.1013 0.1159
Mean pre-y 10.09 0.225 0.123 0.309 3.276 7.136

Municipality FE YES YES YES YES YES
Year of Birth FE YES YES YES YES YES YES
Ind. Controls YES YES YES YES YES YES

Notes: This table reports how antitoxin exposure affected labor market outcomes of exposed children as adults. The sample includes
5 to 15-year-old children in Massachusetts in 1900 linked to 1940 using the crosswalks from the Census Tree Project. The following
outcomes in 1940 are used as dependent variable: educational attainment (column 1), a dummy whether the individual works in a low-
skilled (column 2), blue-collar skilled (column 3), or white-collar occupation (column 4), the ln occupational income score (column 5),
and ln wages (column 6). The variable of interest, “Exposure”, denotes the average number of antitoxin bottles per 1,000 people that a
child during the first nine years was exposed to (see page 24 for details). All regressions control for municipality and year of birth fixed
effects and the following set of controls: dummies for gender, place of birth, rural, year of immigration, and a set of parental controls
including dummies for mother’s and father’s birthplace, their year of immigration, age of the mother and father, mother’s and father’s
literacy, whether the father or mother was absent at the time of the census, and whether the father worked in a white-/blue-collar skilled
occupation. Standard errors (in parentheses) account for arbitrary heteroskedasticity and are clustered at the municipality level. ***, **,
and * indicate significance at the 1, 5, and 10 percent level.
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A Online Appendix

A.1 Individual death records and mortality rates by age

We aggregate individual death records at the annual municipality level for a given age to

obtain age-specific death counts. We use them to compute the infant mortality rate, the child

mortality rate, and life tables, where life expediencies (at various ages) can be extracted,

although our regression analysis focuses on life expectancy at birth.

Individual death records have been digitized and are available as part of the data col-

lection Massachusetts Deaths, 1841-1915, through FamilySearch.org. As the death records

do not report decedents’ ages and fail to digitize accurate ages, we distribute the number

of such records across ages 0 to 100, based on the age distribution of other death records

with known ages in the same municipality, year, and other demographic traits. More specif-

ically, we separate all death records into groups, which are defined by a municipality, death

year, death season (April-September as warm season, and October-March as cold season), the

decedent’s sex, the decedent’s nativity (born in Massachusetts/other US States/foreign coun-

try/unknown), and the decedent’s marital status (single/ever-married/unknown). Then, we

distribute the number of age-missing death records across ages 0 to 100, based on the age

distribution of all death records with known ages in the same group. The rich information

on death records allows us to group decedents in such a disaggregated way and to make our

imputation more accurately by using the age-distribution of similar decedents. We compare

the death counts, which include or exclude the redistributed age-missing death records in

Figure A.1.
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Figure A.1: Imputed and Original Death Counts

Notes: This figure presents scatterplots of imputed death counts, which include redistributed death

cases with missing-age (x-axis) and the death counts excluding redistributed death cases (y-axis).

Each scatterplot represents a year-municipality observation between 1895 and 1915. Size of scat-

terplots represent the imputed death counts, and the fitted line comes from a bivariate regression

weighted by the imputed death counts.

The individual micro data, from the Federal censuses (IPUMS) for the years 1880, 1900,

and 1910, allow us to calculate population sizes for single-year age groups by municipality.

We linear interpolate between the census years and combine them with the imputed munici-

pal annual death counts by age in order to calculate age-specific mortality rates for the ages

0, 1, .., 100 for each calendar year between 1880 and 1914, which are used in the construction

of the life tables.39 The construction of the life tables is explained in the main text.

In order to assess the sensitivity of the use of population data from the Federal census, we

construct other measures of age-specific mortality rates using alternative denominator data

sources.40 In particular, we calculate the infant mortality rate at the annual municipality

level by combining the death counts at age 0 and the birth counts aggregated from individual

39We extrapolate the population data for the years 1911 to 1914.
40In the calculation of the cause-specific mortality rates, we use total population data from the

State census, which are available every fifth year, but they are not available by single-year age
groups in all the State census years.
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birth records, which are also digitized and available through FamilySearch.org. Specifically,

the infant mortality rate is defined as follows:

IMRmt =
Deaths0mt

Birthsmt

(A.1)

where Deaths0mt is the death counts for age 0 in municipality m and year t, and Birthsmt

is the birth counts in the same municipality and year. As an additional check of robustness,

we also use birth counts from the tabulated vital statistics (same source as cause- of-death

data).

We calculate the mortality rate of children aged 1 to 4 at the annual municipality level

as follows:

CMRmt =
Deaths1−4

mt

Pop1−4
mt

(A.2)

where Deaths1−4
mt is the deaths aged 1 to 4 in municipality m and year t, and Pop1−4

mt is

population aged 1 to 4 in the same municipality and year. Instead of using the Federal inter-

polated population data, we impute the annual population aged 1 to 4 based on cumulative

births and deaths of corresponding cohorts in prior years. This approach is also used by

Alsan and Goldin (2019) and Eriksson et al. (2020), Specifically, the population is imputed

as follows:

Pop1−4
mt =

a=4
∑

a=1

[

Birthsm,t−a −
∑k=a

k=1Deathsa−k
m,t−k

]

(A.3)

where Birthsm,t−a is is the number of births in municipality m and year (t − a), and

Deathsa−k
m,t−k is the number of deaths aged (a−k) in municipality m and year (t−k). In fact,

the term Birthsm,t−a is the total number of children born a years ago (standing in year t),

and the term
∑k=a

k=1Deathsa−k
m,t−k is the cumulative deaths for children aged a between their

birth year and the year t. We implicitly assume that the migration of children is negligible

and all population changes were accounted by deaths.

We compare our imputed population with the census-reported population in years when

Federal or State censuses were available. Figure A.2 below shows the imputed population

fit well the census-reported population at the municipality level in census years.
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Figure A.2: Imputed and Census Reported Population Age 1-4

Notes: This figures present scatterplots of imputed population aged 1 to 4 (x-axis) and census-

reported population aged 1 to 4 (y-axis) in the census years of 1895, 1900, 1905, 1910, and 1915.

Census-reported populations come from Federal censuses 1900 and 1910; and Massachusetts State

census in 1895, 1905, and 1915. Each scatter-plot represents an observation of municipality and

census year. Size of scatterplots represents the population size, and the fitted line is from a regression

weighted by imputed population size
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A.2 Relation to Shift-share Instrument

In this Appendix subsection, we show that our baseline instrumental variable, reported in

Equation (1), is closely related to an alternative instrument, where the aggregate number

of bottles is distributed according to municipality specific diphtheria shares (a “shift-share”

type of instrument). For convenience, we repeat the structure of our baseline instrument

here:

IV base
mt = treatmentm × It × (t− 1894), (A.4)

where treatment intensity is defined as the diphtheria mortality rate averaged across the

pre-antitoxin years 1889 to 94:

treatmentm = ln d̄prem . (A.5)

A shift-share type of instrumental variable can be defined defined as:

IV alt
mt = Bt

Dpre
m

Dpre
MA

1

P 94
m

, (A.6)

where Bt is the total number of antitoxin bottles supplied to the municipalities in our sample,

Dpre
i is the total number of diphtheria deaths from 1889 to 1894 in municipality m, DMA is

the total number of diphtheria deaths in our sample of municipalities during the same pre-

antitoxin years (i.e., Dpre
m /Dpre

MA is the share of diphtheria deaths in municipality m), and P 94
m

is the municipality population size in 1894. Accordingly, IV base
mt is the predicted number of

antitoxin bottles per capita, where the aggregate number of bottles supplied by the SBH each

year is distributed according to the pre-antitoxin mortality share and the scaling population

size is fixed to the pre-antitoxin year of 1894. Alternatively, we could have let the population

vary by year, but this assumption would be less conservative (as population size itself is

influenced by the use of the antitoxin) and the connection to our baseline instrument would

be less obvious. Let us provide a simple example of how the prediction works. If Boston

had, say, 20% of all diphtheria deaths prior to the antitoxin treatment, the municipality

is allocated 20% of all bottles in each year and then the predicted number of total bottles

available to Boston is scaled by its pre-antitoxin population size.

In the following, we show how the two instruments relate to each other. Assume that the

baseline treatment takes this slight alternative form:

treatmentm =
Dpre

m

P 94
m

, (A.7)
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where instead of taking the average mortality rates over multiple years, we sum all pre-

antitoxin diphtheria deaths and scale with the population size of 1894. The interpretation

of this ratio remains relatively close to a (mortality) rate, and using the formulation in

Equation (A.7) as treatment intensity for the baseline instrument provides very similar results

(available upon request). Next, we substitute this into Equation (A.4) and rearrange:

IV base
mt =

Dpre
m

P 94
m

× It × (t− 1894) ⇔

Dpre
m =

P 94
m IV base

mt

It × (t− 1894)
, (A.8)

which we combine with Equation (A.7) to give:

IV alt
mt = Bt

P 94
m IV base

mt

It×(t−1894)

DMA

1

P 94
m

⇔

IV alt
mt =

Bt

DMA
× τ

IV base
mt , (A.9)

where we, in the last line, have omitted the indicator (It) for simplicity, since this only reflects

the fact that Bt is per definition zero before 1895, and τ is accordingly defined as the linear

trend τ ≡ (t− 1894) for t > 1894. From this last expression, we observe that the difference

between the instruments is the scaling factor (Bt/
(

DMAτ
)

), which is possibly time-varying,

but unrelated to municipality specific conditions. Therefore, whether we use one or the

other instrument should not be important in terms of obtaining consistent estimates. The

2SLS estimates for diphtheria and life expectancy using the alternative shift-share type of

instrument are reported in Table A.4.
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A.3 Additional results

Figure A.3: Total number of diphtheria and croup deaths

Notes: The figure shows the development of the total number of deaths due to diphtheria and croup

(black solid line) and the rate per 1,000 people (gray dashed line) from 1858 to 1914 for the State

of Massachusetts. The data have been obtained from the vital statistics of Massachusetts (various

years). 1858 marks the first year where diphtheria was recorded as a separate cause of death in the

vital statistics.
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Figure A.4: Development of Life Expectancy at Birth by Treatment Intensity

(a) Average by group

(b) And deviation from 1894 values

Notes: This figure shows the development of life expectancy for municipalities with above- and

below-median treatment intensity. In particular, we have collapsed the baseline sample of munic-

ipalities into two regions (according to their treatment intensity) and then for each region (i.e.,

high-low treatment intensity regions) calculated life expectancy at birth for each year. This avoids

the problem of small populations when deriving the life tables and calculating life expectancy. Panel

A shows the three-year moving average by group, while Panel B additionally take the deviation from

1894 values for each group.
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Figure A.5: Spatial Variation in Antitoxin Supply in 1914

Notes: This figures show the spatial variation in the supply of antitoxin bottles per 1,000 people in

1914. Blue colored municipalities are not included in the baseline sample.
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Figure A.6: Spatial Variation in Doctors per 1,000 People in 1895

Figure A.7: Spatial Variation in Population Density in 1895

Notes: These figures show the spatial variation doctors per 1,000 people in 1895 and the number

of people per square mile in 1895 (population density), which are two important predictors of the

diffusion speed of antitoxin. Blue colored municipalities are not included in the baseline sample.
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Figure A.8: Event study estimates for life expectancy and child mortality

(a) Life expectancy (b) Diphtheria mortality rate

(c) Child mortality rate

Notes: This figure reports reduced-form event study estimates, where the outcome (life expectancy

in Panel A, Diphtheria mortality rate in Panel B, and the child mortality rate in Panel C) has

been regressed on 5-year binned event-dummies interacted with treatment, while controlling for

municipality and county-year fixed effects.
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Figure A.9: Robustness of counterfactual scenarios

(a) Life expectancy at birth

(b) Diphtheria mortality rate

Notes: This figure uses reduced-form estimates from the different robustness exercises (2SLS esti-

mates reported in Appendix Tables A.5 and A.6) to calculate the counterfactual (CF) developments

for life expectancy at birth (Panel A) and the diphtheria mortality rate (Panel B). The gray curve

is the baseline model. The green dashed curve controls for all the additional control variables. The

yellow curve replace county-year fixed effects with year fixed effects. The red dashed curve use the

log-level specification for life expectancy and the Poisson model for the diphtheria mortality rate.

The purple curve use non-weighted regressions. The orange dashed curve use treatment intensity

that is scaled with the number of children instead of total population. The blue dashed line models

the trend to be concave instead of linear. The CF calculations are based on annual delays for average

treatment intensity 95-percent confidence are not reported. The solid black curves are the observed

population weighted averages of the two outcomes. All curves are three-year moving averages.
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Figure A.10: Counterfactual scenario for child mortality

Notes: This figure use reduced-form estimates (and 95 percent confidence bands) to calculate the

counterfactual (CF) development for the child mortality rate (gray solid curves and dashed ones

indicate the 95-percent confidence bands). The CF calculations are based on annual delays for

average treatment intensity The solid black curve is the observed population weighted averages of

the child mortality rate. All curves are three-year moving averages.

54



Table A.1: Summary Statistics by Pre- and Post-antitoxin Periods

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
period 1 period 2

N mean p25 p50 p75 N mean p25 p50 p75

diphteria rate 275 0.893 0.656 0.846 1.099 275 0.316 0.234 0.319 0.405
life expectancy 261 42.10 36.01 42.30 46.29 261 45.96 42.04 45.42 50.04
child mortality rate 262 23.35 18.03 24.01 30.80 262 13.04 9.573 12.04 17.74
infant mortality rate 262 152.1 126.8 156.7 168.0 262 132.2 111.4 129.8 137.7
population 275 117,164 6,874 32,270 58,291 275 140,531 9,561 51,428 102,698
antitoxin p.c. 275 0 0 0 0 275 10.40 6.227 10.01 15.10
treatment 275 0.732 0.443 0.647 1.220 275 0.732 0.443 0.647 1.220

Notes: This table reports summary statistics for selected key variables averaged over the pre-antitoxin period (1880 to 1894) and the

post-antitoxin periods (1895 to 1914), using the 1890 municipality population size as weight.
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Table A.2: Treatment Balance

(1) (2) (3) (4) (5) (6) (7)
treatment treatment treatment treatment treatment treatment treatment

ln(infec. rate, 89-94) 0.613*** 0.619*** 0.607*** 0.634*** 0.611*** 0.619*** 0.527***
(0.076) (0.171) (0.161) (0.146) (0.148) (0.163) (0.153)

ln(stroke rate, 89-94) -0.079 -0.122* -0.120* -0.123* -0.093 -0.070
(0.066) (0.069) (0.069) (0.069) (0.079) (0.077)

doctors pr. capita in 95 0.092* 0.082* 0.088* 0.128** 0.114**
(0.051) (0.049) (0.049) (0.054) (0.053)

dist Boston -0.004* -0.003 -0.004 -0.004
(0.002) (0.002) (0.002) (0.002)

persons pr 1,000 sqm in 95 0.005 0.002 0.003
(0.009) (0.008) (0.008)

persons pr. dwelling in 95 -0.049 -0.056
(0.034) (0.036)

persons pr. room in 95 0.944 0.592
(0.603) (0.614)

fb share in 95 0.776
(0.617)

N 275 268 267 267 267 267 267

Notes: This table shows how different municipality characteristics are related to “treatment” intensity (i.e., the outcome in this table),

which is used in combination with the sudden availability of antitoxin in 1895 as our 2SLS strategy. The explanatory variables are

explained in Table 1. All regressions control for county fixed effects and are weighted with the 1890 municipality population size in 1890.

Robust standard errors clustered in parenthesis. ***,**,* significant at, respectively, the 10, 5, and 1 percent level.
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Table A.3: False Free-antitoxin Start Dates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
dipht dipht dipht dipht dipht dipht life life life life life life

antitoxin p.c. 0.015 0.055
(0.028) (0.330)

antitoxin p.c. 0.015 0.054
(0.028) (0.324)

antitoxin p.c. 0.011 0.063
(0.027) (0.301)

antitoxin p.c. 0.008 0.075
(0.028) (0.301)

antitoxin p.c. 0.004 0.085
(0.031) (0.312)

antitoxin p.c. 0.001 0.085
(0.031) (0.306)

Start 1880 1881 1882 1883 1884 1885 1880 1881 1882 1883 1884 1885
Sample 1880-96 1880-96 1880-96 1880-96 1880-96 1880-96 1880-96 1880-96 1880-96 1880-96 1880-96 1880-96
N × T 4675 4675 4675 4675 4675 4675 4437 4437 4437 4437 4437 4437
N 275 275 275 275 275 275 261 261 261 261 261 261
F-Stat 34.49 25.93 22.44 15.89 11.40 9.653 37.40 28.27 23.49 16.95 12.48 10.77

Notes: This table reports the results from assuming false start dates for the free distribution of antitoxin in the annual model. In columns

1-6 the outcome is the diphtheria mortality rate and in columns 7-12 the outcome is life expectancy at birth. In columns 1 and 7, we

assume that antitoxin was being distributed freely from 1880 onward, in columns 2 and 8, we assume the starting date was the year 1881,

etc. The sample includes the years 1880 to 1896. We assume an annual linear trend-break model for the diffusion of antitoxin as outlined

in Equation (2). All regressions are weighted by the municipality population size in 1895 and control for municipality and county-by-year

fixed effects. Standard errors (in parentheses) account for arbitrary heteroskedasticity and are clustered at the municipality level. ***,

**, and * indicate significance at the 1, 5, and 10 percent level.
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Table A.4: Alternative Instrument - Shift-share Instrument

(1) (2) (3) (4)
diph rate diph rate life exp life exp

antitoxin p.c. -0.110*** -0.122*** 0.489*** 0.690***
(0.027) (0.021) (0.176) (0.241)

Weight yes no yes no
N × T 9135 9135 9135 9135
N 261 261 261 261
F-Stat 31.52 52.45 31.52 52.45

Notes: This table reports the effects on diphtheria mortality and life expectancy from an alternative

instrument that is derived by using the pre-antitoxin (1889 to 94) diphtheria mortality shares to

allocate the aggregate number of antitoxin bottles supplied by the SBH to each municipality each

year. This predicted number of antitoxin bottles is then scaled by the 1894 municipality population

size. See Appendix Section A.2 for more details. In columns 1 and 3, regression are weighted by

the municipality population size in 1895. All regressions control for municipality and county-by-

year fixed effects. Standard errors (in parentheses) account for arbitrary heteroskedasticity and are

clustered at the municipality level. ***, **, and * indicate significance at the 1, 5, and 10 percent

level.
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Table A.5: Robustness Checks I

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
diph diph diph diph diph life life life life ln(life)

antitoxin p.c. -0.212*** -0.102*** -0.111*** 0.710* 0.487*** 0.507***
(0.079) (0.022) (0.024) (0.412) (0.167) (0.176)

share 0 0.169* -0.428
(0.094) (0.763)

share 1-4 -0.007 -0.516
(0.042) (0.342)

share 5-9 -0.016 0.309
(0.037) (0.342)

share 10-14 0.002 0.435
(0.031) (0.296)

clean water -0.231*** 0.421
(0.085) (0.588)

hospitals 0.106 -0.786
(0.110) (0.919)

ln antitoxin p.c. -1.287*** 5.168** 0.131**
(0.371) (2.275) (0.055)

Add controls yes yes no no no yes yes no no no
Spec. level-level level-level level-level level-log r-f level-level level-level level-level level-log log-log
estimator 2SLS 2SLS 2SLS 2SLS Poisson 2SLS 2SLS 2SLS 2SLS 2SLS
N × T 9590 9625 9625 7946 9554 9135 9135 9135 7533 7532
N 274 275 275 275 275 261 261 261 261 261
F-Stat 8.080 39.91 34.91 19.67 8.356 38.79 33.60 20.45 20.45

Notes: This table reports various robustness checks based on the baseline annual linear trend-break model as outlined in Equation (2).

The sample includes the years 1880 to 1914. The outcomes are the diphtheria mortality rates (columns 1-4) and life expectancy at

birth (columns 5-8). Columns 1 and 5 include the following municipality-level controls: pre-antitoxin respiratory, waterborne, and stroke

mortality rates, doctors pr. capita, distance to Boston, population density, person pr. dwelling, person pr. room, and the foreign-born

share (all measured either in 1895 or before and interacted with a full set of year fixed effects). The results presented in columns 2 and 6

account for the roll-out of clean water and hospitals. Results in columns 3 and 7 are based on a level-log model, whereas column 8 reports

results using a log-log functional form. The reduced-form coefficient in column 4 is estimated by Poisson. All regressions are weighted by

the municipality population size in 1895 and control for municipality and county-by-year fixed effects. Standard errors (in parentheses)

account for arbitrary heteroskedasticity and are clustered at the municipality level. ***, **, and * indicate significance at the 1, 5, and

10 percent level.
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Table A.6: Robustness Checks II

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
life exp life exp
5-year 5-year

diph rate diph rate diph rate diph rate life exp life exp life exp life exp age calendar

antitoxin p.c. -0.084*** -0.121*** -0.122*** 0.506*** 0.718*** 0.722*** 0.697*** 0.549**
(0.016) (0.018) (0.018) (0.170) (0.239) (0.242) (0.260) (0.234)

antitoxin per child -0.035*** 0.263***
(0.007) (0.087)

Treatment log baseline children children log baseline children children baseline baseline
Weight baseline no baseline baseline baseline no baseline baseline baseline baseline
Sample baseline baseline baseline excl Boston baseline baseline baseline excl Boston baseline baseline
N × T 8295 9625 9640 9590 9135 9150 9170 9115 9185 9150
N 237 275 276 274 261 262 262 261 263 262
F-Stat 46.10 58.64 38.57 57.33 33.83 56.83 38.07 55.92 56.92 56.83

Notes: This table reports various robustness checks based on the baseline annual linear trend-break model as outlined in Equation (2).

The sample includes the years 1880 to 1914. The outcomes are the diphtheria mortality rates (columns 1-4) and life expectancy at birth

(columns 5-10). Columns 1 and 5 use our treatment measure logged. In Columns 2 and 6, the regressions are unweighted. Columns 3

and 7 scale treatment and antitoxin with the number of children (ages 0-10) instead of the total population. In Columns 4 and 8, Boston

is excluded from the sample. In Column 9, life expectancy at birth is calculated on the basis of five-year age groups instead of single-year

age groups, whereas in column 10 life expectancy at birth is based on five calendar years (1880-85, 1890-94, 1895-89, 1900-04, 1905-09,

1910-14). All regressions control for municipality and county-by-year fixed effects. Standard errors (in parentheses) account for arbitrary

heteroskedasticity and are clustered at the municipality level. ***, **, and * indicate significance at the 1, 5, and 10 percent level.
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Table A.7: Controlling for Lagged Mortality Outcomes

(1) (2) (3) (4) (5) (6) (7) (8)
diph diph diph diph life life life life

antitoxin p.c. -0.090*** -0.098*** -0.102*** -0.113*** 0.473*** 0.442*** 0.412*** 0.408***
(0.017) (0.019) (0.020) (0.019) (0.149) (0.138) (0.133) (0.140)

Lags 1 1-2 1-3 1-5 1 1-2 1-3 1-5
N × T 9350 9075 8800 8250 8874 8613 8352 7830
N 275 275 275 275 261 261 261 261
F-Stat 38.02 38.88 40.27 40.68 33.86 34.00 34.11 34.27

Notes: This table shows 2SLS estimates for the baseline annual linear trend-break model as outlined in Equation (2) when controlling for

lagged dependent variables. The number of lags included is reported at the bottom of the table. The outcome variables are the diphtheria

mortality rate (Columns 1-4) and life expectancy at birth (Columns 5-8). All regressions control for municipality and county-by-year fixed

effects. Standard errors (in parentheses) account for arbitrary heteroskedasticity and are clustered at the municipality level. ***, **, and

* indicate significance at the 1, 5, and 10 percent level.
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Table A.8: Effects on Age-specific Mortality Rates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
age 0 age 1 age 2 age 3 age 4 age 5 age 6 age 7 age 8 age 9 age 10

antitoxin p.c. -2.058 -0.946 -0.784*** -0.551*** -0.567*** -0.423*** -0.282** -0.031 -0.099 -0.200* -0.005
(1.484) (0.893) (0.271) (0.184) (0.172) (0.143) (0.116) (0.087) (0.087) (0.114) (0.077)

Mean pre-y 189.1 55.35 24.83 17.17 13.14 10.29 8.114 6.958 5.612 4.725 3.968
N × T 9130 9131 9128 9129 9131 9131 9135 9132 9133 9133 9134
N 261 261 261 261 261 261 261 261 261 261 261
F-Stat 33.80 33.76 33.72 33.74 33.76 33.75 33.83 33.77 33.80 33.80 33.81

Notes: This table reports the effects on q-type age-specific mortality rates (ages 0 to 10) using the linear trend-break model as outlined

in Equation (2). The outcomes are expressed per 1,000 individuals of the relevant age group. The sample includes the years 1880 to

1914. All regressions are weighted by the municipality population size in 1895 and control for municipality and county-by-year fixed

effects. Standard errors (in parentheses) account for arbitrary heteroskedasticity and are clustered at the municipality level. ***, **, and

* indicate significance at the 1, 5, and 10 percent level.
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Table A.9: Stacked Model

(1) (2) (3) (4) (5) (6)
mortality mortality mortality mortality mortality cases

antitoxin p.c. x I -0.082*** -0.110*** -0.089*** -0.067*** -0.057*** -0.048
(0.019) (0.030) (0.020) (0.016) (0.015) (0.062)

Controls all exogenous childhood declining waterborne cases
N × T ×D 100,366 21,507 28,676 43,014 21,507 16,090
N 275 275 275 275 275 250
F-Stat 16.73 16.73 16.73 16.73 16.73 13.84

Notes: This table reports 2SLS estimated from a stacked model that resembles the baseline model,

but the panel is now three-dimensional (municipality-year-disease). We interact the main RHS

variables in Equations (1) and (2) with an indicator for diphtheria. Column 1 includes all 13 con-

trol diseases (typhoid, tuberculosis, pneumonia, scarlet fever, measles, whooping cough, bronchitis,

accidents, suicides, childbirth, meningitis, strokes, and digestive diseases). Column 2 only includes

“exogenous” causes as controls (accidents and suicides). Column 3 only includes childhood dis-

eases as controls (scarlet fever, whooping cough, measles). Column 4 only includes diseases where

we also observe secular declines during the pre-antitoxin period as controls (typhoid, tuberculosis,

scarlet fever, meningitis, and digestive diseases). Column 5 only includes waterborne diseases as

controls (typhoid and digestive diseases). In column 6, the outcome in the infection rate (or cases

per 1,000 people), where the controls are the infection rates of scarlet fever, typhoid, measles, and

smallpox. All regressions are weighted by the municipality population size in 1895 and control for

municipality-by-year, disease-by-year-by-county, and municipality-by-disease fixed effects. Standard

errors (in parentheses) account for arbitrary heteroskedasticity and are clustered at the municipality

level. ***, **, and * indicate significance at the 1, 5, and 10 percent level.
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Table A.10: Antitoxin Treatment and School Attendance: Robustness

(1) (2) (3) (4) (5) (6)
PANEL A == 1 if attends ≦ 3 months
Sample Boys Girls FB Parents US Parents Dad Skill (Low) Dad Skill (High)

Exposure -0.005*** -0.005*** -0.005*** -0.006*** -0.005*** -0.005***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 148,440 147,514 135,019 108,050 118,095 177,873
R-squared 0.043 0.042 0.047 0.041 0.051 0.038
Mean(Y) 0.106 0.108 0.114 0.0994 0.111 0.105

PANEL B == 1 if attends ≧ 9 months
Sample Boys Girls FB Parents US Parents Dad Skill (Low) Dad Skill (High)

Exposure 0.006*** 0.006*** 0.005*** 0.005*** 0.005*** 0.006***
(0.001) (0.001) (0.002) (0.001) (0.002) (0.001)

Observations 148,440 147,514 135,019 108,050 118,095 177,873
R-squared 0.118 0.108 0.096 0.146 0.120 0.112
Pre-Y mean 0.685 0.676 0.685 0.674 0.674 0.685
Municipality FE YES YES YES YES YES YES
Year of Birth FE YES YES YES YES YES YES
Ind. Controls YES YES YES YES YES YES

Notes: This table reports how antitoxin exposure affected school attendance. The sample includes 5 to 15-year-old children in Mas-

sachusetts in 1900. The dependent variable is a dummy of whether a child attended school for no more than three months in Panel A

and for at least nine months in Panel B. The variable of interest, “Exposure”, denotes the average number of antitoxin bottles per 1,000

people that a child during the first nine years was exposed to (see page 22 for details). All regressions control for municipality and year

of birth fixed effects and include the following set of controls: dummies for gender (except columns 1-2), place of birth, rural, year of

immigration, and a set of parental controls including dummies for mother’s and father’s birthplace, their year of immigration, age of the

mother and father, mother’s and father’s literacy, whether the father or mother was absent at the time of the census, and whether the

father worked in a white-/blue-collar skilled occupation. Standard errors (in parentheses) account for arbitrary heteroskedasticity and are

clustered at the municipality level. ***, **, and * indicate significance at the 1, 5, and 10 percent level.
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Table A.11: Antitoxin Treatment and School Attendance in 1900 – Linked Sample

(1) (2) (3) (4) (5) (6)
==1 if attends == 1 if attends == 1 if attends

at all ≦ 3 months ≧ 9 months

Exposure 0.003 0.003 -0.005*** -0.005*** 0.006*** 0.006***
(0.003) (0.003) (0.001) (0.001) (0.001) (0.001)

Observations 241,391 241,359 174,258 174,218 174,258 174,218
R-squared 0.164 0.176 0.035 0.041 0.111 0.119
Municipality FE YES YES YES YES YES YES
Year of Birth FE YES YES YES YES YES YES
Ind. Controls NO YES NO YES NO YES
Mean pre-y 0.722 0.722 0.103 0.103 0.685 0.685

Notes: This table replicates Table 6 using the linked sample (1900 to 1940). The sample includes 5 to 15-year-old children in Mas-

sachusetts in 1900 that can be linked to 1940 using the crosswalks from the Census Tree Project. The dependent variable is a dummy of

whether a child attended school at all (columns 1-2); for no more than three months (columns 3-4); and for at least nine months (columns

5-6). The variable of interest, “Exposure”, denotes the average number of antitoxin bottles per 1,000 people that a child during the first

nine years was exposed to (see page 24 for details). All regressions control for municipality and year of birth fixed effects. Columns 2,

4, and 6 also include the following set of controls: dummies for gender, place of birth, rural, year of immigration, and a set of parental

controls including dummies for mother’s and father’s birthplace, their year of immigration, age of the mother and father, mother’s and

father’s literacy, whether the father or mother was absent at the time of the census, and whether the father worked in a white-/blue-collar

skilled occupation. Standard errors (in parentheses) account for arbitrary heteroskedasticity and are clustered at the municipality level.

***, **, and * indicate significance at the 1, 5, and 10 percent level.
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Table A.12: The Long-run Effects of Antitoxin Treatment

(1) (2) (3) (4)
low-skilled blue-collar skilled white-collar ln(occscore)

Panel A: Sample 1900-1920

Exposure -0.0027*** 0.0003 0.0029*** 0.0005
(0.0007) (0.0005) (0.0005) (0.0007)

Observations 245,301 245,301 245,301 162,487
R-squared 0.1131 0.1537 0.0672 0.1064
Mean(Y) 0.234 0.135 0.284 3.229

Panel B: Sample 1900-1930

Exposure 0.0003 -0.0004 0.0004 -0.0004
(0.0005) (0.0004) (0.0006) (0.0005)

Observations 261,097 261,097 261,097 179,878
R-squared 0.0968 0.1206 0.1053 0.1197
Mean(Y) 0.217 0.135 0.325 3.290

Municipality FE YES YES YES
Year of Birth FE YES YES YES YES
Ind. Controls YES YES YES YES

Notes: This table reports how antitoxin exposure affected labor market outcomes of exposed children
as adults. The sample includes 5 to 15-year-old children in Massachusetts in 1900 linked to 1920
(Panel A) and 1930 (Panel B). The dependent variable is a dummy of whether the person works
in the terminal year in a low-skilled (column 1), blue-collar skilled (column 2), or white-collar
occupation (column 3), and the ln occupational income score (column 4). The variable of interest,
“Exposure”, denotes the average number of antitoxin bottles per 1,000 people that a child during the
first nine years was exposed to (see page 24 for details). All regressions control for municipality and
year of birth fixed effects and the following set of controls: dummies for gender, place of birth, rural,
year of immigration, and a set of parental controls including dummies for mother’s and father’s
birthplace, their year of immigration, age of the mother and father, mother’s and father’s literacy,
whether the father or mother was absent at the time of the census, and whether the father worked
in a white-/blue-collar skilled occupation. Standard errors (in parentheses) account for arbitrary
heteroskedasticity and are clustered at the municipality level. ***, **, and * indicate significance
at the 1, 5, and 10 percent level.
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